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ABSTRACT -

A general description of some modern numerical techniques for
the simulation of astrophysical fluid flow is presented. The
methods are introduced with a thorough discussion of the espe-
cially simple case of advection. Attention is focussed on the
~ piecewise-parabolic method (PPM). A description of the SLIC
- method for treating multifluid problems is also given. The dis-
cussion is illustrated by a number of advection and hydrodynamics
test problems. Finally, a study of Kelvin-Helmholtz instability
of supersonic jets using PPM with SLIC fluid interfaces is pre-
sented. | '
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INTRODUCTION

There is a long history of the use of computer simulations in
astrophysics because of the difficulty or impossibility of obtain-
ing useful observational data. It should come as no surprise,
for example, that nearly all our understanding of stellar struc-
ture and evolution has come from computer calculations. In other
areas such as star formation, supernova explosions, formation of
interstellar clouds, and the evolution of galaxies some observa-
tional data exists. However, computer simulations offer the
potential for controlled experiments in which the various para-
meters of a theoretical model may be varied independently and
unequivocal observations of the results may be made. Scant
astronomical observational data often allows several theoretical
interpretations. Computer simulations have been used to choose
between such interpretations by means of checking for a rigorous
consistency of theoretical arguments with known physical laws
whose workings are too complex for the unaided mind to fathom.

For these reasons computer simulations have played an impor-
tant role in astrophysics since the early 1960's, and there is
every indication that their role will continue to grow along with
the power of the computing machines they exploit. Consequently
it is advisable for modern astrophysicists to develop some famil-
iarity with the methods by which computer simulations are per-
formed. Without such a familiarity the astrophysicist is forced
to take all computational results at face value, and this can
lead to misunderstandings. It is the purpose of this article to
acquaint the uninitiated with some fundamental ideas behind a
group of modern techniques for simulating fluid flow on computers.
There is no intent to set down detailed equations, to give any
more than an indication of the historical development of this
subject, or to maintain any semblance of objectivity in choosing
which techniques merit discussion. This editorial attitude will
simplify the discussion so that the essential ideas of the
various techniques which receive attention may be more clearly
understood. The reader who desires a fuller account will be
referred to a number of articles where he may find it.

-

THE RELATIONSHIP BETWEEN SIMPLE ADVECTION AND ASTROPHYSICAL
FLUID DYNAMICS

Every informed astrophysicist should know that the foundation
of fluid dynamics is the Boltzmann equation. Apart from the
collision integral on the right-hand side, this equation
describes simple advection, an incompressible motion of fluid in
phase space. We write the collisionless Boltzmann equation in a
two-dimensional phase space as
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Here f is the density of the fluid in phase space, x is the
distance coordinate, v the speed, and g the acceleration. When g
1s independent of v the motion in phase space is obviously incom-
pressible. Inappropriate as it may seem, this equation with the
last term dropped (i.e., g = 0) has been the conceptual basis for
the design of numerical methods for treating the much more com-
plicated, nonlinear equations of fluid dynamics. The success of
this approach rests on the fact that the fluid equations are
derived from the collisional Boltzmann equation, and hence at a
fundamental level they involve simple advection. To see this,
consider the equations for the one-dimensional, isentropic flow
of a polytropic fluid. 1In Lagrangian coordinates moving with the
fluid the governing equations are:

X _

5? = u ’ (2)
oV dJu _

3 " B3m - 0 R (3)
du 9p _ |

ot | Jm o (4)
dm = p dx , (5)
vV = 1/p (6)
p = ap’ (7)

Here m is a mass coordinate related to the distance coordinate
through the density p as in Eq. (5), A is a constant, and y is

the constant polytropic index. The Eulerian sound speed ¢ and the
Lagrangian sound speed C are defined by

? = YpV | (8)

C = pc . (9)

c (10)
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i1t is a trivial matter to verify that these quantities satisfy
the advection equations
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This implies that the two Riemann invariants are simply advected
in opposite directions at the speed C in the Lagrangian coordi-
nate system (R; goes to the right and R. to the left). Thus

the hydrodynamical problem has been reduced to simple advection.

Under more general circumstances fluid dynamics is not so
simple. For large amplitude sound signals the two Riemann
invariants interact and entropy is produced (A increases). In
this case formulae like Eq. (10) for the Riemann invariants
cannot be written; however, equations for the differentials
dR+ are still useful. Now A in Eq. (7) is no longer constant
and we must augment our nonlinear system of equations with an
energy equation

lQJ
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+
Q
o
]
o

. | (12)
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Here E is the total energy per unit mass, which is related to the
specific internal energy € by

E = ¢ + '% u . (13)

The equation of state which replaces Eq. (7) is now

The characteristic equations for changes in Riemann invariants now
become g
drR, = du = 2 = o (15a)
t B ¢ *

Equations (15a) hold only along characteristic paths defined by

dm = * C dt . (15b)

In addition, a third characteristic equation

dRo = dp - czdp = 0 | (15¢)
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applies along characteristic paths defined by dm = 0. Equations
(15) hold only in smooth flow; if shocks or contact discontinu-
ities are encountered on the characteristic paths, dRt+ and dRg,
are nonzero across these discontinuities. Even when no simple
formulae for quantitites Ry can be written, the concept of
advection of Riemann invariants along characteristic paths still
proves useful.

Advection also enters the study of fluid dynamics more
directly when Eulerian calculations are performed. 1In this
article we will consider an Eulerian calculation to consist of
two steps, a Lagrangian calculation followed by a remapping of
the results of that calculation onto the Eulerian grid. The
remap step of such a composite calculation requires the solution
of the following nonlinear system of equations:

ot ox ) (16)
du Ju _
3¢ ¢t Pu 3, = 0 (17)
oE JE _
3 T P4 3m - 0 (18)

We have written the last two equations in this set in an unusual
manner which gives the best guide to the consistent numerical
solution of the set of equations as a whole. Clearly, all three
of these equations are just Eq. (1) with g = 0 and with different
definitions of the density f, the coordinate x, and the advection
speed v.

It should be noted that Eq. (1) has other uses in astro-
physics. When g is determined from Poisson's equation, it
becomes the equation of stellar dynamics. A similar equation
with a source term on the right is the equation of radiative
transfer. Equations like Eq. (1), often with source terms on the
right, must be solved whenever a constituent of the fluid must be
treated which has a long mean free path.

NUMERICAL TECHNIQUES FOR EXPLICIT CALCULATIONS OF SIMPLE
ADVECTION
a. The PPM and PPB advection schemes

We will discuss two general approaches to solving the simple
advection equation in one dimension
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For a fuller discussion of this subject and for historical refer-
ences the reader is referred to van Leer (1977), Woodward and

-~ White (1983), and Colella and Woodward (1983). Of course, there
1s really only one way to solve Eq. (19) numerically; one takes a
finite amount of data about f(x), from it he infers an approxima-
tion to f(x) everywhere, and then he uses this approximation to
update his finite data in some straightforward way. This simple
truth stands in relation to numerical analysis of partial differ-
ential equations as the following summary of algebra does to that
subject: '"You just let something be x and then solve for it" (E.
J. Woodward 1959, private communication). Needless to say, many
mathematicians have based careers on finding out just how the
approximation to f(x) everywhere should be constructed.

We will consider here only difference methods in conservation
form. For these methods the finite data about f(x) must in part
consist of or be equivalent to the locations x; of zone interfaces
and the average values <f>; of f(x) within the intervals from
Xj to Xj4+]1. Here the zone number i runs from 1 to some finite
number N. For one method we will discuss, PPM, this is all the data
provided for the calculation. For another method, PPB, additional
moments of f(x) within the zones must be provided. These moments
will be written as <ka>,ywhere k =0, 1, 2 and where x is a
zone-centered coordinate defined by

X = [x - %- (xL + xR)]-/ Ax . (20)

Here xj, and xp denote the locations of the left- and right-hand
interfaces of the zone, that is xj, = x; and xg = xj4+1 for
zone 1. The zone width is Ax, and therefore ¥ ranges from - 1/2
to 1/2 across the zone. The moments <fyk> are defined by

1/2
<ka> = £ £(x) Xk dy . (21)
-1/2

In the first approach to solving Eq. (19), here represented
by the difference scheme PPM (the Piecewise-Parabolic Method;
Woodward and Colella 1980, 1983; Colella and Woodward 1983), only
the masses of the zones are used as data. These are given by Eq.
(21) with k = 0. 1In order to approximate f(x) everywhere PPM
constructs a parabola to represent f(x) within each zone:

f(x) = fg + £f1x + £x2 . . (22)
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To compute the coefficients fy, PPM first interpolates values fj,
and fgp of f at the left- and right-hand interfaces of the zones.
This is done by assuming that f(x) is smooth, so that it can be
approximated near xj, by the unique cubic curve which has the
average values in the four zones nearest xj, which are prescribed
by the data for the scheme. This cubic curve is then evaluated at
x|, to give the interpolated density fj. For the special case of
uniform zone widths the formula for f, or fj-j/2, has the follow-
ing simple form:

=1 -1 |
= 12.(<f>i4 + <f>i) 75 (<f>1__2 + <f>i+1) . (23)

o170 1

Once values for fj, and fR have thus been obtained, the parabola
in Eq. (22) is determined by demanding that it pass through ff,
and fR at xp, and xR and that its integral over the zone should
yield the prescribed zone mass <f> Ax. The coefficients fj
must therefore be

= 3 -1
fO = 3 <H> Z (fL + fR) , (24a)
f1 = fR - fL , (24b)
f2 = 3 (fL + fR) - 6 <D . (24¢)

We will later describe important modifications to the above pro-
cedure which improve its performance near discontinuities in f(x).

In the second approach, represented by the difference scheme
PPB (the Piecewise-Parabolic Boltzmann scheme; van Leer 1977,
Woodward and White 1983), the three moments <f>, <fy>, and <fX2>
are used as data. This information is sufficient to uniquely
determine the coefficients of the interpolation parabola in Egq.
(22):

fg = <P - 15 <fx2, , (25a)
£1 = 12 <f> (25b)
fo = 180 <fx2>, (25¢)

<y, = <fBH -<£> /12 . (254d)
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, When the advection velocity, v, in Eq. (19) is constant, the
derivation of formulae to update the original data is straight-
forward, once the interpolation parabolae have been determined at
the original time t = 0. In this special case Eq. (19) has a
trivial solution:

f(x,t) = f(x - vt, 0) . (26)

Thus the interpolation parabolae for £f(x,0) also give f(x,t), and
this function need only be integrated over the zones to give the
new data (see Fig. 1). For the PPB scheme care must be taken in
evaluating the higher moment integrals in Eq. (21) to avoid con-
fusing the X's referring to time 0 and to time At. For details
the reader is referred to Woodward and White (1983). To keep the
logic in the program simple it is customary to demand that the
timestep At be limited so that no zone interface moves out of

the interval defined by the two zones adjacent to it.

DENSITY (x) DENSITY (x)

Fig. 1 The PPM advection scheme moves a sine wave resolved with
3 zones a distance of 3/4 zone widths to the right in a
single timestep. (a) The zone-averaged values for sine
wave (shown dotted) are used to construct a parabolic
representation of the curve within each zone (solid
lines). (b) These original interpolation parabolae
(dotted) have been translated 3/4 zone widths to the
right. Integrating these translated curves over the
original zone intervals gives the new zone averages.
These have been used to construct new interpolation
parabolae (solid lines), the final PPM representation
of the translated sine wave.
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When the advection velocity v depends upon X, as 1is usually
the case in the remap step of a hydrodynamics calculation, inter-
polation parabolae are constructed directly for the zones at time
At after they have translated, expanded, or contracted. The
necessary data referring to these zones is provided by the output
of the Lagrangian step of the calculation. Straightforward inte-
grations over the interpolated structures again yield data refer-
ring to the original Eulerian mesh. As is indicated by the form
of Eqs. (16), (17), and (18), the density should be interpolated
as a function of a volume coordinate. The integrations over
these density structures then ylield masses advected from one zone
to another. These should be used to define the advection veloc-
ities relative to the mass coordinate. The fluid velocity and
specific total energy are then interpolated as functions of the
mass coordinate, and integration of these structures over the
advected masses gives the momenta and total energies advected
from one zone to another.

b. Comparison of PPM and PPB on a Gaussian Advection Problem

The performance of the two schemes PPM and PPB is illustrated
by the Gaussian advection tests shown in Figs. 2 and 3 and tabu-
lated in Table I. The initial data for ‘these runs is constructed
using Eq. (21) with f set to fp, where

fo(x) = exp [(x - 1/2)2 / 0.01125] . (27)

Thus fg(x) is a Gaussian of height 1 and standard deviation
0.075 centered at x = 1/2. Periodic boundary conditions are
applied at x = 0 and x = 1. Using grids with 8, 16, 32, 64, and
128 zones, Eq. (19) has been solved with v = 1. Solutions were
obtained with two values of the Courant number, ¢, defined by

o =vAt [/ Ax . (28)

The values of 0 used, 0.08 and 0.8, represent approximate worst
and best cases, with the errors at ¢ = 0.08 as much as four

times larger than those at ¢ = 0.8. The results of the PPM
calculations are shown in Fig. 2, while those of the PPB calcula-
tions are shown in Fig. 3. 1In generating these figures the
schemes themselves have been used to determine interpolation
parabolae within the zones, so that f(x) is defined everywhere
for plotting. In addition integrated errors €p, €1, €1(Q>

and €190 have been computed from the results at times 0, 1, 10,
and 100 using the interpolated f(x) obtained by the scheme:
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These errors are tabulated in Table I.

A glance at Figs. 2 and 3 reveals a striking difference in
accuracy between the PPM and PPB schemes. Apparently, it makes a
great deal of difference which interpolation parabola is used to
describe the internal structure of a zone. The PPM scheme re-
quires grids of 16, 32, 64, or 128 zones if the Gaussian pulse is
to be well represented after 0, 1, 10, or 100 transits of the
grid, respectively. 1In contrast to this, the PPB scheme requires
only 8, 8, 16, or 32 zones for the same purpose.

Thus the PPB scheme uses three times as much data per zone
but needs only one fourth as many zones as PPM. One might have
thought that the smoothness of the Gaussian would allow the
higher moment data used by PPB to be effectively regenerated from
the information provided by <f> in neighboring zones. The PPM
results indicate that if such a reconstruction of the data is
ever possible, it must require a much finer grid than is needed
by PPB to adequately resolve the density structure. (This result
holds true even when seventh-order curves are used in place of
cubics to jnterpolate the interface values fj, and fg in PPM.)
Because PPB requires only 40% more time to update a zone than PPM
(on the Cray-I PPB updates 1.2x10® zones in a second), it 1is
therefore much more efficient to use PPB on the coarser grid.

A close look at the errors on the fine grids in Table I shows
that both schemes are converging faster than we might have
expected. Generally, if a polynomial of order n is used to
describe the internal zone structure, the associated advection
scheme is n+1th order accurate. The interpolation polynomial
cannot account for the Eilth derivative of f within the zone,
so the advected mass calculated at each interface contains an
error proportional to this derivative, which is assumed to be of
order 1, multiplied by Axn*l., However, a similar error is
introduced in the advected mass at both interfaces of the zone,
and these tend to cancel when the two advected masses are
differenced to obtain the net change in the zone's mass. Thus
the error in this net change is of order Ax"*2, If we hold
the Courant number 0 fixed as Ax is reduced, then the number
of timesteps needed to reach a specified time increases as
1/Ax. This effect implies that the order of the error in
computing to a fixed time, that is the order of the difference
scheme, is one less than the order of the error incurred in a
single timestep. Hence a scheme employing an nth-order poly-
nomial to describe the internal structure of a zone should be
n+1th order accurate.
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The errors in Table I for the fine grid calculations indicate
that PPM converges nearly as fast as a fourth-order scheme and
that PPB converges nearly as fast as a fifth-order scheme. The
argument given above implies that both should be third-order
schemes 1n a certain strict sense, but obviously as a practical
matter both are more accurate than this. The accelerated
convergence of PPM comes from its '"higher-order spatial

DENSITY t- 18. DENSITY t-1080.

Fig. 2a A Gaussian of height 1 and standard deviation 0.075 is
advected by the PPM scheme at a Courant number of 0.08.
Results for grids of 8, 16, 32, 64, and 128 zones are
plotted against the exact solution at times 0, 1, 10,
and 100. The parabolae used by PPM to interpolate
within zones are used here for plotting. After the
Gaussian has traversed the grid 100 times, only the
finest grid gives adequate results.
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accuracy'. Because the density values at zone interfaces are:
interpolated using cubic curves, and because in the limit of
small Courant numbers (or of 0 near unity) these interface
values alone give the advected masses, in this same limit the
scheme must be fourth-order accurate. Thus the accelerated
convergence of PPM is more noticeable in the runs with

0 = 0.08, but it is still effective even when g = 0.8.

The acelerated convergence of PPB is due to its exact
conservation of the moments <fy> and <fy2>. Consider the

[.07 1
O T i
.o :
U y
A 1
g,
T
DENSITY t- 8. T DENSITY te 1.7
[.07 1 1.0F )
8T 1 8T y
b . .bT )
U ] Ut ]
A . 2T 1
d. 0.
.~ o+ © o = .~ = o o =
= . . . . . = . . . . .
DENSITY o te 18, T DENSITY t-108.

Fig. 2b Same as Fig. 2a except that a Courant number of 0.8 was
used. This larger timestep improves the results
substantially, so that the 64-zone grid now gives good
results at time 100.
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initial replacement of the exact distribution fp(x) with the
PPB representation f(x). If we define the local error €(x) by

e(x) = f(x) - foplx) , (30)

then the preservation of the moments <foxk> by the PPB

- (QN] - d®) O = . QN - d®) o®) =
(e . . - . - () . . . o -
DENSITY t- 0. DENSITY te 1.7

1. @ i ]
.8 1
[ ] 6 i ] |
[ ] L} i R
A "
@.
. N o o o O ==
) . . . . -
DENSITY t. 18. DENSITY te100.

Fig. 3a The same advection experiment shown in Fig. 2a is here
carried out using the PPB scheme. The interpolation
parabolae used by the scheme to represent the distri-
butions within zones are used here for plotting. Note
the quality of this representation on the 8-zone grid at
times 0 and 1. The three finest grids give very good
results at time 100. Note the low level of the negative
densities generated on the coarsest grids, particularly
in contrast to the PPM results in Fig. 2a.
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representation guarantees that
<gxk> = 0 for k =0, 1, 2 . (31)

This very special property implies that any meaningful definition
of global error which involves integrals over e€(x) rather than
its absolute value will yield a sixth-order rather than a third-
order error. For example, consider the following error
definition:

. (N =T O O = . QN - @) o®) =

S L] ® S -
DENSITY t- 8., DENSITY te 1.7
1.0F 1 1.0t _
8T - 8t ]
bT 1 .6} :
iy 1 4 -
27 1 .27 -

] D.

(@ N] s o) @] O = . N p— d®) O =
() . . . - () . . . .
DENSITY t- 18. DENSITY t-100.

Fig. 3b Same as Fig. 3a except that a Courant number of 0.8 was
used. The results are improved by the use of this
larger timestep, so that now only 16 zones are needed to
produce good results at time 100.
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1 1
ey g e(x) £,(x) dx |/ g [fo(x)]2 dx (32)

The numerator of this expression can be broken up into a sum of
terms like

1/2
Ax 0 ely) £,(x) dx =
-1/2 |

of

Ax <e> £_(0) + (Ax)2 <gx> 2 |
0 0x =0

(Ax)3 <€X2> 0

(Y

3 0 |

(Ax)4 <gX™> (33)

+
o+

By virtue of Eq. (31), the first three terms on the right in Eq.
(33) vanish. Therefore the numerator in Eq. (32) can be expressed
as a sum of terms each of which is of order (Ax)% <ex3>. Now e(X)
1s of order (Ax)3, and the number of terms is of order 1/Ax,

so the integrated error €¢p 1s of order (Ax)®. An advection
timestep for a constant advection velocity consists of an exact
"Lagrangian step'" in which the zones all move over a constant
distance followed by a remap which preserves three moments. If
we regard the piecewise-parabolic representation in the zones
which have shifted over a distance v At as the '"exact'" distri-
bution fj(x), then our argument above shows that €fp is

increased by an amount of order (Ax)® when we use the exact
moments of this fp(x) in the original Eulerian zones to construct
a new piecewise-parabolic representation f(x). Consequently,
using the error €fg to measure the performance of the PPB scheme,
we discover that this scheme is fifth-order accurate.

van Leer (1977) found another explanation for the unexpected
accuracy of moment-conserving difference schemes. His work
applied to the MUSCL scheme, which conserves only <f> and
<fy>, but similar arguments apply to PPB. The initial data
constructed from fo(x) by finding the exact moments <foxk>
can be broken into two parts, one which will be advected by PPB
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with fifth-order accuracy and one which will be damped by a
factor of order unity in each timestep. The second, rapidly
damped part decreases in size as (Ax)3. It therefore contri-
butes an error of this size which, after several timesteps, does
not continue to grow. This error makes the scheme third-order
accurate, but after many timesteps this error is overwhelmed by
the growing fifth-order error which arises from the advection of

TABLE I

Numerical Errors Generated in Gaussian Advection Tests

Scheme

Grid

€0 €1 €10 €100
PPM 8 2.28e-1 1.04 9.82e~-1 1.15
o = 0.08 16 1.92e-2 4.12e-1 9.00e~-1 8.89%e~-1
32 1.49e-3 5.87e-2 3.51e-1 6.54e-1
64 l.17e-4 4.05e-3 3.96e-2 2.66e-1
128 1.09e-5 2.76e-4 2.74e-3 2.65e-2.
PPB 8 2.54e-2 1.02e-1 3.50e-1 6.66e-1
o = 0.08 16 2.53e-3 6.99e-3 5.08e-2 2.14e-1
32 3.00e-4 4.50e-4 2.37e-3 2.06e~-2
64 3.70e-5 4.74e-5 9.02e-5 7.66e=4
128 4.62e~-6 5.80e~-6 6.36e-6 2.49e-5
PPM 8 2.28e~-1 5.28e-1 9.52e-1 1.13
o = 0.8 16 1.92e-2 1.29e-1 4.82e-1 9.57e-1
32 1.49e-3 1.20e-2 9.67e-2 3.98e-1
64 l.17e-4 8.59%9e-4 8.32e-3 7.13e-2
128 1.09e-5 7.23e-5 7.l4e-4 6.99e-3
PPB 8 2.54e-2 3.67e-2 1.50e-1 4.30e-1
g = 0.8 16 2.53e-3 2.95e-3 l.11e-2 7.51le-2
32 3.00e-4 3.26e-4 5.04e~4  3.77e-3
64 3.70e-5 3.98e-5 4.20e-5 1.29e-4
128 4.62e-6 4.96e-6 4.99e-6 6.33e-6
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the first component of the initial data. This behavior can be
clearly seen in the final entries in Table I for the PPB run with
128 zones at a Courant number of 0.8. These numbers show a
relatively rapid initial growth of the error followed by a much
slower phase of error accumulation.

In Fig. 4 the initial data for a pure sine wave on a grid of
16 uniform zones is decomposed into parts which are damped at
different rates by the PPB scheme. In Fig. 4a the most slowly
damped component is the one which closely resembles a sine wave.
The other component shown is very rapidly damped. In order to
make it visible, it has been amplified for plotting by the factor
100/(Ax)3. This component itself consists of two parts which
are damped by PPB at different rates. These are shown in Fig.
4b. 1In fact, these three components of the sine wave are eigen-
functions of the PPB scheme; they are reduced in amplitude and
shifted in phase by the scheme but their shapes are preserved.
The larger one in Fig. 4b is damped by a factor of 7/8 in each
timestep at a Courant number of 1/2, while the smaller one is
damped only by a factor of 1/2. The larger eigenfunction con-
tributes an amount of order (Ax)3 to the initial data but

. f {x)
prp
eigl eig2

(188/dx-+3)
-
-

(x}.
1

eig

(100/dx++3) - |

-1r 7 -.2F .
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Fig. 4 The initial representation of a pure sine wave by the
PPB scheme on a l6-zone grid is here decomposed into
parts which are damped at different rates by the scheme.
On the left, the largest eigenfunction component, which
closely resembles the sine wave, is shown. This eigen-
function is advected by PPB with fifth-order accuracy.
The saw-toothed curve plotted with this eigenfunction is
the difference between that eigenfunction and the sine
wave. It has been miltiplied by a factor (100/(Ax)3) to
make it visible. This component, which is third-order
in Ax, consists of two eigenfunctions of the PPB
scheme. These are shown on the right. Both are damped
strongly in a single timestep. :
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i1ts contribution to the fundamental mode in the Fourier spectrum
of this data is of order (Ax)®. This is consistent with our
previous discussion of the error measure €f¢y. These contri-
butions for the smaller eigenfunction scale as (Ax)% and (Ax)8.

PRACTICAL LIMITS TO THE ACCURACY OF A DIFFERENCE SCHEME FOR
ADVECTION

From the above comparison of PPM and PPB one might be tempted
to conclude that the best way to solve advection problems numeri-
cally would be to use a very high-order moment conserving method.
This conclusion is false for a number of reasons. The most
important of these reasons is that the advection problems which
arise in computational physics are usually either multidimensional
or nonlinear or both. For multidimensional problems, the amount
of work for both the programmer and the computer rises rapidly as
the accuracy increases beyond the second order. This can most
easily be seen in two dimensions, with Cartesian coordinates x
and y. Strang (1968) showed that a second-order, two-dimensional
difference operator Dy, could be constructed from a symmetrized
product DyDyDyDy of second-order, one-dimensional difference
operators. The second-order error generated by using Dy Dy in
Place of Dyy = Dy + Dy is cancelled by the error in using DyD
subsequently. This error in DDy arises for nonlinear advection
equations, such as the characteristic equations of isentropic gas
dynamics [Eqs. (6)-(11)]. 1In that case the advection speeds are
altered by Dx and Dy, so that DyDx and DyDy must give different
results. For such nonlinear advection equations even third-order
methods seem impractically complex.

For linear advection equations multidimensional calculations
can be performed in a sequence of "passes" in which the fluid is
permitted to move in only one dimension. However, 1f more than
second-order accuracy is required these passes must be two
dimensional in nature. The reason for this is illustrated in
Fig. 5. If all gradients in the y direction are ignored in the
x-pass, then the difference of the masses of the upper shaded
triangles in the figure is being effectively equated to that of
the lower shaded triangles. The error this introduces in the net
change in the zone mass is proportional to

v
2 9 d
man? & (2 32)

Therefore a third-order difference scheme must account for this
term. Even though an advection equation to be solved is
nonlinear, so that strict third-order accuracy is unattainable by
means of 1-D passes, it may still make sense to use a scheme as
elaborate as PPB or PPM and to account for the above error term.

L3
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Fig. 5 The x-pass of an operator-split advection calculation in
which a purely one-dimensional operator Dy is used.
Ignoring gradients of p and vy in the y-direction
effectively causes the mass difference of the upper
shaded triangles to be equated to that of the lower ones.

Such an application is stellar dynamics, in which the Boltzmann
Eq. (1) must be solved. The equation is nonlinear by virtue of
the coupling of the acceleration g to the phase space density
through Poisson's equation. However, this coupling is weak, as
only the velocity-integrated density enters Poisson's equation.
Another reason why high-order advection techniques are appropriate
jn this application is that the high dimensionality of the problem
means that only very coarse grids can be afforded. Therefore one
is unlikely to find the calculation in the asymptotic regime where
third- or fifth-order convergence is achieved. Actually, in such
problems in 4 or 6 phase space dimensions one is lucky to resolve
even the gross features of the problem adequately. Then schemes
like PPB are especially attractive because of their good behavior
when the flow is badly underresolved.

The usefulness of the PPB scheme in such stellar dynamical
problems is illustrated by the gravitational two-stream insta-
bility problem discussed in detail by Woodward and White (1983).
The time development of this flow is shown in Fig. 6. The problem
begins with the imposition of a sinusoidal perturbation in the
x-direction on the equilibrium density fg of fluid in phase
space. This equilibrium consists of a uniform distribution of
gravitating fluid in physical space. 1In velocity space the dis-
tribution in the vy~ and v,-directions is a delta function at
velocity zero. In the vy-direction the distribution consists
of the superposition of two Gaussians centered at vy =t 4 and
with standard deviations of unity. Each Gaussian contains a
velocity-integrated density of 1/2. The sinusoidal perturbation
imposed on this equilibrium at time zero has a wavelength of 12
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Figure Captions

Fig. 6 Contours of density in phase space for the gravitational
two-stream instability problem described in the text.
These results were obtained with the PPB scheme using a
fine grid of 480x480 uniform zones. The flow begins
with two Gaussian velocity distributions at v = + 4 and
with unit standard deviation. A 5% sinusoidal perturba-
tion of the velocity-integrated density is imposed. The
flow is shown at time intervals of 1/2. The sp1ra111ng
motion about the location of the initial density maximum
causes ever thinner cords of phase space density to
develop which eventually can no longer be resolved.

Fig. 7 PPB results at time 2.5 are displayed for two coarse
grid calculations of the gravitational two-stream
instability problem shown in Fig. 6. Grids of 30x30
(top) and 120x120 (bottom) uniform zones were used. As
the grid is coarsened, fine-scale features are blended,
but very little numerical noise is generated. The
large-scale features near the center of the plots are
adequately described even on the coarser grid. The PPB
interpolation parabolae have been used to generate a 5x5
grid of density values per zone for plotting.
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and an amplitude of 5%. The specification of a value for the
gravitational constant G in Poisson's equation determines the
relationship of these mass, length, and time units to the cgs
system. We have set G = T for this problem. The Jeans length
for a collisional gas with a sound speed of unity would then be
unity. Our perturbation, with a wavelength of 12 is therefore
quite unstable.

In Fig. 6 the phase space density is represented at time
intervals of 1/2. Each snapshot displays 15 evenly spaced con-
tours of phase space density with the lowest contour dotted. The
calculation employed a very fine grid of 480x480 zones (only half
of these were computed and the others were generated for plotting
by symmetry). The standard deviations of the initial Gaussians
were well resolved on this grid by six zones. The nature of the
flow 1s a spiraling of most of the fluid about the origin and a
translation of small parts of the fluid acorss the entire grid.
Because the problem is periodic this translating envelope of fluid
goes from one gravitationally bound clump to another, lingering
between each pair. As the flow continues to wind up, ever thinner
cords of phase space density are created, so that ultimately the
flow must become unresolved. At this point PPB behaves relatively
well. Instead of generating large amounts of numerical noise, as
would be the case for most high-order methods, PPB averages over
the individual thin structures to obtain a smoother structure. In
this averaging process information is lost and entropy is created,
but six moments of the local phase space distribution are never-
theless conserved. This averaging process is illustrated by the
results in Fig. 7. These results were obtained with PPB using
grids of 30x30 (Fig. 7a) and 120x120 zones (Fig. 7b). For plot-
ting, the PPB interpolation parabolae were used to generate data
values on a 5x5 grid within each zone. This figure shows how
detailed features are smeared out and blended as the grid is
coarsened, but the important larger structures near the origin
are not lost. In large part this blending constitutes a numeri-
cally accelerated representation of the physical relaxation
process of phase mixing.

The gravitational two-stream instability problem just discus-
sed 1s a good example of the type of problem for which PPB is
well-suited. The advection equation is nonlinear, so that still
higher order methods are probably unwarranted; nevertheless the
continuous generation of smooth but fine-scaled structures demands
a scheme which breaks down in a very graceful way. The PPB scheme
is complicated, but the simplicity of Eq. (1) allows this compli-
cated, moment conserving approach to be applied without undue
programming difficulty. Problems of similar nature which are
encountered in astrophysics and where the PPB approach would be
useful are radiation transport and the treatment of nonthermal
particles such as cosmic rays or neutrinos (in supernovae) which
are loosely coupled to the thermal gas.
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PRACTICAL LIMITS TO THE ACCURACY OF A DIFFERENCE SCHEME FOR
HYDRODYNAMICS

For hydrodynamical simulations the practical limits placed
upon a difference scheme are even stronger than for the case of
advection. As nQted earlier, the nonlinearity of the equations
limits the accuracy to second order if the calculation is per-
formed in a sequence of 1-D passes. However, if strong pressure
waves are present the nonlinearity of the.equations can effec-
tively limit the accuracy to first order. This limitation is
caused by discontinuities in the flow. Strong pressure waves can
steepen into shocks, and these can interact to produce contact
discontinuities. At these discontinuities the differential
equations describing smooth flow are not obeyed, and the results
of difference approximations to them are meaningless. The best
one can expect from a difference scheme is a smeared out repre-
sentation of a discontinuity which has a width of a zone (or a
few zones) and which describes approximately the correct jumps in
the flow variables across the discontinuity. Much labor can be
expended to make the numerical representation of a discontinuity
thin, but the width of the smeared out jump must scale linearly
with Ax. Therefore, in so far as this width affects the overall
accuracy of the calculation, that accuracy is limited to first
order. In many flows of interest, the representation of discon-
tinuities is crucial; obviously for these flows it would be a
waste of time to build a difference scheme along the lines of PPB.
It is just for such flows that the PPM hydroynamics scheme was
designed.

An excellent example of the first-order errors which can be
caused by the numerical treatment of shocks is the simple problem
of the propagation of a strong shock through a uniform gas
described by a nonuniform grid. For simplicity, we will assume
that the calculation is performed in Lagrangian coordinates and
that the masses Am; of the 3N zones obey the following
relations:

R = 1001/N-1 Ami; = (1-R-1)/(1-r7N)
Am; = Amj-1/R , for i =N |,
Am; = AmoN+1-1 > for N< 1 =2N ,
Am; = 1/N, for N> 2N .

We will assume that the left-hand boundary of the grid at x = 0
is a reflecting wall and that all gradients vanish at the right--
hand boundary at x = 3. The initial conditions are uniform
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flow with u = -1, p =1, p = 10‘6, and the equation of state
is p = (2/3)pe (thus y = 5/3). The solution to this flow
problem consists of the motion of a shock from left to right
across the grid at a velocity of 4/3 with respect to the fluid
and with a post-shock velocity of zero, density of 4, and
pressure of 4/3. The gas is brought to rest by this shock and
all its kinetic energy is transformed into internal energy.

The numerical solution to this problem can be gravely in error
when N is 20 or less. Solutions obtained with PPM in Lagrangian
coordinates are displayed in Fig. 8. For these solutions, the
values of N are 10, 20, 40, and 80. Zone-averaged values at time
2 are connected by straight lines in Fig. 8, and both the density
and the total energy per unit mass are plotted. The exact
solution is p =4 form< 8/3,p =1 for m> 8/3, and E = 1/2
everywhere. All four calculations tend to give correct answers
where the grid is uniform, but large errors in the post-shock
entropy are generated where the grid i1s not uniform. Where the
zones are gradually becoming smaller in the direction of shock
propagation, not enough heat is generated in the shock, and the
gas i1s overcompressed. Where the zones become larger, too much
heat is generated in the shock, and the gas is undercompressed.
At m = 2 the zones suddenly become smaller, and a large overcom-
pression is produced. The large undercompression at m = 0 is
caused by the reflecting wall there. Neither of these latter
two errors is diminished when the grid is refined.

The peculiar behavior of the PPM scheme which is shown in
Fig. 8 can be understood without a knowledge of the detailed
workings of that difference scheme. It is only necessary to
realize that Eqs. (3), (4), and (12) are differenced in conserva-
tion form. That is to say that at each interface L between two
zones numerical approximations to the time-averaged fluxes ur,,
PL, and (Tp)y, of specific volume, momentum, and total energy
are computed. Thus for example

- -]—--
Y1 At

O —D>

uL(t)dt , (34)

A

(ap), = El-t- u ()p (£) dt . (35)

O Y

If the differential equations (3), (4), and (12) are integrated
over a rectangle in space-time with sides Am and At, exact
difference equations in conservation form are obtained:
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Fig. 8 The propagation of a strong shock through a nonuniform
grid using the PPM scheme in Lagrangian coordinates.
The exact cancellation of large errors which normally
guarantees that correct shock jumps are computed 1is
vitiated by the nonuniformity of the grid, and incorrect
post-shock entropies are therefore computed. Results
for grids of 30, 60, 120, and 240 zones, as described in

the text, are displayed.

1 -.04
1 -.08¢
1 -.127
1 -.167
] -.20¢ , . |

ult) pd-1.088e-086. ptl-1.333 up(t) po-1.080e-086. pl1-1.333

Fig. 9 Time histories of the fluxes Ty, and (Up)y (solid
lines) and the fluxes GR and (up)R (dotted lines) as
computed by the PPM scheme on a uniform Lagrangian grid

for the strong shock in Fig. 8.
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V>hew = <V + (l-lR - I_.IL) At/Am , (36)
<Wpew = <w - (PR - Pp) At/Am (37)
<E>pnewy = <BE> - [(Wp)gr - (up)r] At/Am . (38)

Here the subscripts L and R refer to the left- and right-hand
interfaces of the zone, while the subscript "new" refers to the
new time level. For a conservative difference scheme the
numerical approximation consists entirely of a means of estimat-—
ing the time-averaged fluxes Uy, P, and (Up)y. The advantage of
conservative differencing is that Eqs. (36)-(38) are valid across
discontinuities in the flow, when the differential equations
break down.

If a difference scheme is dissipative, as it must be to
convert kinetic to internal energy in a shock, and if it is
conservative, then it must give precisely the correct jumps for a
shock propagating through a uniform medium on a uniform computa-
tional mesh. The reason for this is that the translational
symmetry of the problem guarantess that the same fluxes will be
computed at both interfaces of a zone, but they will be computed
a time interval Am/(p,vg) later at one interface, say interface
R. Here py is the preshock density and vg is the shock speed.
Now to find the value of the jumps in V, u, and E for the zone as
the shock passes we will integrate Eqs. (36)-(38) numerically
using very small values for At. This procedure will give
nearly continuous, smooth curves for the fluxes u,, UR, PLs PR>
(up)y,, and (Up)R as functions of time. Such curves generated
by the PPM scheme are shown in Fig. 9. These curves were con-
structed in the uniform section of the grid for the shock problem
shown in Fig. 8. The dissipative character of the scheme guaran-
tees that constant post-shock values are eventually attained.
Integrating Eqs. (36)-(38) over the time interval 0 to t, shown
in the figure and realizing that V, u, and E have their preshock
values Vg, ug, and Eg at t = 0 and their post-shock values Vi,
u], and E] at tj, we find

Vi=-Vo = = (u1 =ug) / povs (39a)
up —ug = (py - pg) / Pgvs (39b)
Ey - Egp = (uip; - ugpg) / pgvs - (39¢)

On the right we have replaced u(0) by ug, u(tj) by uj, and
similarly for p and (up). Augmenting these equations with the
equation of state gives a full set, and all the shock jumps and
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the shock speed vg may be determined. Because Eqs. (36)-(38)

are exact, and because the detailed structure of the fluxes u(t),
p(t), and Tp(t) in Fig. 9 cancelled out upon integration due to
translational symmetry, Eq. (39) and the other equations
determined in this way must be exact. This is an amazing fact;
it implies that crude difference approximations to the
derivatives in Eqs. (3), (4), and (12) may be used, and with a
little care one can obtain the right answer under conditions
where those differential equations themselves break down.

The above arguments depend critically upon the symmetry which
guarantees that the curves (up)y(t) and (up)gr(t) represented
in Fig. 9 are identical except for a phase shift. This symmetry
guarantees that the gross error which must be incorporated in the
time integral of (up)y(t) for any difference scheme will be
exactly cancelled by a compensating gross error in the integral
of (up)r(t). Anything which causes this symmetry to be broken
will upset this cancellation of errors, and the computed shock
jumps will be wrong. This has happened in the runs shown in Fig.
8. 1In this case, the symmetry breaking at the reflecting wall at
m = 0 1s most easily grasped. At this wall Up, is always set to
zero, the exact value. Thus (TWp); is also zero and exact.
However, uR and (Wp)R for the zone next to the wall are very
inexact, and all of this error must appear in the post-shock
values of V and E, hence €, for this zone. As the grid is
refined, the errors in ug and (UWp)R are spread over shorter
time intervals, but then so is the integration to obtain V; and
Ej. Thus the errors in V] and Ej are large and independent
of zone size. These errors do obviously depend upon the thick-
ness of the numerical shock structure relative to the zone size,
so this structure should be made as thin as possible. A glance
at Fig. 8 shows that for PPM this structure is indeed close to
the limit imposed by the width of a single zone.

The overheating at the reflecting wall in Fig. 8 can be
understood because UR must always be negative, while PR must
always be positive if the shock profile is monotone (i.e. there
is no ringing). Then (Up)p is always negative, while it should
actually vanish. Consequently (Wp)gr in Eq. (38) contributes a
spurious positive energy to the first zone near the wall. The
time integral of up must always be negative and should be
roughly proportional to the numerical shock width, because up
vanishes outside the numerical shock structure. Now, the dis-
sipative mechanisms in the PPM difference scheme, which cause
shocks to be spread out on the mesh, scale with the zone width.
The result is a shock structure which is always about a zone
wide. Therefore in the first region of the grid in Fig. 8, where
the zones are decreasing in size as m increases, the time inte-
grals of up at successive zone interfaces must also be
decreasing in magnitude. Equation (38) then implies that the
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computed post-shock energy should be too low, as indeed it is.
Where the zones increase in size the sign of this effect is flip-
ped, and the computed energy is too high. As the grid is refined
the ratio of neighboring zone widths is reduced toward unity in a
nearly linear fashion. This causes the noncancellation of errors
in the time integrated energy fluxes at the different sides of
each zone to be diminished in a nearly linear fashion. This
brings about the roughly linear convergence of the solution which
is shown in Fig. 8 away from the wall and the discontinuous jump
in zone width at m = 2.

The above long discussion shows how a difference scheme which
is formally second-order accurate may nevertheless converge only
linearly to the solution of a problem involving discontinuities.
The problem in Fig. 8 is not as artificial as it may seem.

Zoning irregularities are unavoidable in many practical problems.
An extreme case which appears frequently is the central region of
a uniform grid in a cylindrical or spherical radial coordinate.
Then factors of r or r4 appear in the flux integrals and destroy
the cancellation of errors. Error cancellation is also destroyed
when two discontinuities collide. Then glitches like those near
m = 2 in Fig. 8 can be generated. Finally, it should also be
noted that PPM is a good difference scheme. Results of, say,

the standard von Neumann-Richtmyer scheme on a problem like that
in Fig. 8 are much worse (see for example Noh et al., 1979).

A somewhat extreme one-dimensional, hydrodynamical test
problem which brings these considerations into better focus is
the collision of two strong blast waves discussed in Woodward
(1982) and exhaustively studied in Woodward and Colella (1983).

A wave diagram for this problem is shown in Fig. 10. 1In this
diagram the bunching together of many density contours marks the
trajectory of a shock or contact discontinuity, while the
spreading of density contours marks a rarefaction fan. At time
zero the density is unity and the velocity vanishes everywhere on
the unit spatial interval of the problem. For x < 0.1, p = 1000;
for x > 0.9, p = 100; and for 0.1 < x < 0.9, p = 0.01. Reflecting
walls are located at x = 0 and x = 1. The gas has a gamma-law
equation of state (Eq. 14) with y = l.4. The hot regions near
the walls expand, driving strong shocks into the cold central gas.
The hot gas is separated from the shells of dense, shocked gas by
two contact discontinuities. At about t = 0.028 the shocks col-
lide and cause a new contact discontinuity to be created. This
contact discontinuity is soon strongly accelerated to the right
by a rarefaction created by one of the strong shocks breaking out
of the dense, previously shocked gas into the near vacuum next to
the right-hand wall. Much of the wave interaction takes place in
an extremely small region of space-time which is enlarged in the
lower portion of Fig. 10.
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Fig. 10. Contours of density on the space-time plane for the
interacting blast wave problem of Woodward (1982) and
Woodward and Colella (1983). Two strong shocks approach
each other.closely followed by contact discontinuities.
Rarefaction fans reflected from the walls interact with
these waves and with each other in a complicated
fashion. The region of this interaction is enlarged in
the lower part of the figure. The creation of a new
contact discontinuity by the collision of the two shocks
can be clearly seen in this enlargement.
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The results in Fig. 10 may be regarded as exact. They have
been generated on a nonuniform grid of 3096 zones with the
smallest zone width set to 1/9600 in the region of the shock
collision. In addition, a five-zone section of the grid around
each discontinuity is refined by an additional factor of 8, and
the two principle contact discontinuities are treated as
specially tracked interfaces between distinct fluids. The
resulting solution is good to 1% everywhere, and is much better
in most places. More detailed displays of this calculation are
given in Woodward and Colella (1983). This interacting blast
wave problem has been designed as a worst case to challenge
Eulerian difference schemes to the utmost. The solution demands
accurate treatment of the resolution of the jumps in the initial
data into separate discontinuous waves and of the interaction of
these waves with other discontinuous and strong continuous waves.
A method which can solve this problem well should be able to
handle just about anything which can arise in one-dimensional
pure hydrodynamic flow.

PPM is such a scheme. The comparison with many other methods
in Woodward and Colella (1983) makes this abundantly clear.
However, the rate of convergence of PPM on this problem is
linear. PPM contains many second-order features, many third-
order features, and even a fourth-order feature, but for problems
dominated by the interactions of discontinuous waves, as is this
one, these high-order features serve mainly to keep the discon-
tinuous waves sharp; they do not give high-order convergence. In
fact, the main purpose for the use of parabolic interpolation in
PPM is the sharp resolution of contact discontinuities. In Fig.
11 results of PPM solutions of the blast wave problem for uniform
Eulerian grids of 200 and 1200 zones are presented at time 0.038.
In this figure the computed zone-averaged densities are shown as
dots while the "exact" solution is drawn as a solid line for com-
parison. These results show that the shocks and contact discon-
tinuities are only about one zone wide. Nevertheless, the contact
discontinuity formed by the shock collision contains 8 zones, and
the jump at this discontinuity is not correctly computed on the
200-zone grid. A variety of solutions of lower quality are pre-
sented for this problem, along with quantitative measures of the
errors and convergence rates in Woodward and Colella (1983).

Here it suffices to say that PPM is the only one of six schemes
studied in that article which converges as rapidly as linearly on
this extremely difficult problem.

The results for this interacting blast wave problem are
intended to discourage any overzealous pursuit of additional
terms in Taylor expansions or additional moments to be conserved
within zones. The intent is not to dampen the enthusiasm behind
such pursuits but instead to redirect it in more profitable
avenues, so far as hydrodynamical problems are concerned. One
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such avenue has already been mentioned in passing; that is the
technique of adaptive local mesh refinement. This technique has
been quietly pursued by many people for many years, but recently
it has been more systematically developed and more openly and
systematically discussed by Gropp (1980), Berger (1982), and
others. The simplest application of the technique is to refine
the grid in 4 or 5 zones around each discontinuity in the flow.
The grid should be refined in both space and time in order to
keep the calculation both efficient and explicit. For PPM a mesh
refinement factor of 8 is recommended, while for less powerful
methods larger factors should be used. In the interacting blast
wave problem discussed above, this procedure plus treating the
problem as involving three distinct fluids brings the error for a
100-zone uniform Eulerian reference grid down below that of the
unalloyed scheme using 1200 uniform Eulerian zones. Obviously
this is a powerful technique, and it has the very attractive
feature that it can be carried out in two dimensions quite easily.
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Fig. 11 PPM results at time 0.038 for the interacting blast wave
problem shown in Fig. 10. Results for uniform Eulerian
grids of 200 to 1200 zones are plotted as dots against
an extremely accurate solution (solid lines). Note
especially the sharpness of the contact discontinuities.
A linear convergence of the integrated error for this
problem is observed, despite the formal second-order
accuracy of the PPM scheme.
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THE TREATMENT OF DISCONTINUITIES IN ADVECTION SCHEMES --
MONOTONICITY CONSTRAINTS AND CONTACT DISCONTINUITY STEEPENERS

We have seen that the most important limitation to the
accuracy of hydrodynamical difference schemes is the necessity
to represent discontinuities in the flow. One of the principal
means of doing so may be discussed in the simpler context of the
advection equation (19). This discussion will explain the treat-
ment of flow discontinuities in the remap step of an Eulerian
hydrodynamics calculation, their treatment in the Lagrangian step
will be discussed later.

In Figs. 12 and 13 PPM and PPB advection calculations are
presented which show the generation of oscillations near sharp
jumps in the advected distribution. These oscillations always
appear when high-order interpolation polynomials are used to
interpolate between undersampled data. The oscillations are much
less severe for the PPB scheme because the additional moment data
provided for this scheme allows the smooth structure of the jumps
to be nearly resolved on the finer grids. The format for Figs.

12 and 13 is similar to that of Figs. 2 and 3. Periodic boundary
conditions are applied on the unit interval, the advection velo-
city is unity, and the results are displayed at times 0, 1, 10,
and 100. The internal zone structures generated by the PPM and
PPB schemes for grids of 8, 16, 32, 64, and 128 zones are plotted;
and a Courant number of 0.08 was used so that these results repre-
sent a worst case. The advected function 1is

fo(x) = 1/ {1 + exp [80(|x - 1/2] - 0.15)1} . (40)

The two jumps in this function are quite sharp; 95% of each jump
is spread over a distance of only 0.092, and 50% is spread over
only 0.028. On the finest grid these intervals are described by
about 12 and 3.6 zones, respectively. This resolution proves
insufficient to avoid oscillatory behavior for either the PPM or
the PPB schemes, although the oscillations for the PPB scheme on
the finest grid are very slight and appear only at the latest
time shown in Fig. 13. Other tests reveal that with twice this
resolution the PPB scheme will propagate these sharp features
properly. However, if we are willing to give up the formal
high-order accuracy of such a scheme, excellent results may be
obtained at much less cost. The trick is to know when to give
up formal accuracy and to what degree.

For the simple case of advection the source of oscillations
near sharp jumps can be readily identified. The plots in Figs.
12 and 13 for time 0 reveal interpolated structures which are not
monotone increasing (decreasing) even though they have been
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constructed from monotone data. These over- and undershoots in
the interpolated internal zone structures eventually give rise to
over— and undershoots in the zone-averaged data. It is clear
that if the interpolated function f(x) is monotone, then
regardless of which bins are used to construct new zone-averaged
data (that is, regardless of the value of the Courant number)
this new data must also be monotone. It is also clear that the
first-order advection scheme which sets f(x) constant within each
zone must always preserve the monotonicity of its initial data.
van Leer (1977) realized that an advection scheme may be made to
preserve the monotonicity of its initial data if any non-monotone
interpolated zone structures are flattened so that they become
monotone. This flattening process can be viewed as a local

\

DENSITY t- 10. DENSITY t-100.

Fig. 12 Square wave advection tests using PPM without mono-
tonicity constraints.
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blending of the high-order scheme with the first—-order scheme
which uses constant zone structures. In order to treat the
structure of each zone independently, the structures in
neighboring zones are ignored when the flattening factor for
the zone of interest is determined. This leads to van Leer's
monotonicity constraint: no value interpolated within a zone
shall lie outside the range defined by the zone averages for
this zone and its two neighbors. If one wants to take the
trouble, this constraint may be relaxed slightly to read as
follows: the average density within the section of a zone to
be advected into a neighboring zone and in the section which
remains 1n the original zone for this timestep must lie within
the range defined by the zone averages for this zone and its

DENSITY te 190. DENSITY t.100.

Fig. 13 Square wave advection tests using PPB without
| monotonicity constraints.
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Fig. l4a Interpolated and flattened zone structures appropriate
for the representation of a sudden jump. This flattened
structure will give monotone advection regardless of the
timestep.

-.-.-----’

X

Fig. 14b Interpolated and flattened zone structures appropriate
for monotone advection to the right at a Courant number
of 0.5. The shaded region of the zone which is not
advected into the zone on the right has the same average
density as the zone on the left.
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two neighbors. These monotonicity criteria are illustrated in
Fig. 14. A similar monotonicity constraint for advection schemes
was developed earlier by Boris and Book (1973), but that
algorithm 1s not so easily understood and it has been much

less successful when applied to other problems such as
hydrodynamics.

An unfortunate characteristic of these monotonicity
constraints is that they tend to alter a waveform dramatically
once the decision is made to switch them on. This is illustrated
by the Gaussian advection results in Fig. 15. These may be
directly compared with the results in Fig. 2b, from which they
differ only by the use of monotonicity constraints and contact
discontinuity steepeners to be described shortly. The results in
Fig. 15 are definitely an improvement over those in Fig. 2b, but
the shape of the waveform has been completely lost in the process
of keeping it monotone. One might well prefer the non-monotone
results of the PPB scheme which are shown in Fig. 3b. In fact,
the PPB results are so good that if any monotonicity constraints
are to be applied to this scheme at all they must be applied with
great care in order not to lose the advantage of this scheme's
accuracy in smooth flow. In particular, the monotonicity
constraints of van Leer (1977) and of Boris and Book (1973) cause
zones near local extrema to be completely flattened. For the PPB
scheme this is a disaster. The advantage of PPB is that its
extra moment data allows the accurate treatment of very short
wavelength Fourier modes. For these modes flattening zone
structures near the frequent extrema results in gross wave
distortion and damping.

For the PPB scheme it is worthwhile to expend some computer
time to make sure that monotonicity constraints are really needed
before they are applied. This procedure may be useful for other
schemes as well, but for PPB it is essential if the constraints
are to be applied at all. The entire procedure more than doubles
the running time, so if the unconstrained scheme will do, it
should be used. The monotonicity constraints described above
modify the advection algorithm in regions where the second
derivative of the advected function 1s large compared to the

first derivative —-- more precisely, when
2
0 f df
Ax | 2 | X |
d X

For schemes employing parabolic interpolation, large second
derivatives of f do not necessarily pose any special problem.
Therefore the monotonicity constraint may often be inappropriate,
especially near extrema, where d9f/dx vanishes.
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The key to modifying the monotonicity constraint is not to
measure the monotonicity of the interpolated zone structure but
instead to measure the ability of that structure when extra-
polated into the neighboring zones to predict the correct zone-
averaged values there. This will be a more direct measure of the
extent to which the density distribution is undersampled by the
grid than is the monotonicity criterion described above. In
fact, both criteria will locate regions in which short wave-
length Fourier modes play a large role, but the monotonicity
criterion will also locate perfectly innocent extrema as well.

To measure the quality of the interpolation parabola given by
Eqs. (22) and (25) (or by Eqs. (22)-(24) for PPM) we proceed as

1.0t .
[ ] 8 i 7
[ ] 6 i T
[ ] L} B 7
[ ] 2 B 7
@. ‘
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= . " - - - .
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DENSITY t- 18, DENSITY t.100.

Fig. 15 Gaussian advection tests using PPM with monotonicity
constraints and contact discontinuity steepeners.
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First we check the extrapolation f(x) into the zone on

This extrapolation gives a guess
For a uniform

mesh we have

(41)

then defined as

1 1 1 1
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Fig. 16 Gaussian advection tests using PPB with monotonicity
constraints under the control of a ''quality" criterion.

The Courant number is 0.8.
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The extrapolated average <f>yzR and its quality QzR are then
computed similarly for the zone on the right. The overall quality
Q of the interpolated zone structure f(x) is then taken to be

Q = max {QZL ; QZR} . | (43)

- If Q exceeds a threshold value of 0.4 (a more conservative figure
is 0.2) in this zone or in either of its neighbors, then the
interpolated zone structure may be modified according to the less
restrictive of the two monotonicity constraints described above.
Gaussian advection tests with PPB using this quality criterion
and monotonicity constraint are shown in Fig. 16. These results
are to be compared with those in Figures 3b and 15. The compari-
'son with Fig. 15 shows that the quality criterion is smart enough
to leave the results on the three fine grids essentially
unchanged. Whether or not the coarse grid results are superior
to those in Fig. 3b is a matter of taste and would depend upon
the particular application as well. If the threshold for Q is
raised above 0.4, only the 8-zone run will be affected by the
monotonicity constraint. The threshold of 0.4 causes PPB to clip
a pure sine wave on a grid of 3 zones or less, while a threshold
of 0.2 clips the wave on grids of 4 zones or less.

Treatment of Discontinuities in PPM

The technique for treating discontinuities in PPM is most
easily explained in terms of a specific example. Formulae for
more general cases may be found in Colella and Woodward (1983).
We will follow the scheme as it constructs a representation f(x)
from zone-averaged data <f>;j corresponding to an fp(x) which

1s abstracted from the square wave advection tests in Figs. 12
and 13:

fo(x) = tanh (x) . (44)

In Fig. 17 the six zones near the origin are shown, with Ax = 3
and the leftmost zone interface at x = -10. The dotted lines in
Fig. 17a show the interpolation parabolae constructed by the PPM
scheme described earlier and used in the Gaussian advection tests
in Fig. 2. The values of f at zone interfaces, fy and fg, have
been generated from Eq. (23). These interface values are attained
by the unique cubic curves which have the same average values as
fg(x) in the four zones closest to each interface. The parabolae
within zones are constructed to have these interface values and
the same zone-averaged values as fp(x). Note that the result-

ing interpolated f(x) is not monotone. In Fig. 17b a construction
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of zone-averaged slopes Afp is illustrated. The dotted lines
show the zone averaged slopes for the parabolae which have the
same zone-averaged values as fp(x) in each zone and its two
neighbors. For a uniform grid Afp is given by '

_ 1 e
A= 5 (<f>ZR <) . (45)

The solid lines in Fig. 17b show monotonized slopes Afy. These
are constructed by reducing Afp toward zero if necessary to
keep the interpolated values implied by these slopes within the
range of the three zone averages <f>gz, <f>, and <f>gyp.

The solid lines in Fig. 17a illustrate the interpolation
parabolae implied by a provisional set of interface values
computed by the full PPM scheme. Like the dotted lines in Fig.
17a these are also obtained by evaluating cubic polynomials at
the zone interfaces. These interface values are determined by
rewriting the interpolation formula in Eq. (23) in terms of
<f>z1, <f>, Afpy1, and Afp and then substituting Afyyy and
Afy for the two slopes:

_ 1 1
£, = 3 ko, +<p) - = (ag, - Af (46)

L MZL) )

Thus 1f the original slopes Afpyj, and Afp are unchanged

by the application of the monotonicity constraint, Eq. (46) gives
the same result as Eq. (23). In our example only the slope for
the zone nearest the origin is unaffected by the monotonicity con-
straint. The use of Eq. (46) gives values of fj which are more
reasonable than those obtained from Eq. (23). As the solid lines
in Fig. 16a demonstrate, each value f], lies between the neighbor-
ing zone averages <f>z; and <f>. This monotonicity property is
guaranteed by the use of monotonized slopes in obtaining f;. A
further improvement resulting from the use of Eq. (46) is the
slight steepening of the implied internal structure for the zone
nearest the origin. This is indeed a small effect, but such
effects accumulate over thousands of timesteps and can eventually
mean the difference between a contact discontinuity which is
three zones wide and one which is five zones wide.

The full PPM algorithm includes a contact discontinuity
detector and steepener which will cause the implied structures
for the two zones between x = -4 and x = 2 to be steepened
further. This part of the PPM algorithm is responsible for the
very thin contact discontinuities in Fig. 1l. It is also the
cause of the very steep, incorrect structures in Fig. 15. The
idea behind this part of the algorithm is to detect regions of
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the flow in which the density jumps so sharply that these

regions may be considered to be contact discontinuities (for
hydrodynamics, we demand that the density jump not be accompanied
by a pressure jump). When these regions are detected, the PPM

ete,

| |
DENSITY (x) DENSITY (x)

Fig. 17 (a) Interpolation parabolae for the unconstrained scheme
used for the tests in Figs. (2) and (12) are shown as
dots. The solid lines are generated from interface
values -‘constructed using monotonized zone-averaged
slopes. (b) Unconstrained (dotted) and monotonized
(solid) zone-averaged slopes. (c) Unsteepened (dotted)
and steepened (solid) interpolation parabolae. (d)
Unmonotonized, steepened parabolae (dotted) and
montonized, steepened parabolae (solid).






[image: image44.png]288 P. R. WOODWARD

algorithm causes them to be continually steepened, whether they
are actually contact discontinuities or not. In doubtful cases
some choice must be made, and it may be wrong, but we are careful
to guarantee that nothing involved in the treatment of detected
discontinuities will vitiate the formal second-order accuracy of
the scheme in well-resolved, smooth flow. The behavior in the
Gaussian advection tests in Fig. 15 results from the clipping of
the peak of the Gaussian due to the monotonicity constraint.
This introduces sudden jumps near the clipped peak which are
detected as contact discontinuities and thus steepened still
further. This behavior ceases when the grid is sufficiently
fine. The point at which this transition occurs may be altered
by adjusting the dimensionless constants in the contact
discontinuity detector.

The action of the contact discontinuity steepener is illus-
trated in Fig. 17c. Here the dotted lines are the unsteepened
interpolated structures which were drawn as solid lines in Fig.
17a. The solid lines in Fig. 17c are the steepened interpolated
structures. Steepeneing occurs only for the two zones nearest
the origin. For this case of uniform zone widths the discon-
tinuity detection algorithm is as follows (more general formulae
are given in Colella and Woodward 1983). First, an estimate of
the second derivative of f is computed for each zone:

Aof = <f>5p = 2<£> + <f>77 . (47)

Then a provisional steepness parameter Sp is computed which
compares the magnitudes of the first and third derivatives in
each zone:

S . = [(Azf)ZR.-'(A £)..1 / [6 (<f>ZL -<H_ )] . (48)

0 2%71, > 7R

Note that S is positive for sudden jumps in £, but it is
negative for small plateaus in f. To locate these sudden jumps
we must also demand that A9f change sign in crossing the

region of the jump. Therefore we define a revised steepness
parameter Sj by

S, = S8y » if (B,6), (B,£),. < 0 (49)

= 0 , otherwise.

We also demand that S; be zero unless some reasonable measure

of the fractional change of f exceeds a small threshold of, say,
12. This will avoid the steepening of tiny glitches of numerical
origin. The final step in the detection procedure is to make
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some quantitative decision as to the steepness which warrants
special treatment as a discontinuity. The quantity Sj is
scaled from 0 to 1 via:

S, = max {fo, min{1, 20 (S1 - .05)}} . (50)

The dimensionless constants in this formula have been chosen to
guarantee that discontinuities one zone in width will be
steepened fully (i.e., S92 = 1 for these cases) regardless of
their phase with respect to the zone boundaries. In our specific
example in Fig. l17c, this criterion causes steepening to be
applied only to the two zones nearest the origin. For the zone
nearest the origin this steepening is substantial.

When the steepening parameter S9 is nonzero, the previously
interpolated interface values fj and fgp are blended with
values fgj and fgr which will generally give a steeper
structure within the zone. The blending factor is just Sj.
The values fgp, and fggp are obtained by extrapolating the
monotonized zone-averaged slopes in neighboring zones (see Fig.
17b) to the zone interfaces. Thus

= <
s B

N

Aoy s | (51a)

f = <D -

SR 7R Af . (51b)

MZR

N =

Note that these interface values are formally second-order
accurate, although they are intended for use in underresolved
regions where order of accuracy is a concept of limited value.

The final step of the PPM construction is shown in Fig. 17d.
This figure illustrates the application of a monotonicity
constraint, first used by the PPM scheme in Woodward and Colella
(1981). The zone averages of f, <f>, and the interface
values fj, and fR determine parabolic internal structures for
the zones of the form given in Eq. (22) through the relations in
Eq. (24). These parabolae will be monotone so long as the
absolute value of f9 is less than that of f;. For the marginal
cases where these absolute values are equal we have either

f1, = £y, = 3 <> - 2fp (52a)
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or
frR = fMr = 3 <P - 2f; . (52b)

When one of these marginal values is exceeded, either fj], or

fr 1s reset to that marginal value so that the implied inter-
polation parabola is monotone. Also, at extrema in <f> both fj,
and fR are set to <f>. This flattening at extrema is done first.
Then the difference of f across the zone is computed

The criteria for resetting fj and fR can be written

£, » f , if Af (fL'- fML) <0 (54a)
£, > £.0 if Af (fR - fMR) >0 . (54b)

This monotonicity constraint has a dramatic effect on the
steepened interpolation parabolae shown as solid lines in Fig.
17c and as dotted lines in Fig. 17d. The final result, the solid
lines in Fig. 17d 1s a very sharp representation of the jump in
fo(x). It is considerably sharper than the profile in Fig. 17a
which is produced by the completely unconstrained PPM scheme. In
fact the profile in Fig. 17d is much closer to fp(x) than is that
in Fig. 17a. It is an empirical fact that the PPM interpolation
procedure described above is sufficient to cause a square pulse
10 zones in width to be advected essentially without distortion.
Unfortunately, as Fig. 15 demonstrates, other smoother pulses may
be turned into square waves as they are advected if they are not
well resolved. The philosophy here is that if such a pulse is not
sufficiently resolved on the grid to be advected properly its
shape may be greatly distorted but at least its position and
height will be fairly well represented.
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THE PPM METHOD FOR HYDRODYNAMICS

It is easiest, both conceptually and computationally, to
perform hydrodynamic calculations with PPM if these are split
into a sequence of one-dimensional calculations which in turn are
split into Lagrangian hydrodynamics calculations followed by
remap operations. Therefore we need only describe here the
one-dimensional Lagrangian formulation of PPM hydrodynamics (for
other formulations see Colella and Woodward 1983). The PPM
hydrodynamics scheme is built upon the PPM advection scheme
described above. The basic idea is to exploit the relationship
between hydrodynamics and the advection of Riemann invariants
which was discussed earlier. One would like to use the PPM
advection scheme to update each family of Riemann invariants
separately, but unfortunately hydrodynamics is not so simple.

In general the Riemann invariants are defined only differentially
through Eqs. (15), and they are not advected independently of one
another. However, it is still true that the time dependence of
the flow at any point in the fluid is determined by two separate
domains of dependence bounded in space-time by the trajectory of
that point and by two characteristic paths corresponding to pres-—
sure waves travelling toward the point from either side (see Fig.
18a). The information contained in each of these domains of
dependence which affects the time evolution of the point in
question still basically refers to only one of the two Riemann
invariants. The approach in PPM is to let a nonlinear Riemann
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solver handle any difficulties in sorting out what aspects of the
information in each domain of dependence correspond to which
Riemann invariant and to what extent the information in the two
separate domains should interact. Such use of a nonlinear
Riemann solver in hydrodynamic calculations was first introduced
by Godunov (1959) and was first adapted for higher-order

- difference schemes by van Leer (1979).

A nonlinear Riemann solver is an essential ingredient in
PPM. It computes the solution to Riemann's problem, that is the
nonlinear interaction of two constant states of the fluid. The
initial conditions for Riemann's problem are two constant states
separated by a discontinuous jump. This sort of initial
condition is found in the blast wave problem discussed earlier

’
/]
/
/]
/
/

I
/

I

L+ L L-

Fig. 18a A space-time'&iagram in Lagrangian coordinates showing
the domains of dependence for zone interface L. Paths
of sound waves travelling to the right (left) are drawn
as solid (dotted) lines. These trace out the domain of
dependence L+ (L-). The characteristic equations (15a)
hold along these paths if the flow is smooth. These
paths have slopes equal to the local sound speed. This
1s approximated by PPM as <C>zj, or <C> for the
solid or dotted paths, respectively. The interaction of
these sound waves produces the time evolution of uj,
and pr,. The averages of these over the time interval
of At shown here are the fluxes uj and P}, used by
PPM in the conservation laws in Eqs. (36) and (37).
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and displayed in Fig. 10. The early evolution of that problem
illustrates the character of the general solution to Riemann's
problem (see also Fig. 18b). 1In general two nonlinear sound
waves, elther shocks or rarefactions, emerge from the initial
jump, leaving a contact discontinuity behind there. The solution
is self-similar, and in particular the state at the location of
the initial jump is constant in time. A space-time diagram for
such a Riemann problem is shown in Fig. 18b. The sound wave
paths, or characteristic curves in Fig. 18b are straight lines,
but they kink as they cross the shock and rarefaction waves. The
algorithm for solving Riemann's problem involves an iteration, as
will be described shortly.

We have already noted that the PPM hydrodynamics scheme 1is
cast in strict conservation form, so that it will compute shock

rarefaction up s Py, (EE)L
fan

\\ shock
N
N\

Fig. 18b A space-time diagram showing the use of a Riemann solver
in PPM to estimate the time-averaged fluxes uj, Py,
and (up)y at zone interface L. A case similar to that
occuring in the blast wave problem in Fig. 10 is shown.
Constant states for the Riemann problem are obtained by
averaging the interpolated initial data over the domains
L+ and L-. The nonlinear interaction of these constant
states produces a shock and a rarefaction wave and a
contact discontinuity at interface L. The velocity and
pressure uj, and Py, at the interface are constant in
time and serve as estimates of the true time-averaged
fluxes.
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jumps correctly on uniform grids in otherwise smooth, well
resolved flow. This means that PPM uses Eqs. (36)-(38) to update
the zone-averaged specific volume V, flow velocity u, and

specific total energy E. The remainder of the PPM scheme thus
boils down to an algorithm for computing time-averaged fluxes

up,, PL, and (up)y, of zone volume, momentum, and total energy

at the zone interfaces. This computation of the fluxes is illus-
trated in Fig. 18b. First, the interpolation algorithm from the
PPM advection scheme described earlier is used to generate mono-
tone internal zone structures for the variables V, u, and p.

These variables are chosen for interpolation because of their
close relationship to the variables appearing in the character-
istic equations (15). The average Lagrangian sound speeds <C>7zj
and <C> in the zones adjacent to the interface L are then used

to estimate the extents <C>z1At and <C>At of the two

domains of dependence L+ and L- indicated in Fig. 18b. The inter-
polation parabolae are then used to compute average values <V>p 4,
<u>1+, and <p>1+ of the variables within these spatial

domains of dependence. These average values will be used together
with the equation of state to determine the two constant states
for a Riemann problem. The solution to this Riemann problem is
illustrated in Fig. 18b. It yields constant values for up and pj,,
which will serve as estimates for the true time-averages Uy, and
PL. The time average of the product up 1is then simply

(up)y = UL PL (55)

This procedure effectively replaces the time average of the sound
wave interactions at the zone interface by the interaction of the
spatial averages over the information carried by the sound waves.
It is the job.of the Riemann solver to correctly compute this non-
linear interaction and to sort out from the spatially averaged
states just that information which the sound waves actually
transport to the zone interface.

Before describing the technique used to solve Riemann's
problem numerically, we first describe the means of treating a
complicated equation of state. A more complicated treatment is
described by Colella (1983) with examples of its use for strongly
nonlinear flows in air (see also Colella and Glaz 1983). The
simpler method here appears to work equally well. It is based
upon a model equation of state suggested by J. LeBlanc:

P = poo*+ (y -1)pe . (56)

Using this model equation of state we may derive formulae for the
Eulerian and Lagrangian sound speeds c¢ and C:
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(y =1) (¢ + pV) , (57a)

C pc . (57b)

Here we have used the fact that an adiabatic change de in the
specific internal energy is given by -p dV. The model equation
of state (56) is meant to apply only to one zone and only for one
timestep. The parameters pgg and y are determined at the
beginning of each timestep for each zone by reference to the
true, presumably more complicated, equation of state. This true
equation of state is asked to compute zone—averaged pressures

<p> and sound speeds <c> from <V> and <eg> = <E> - <u>2/2.
Equations (56) and (57a) are then used to determine pgg and y:

2
_ <e> <>
Yy = 1 + [ <2 / (Kke> + <p> <¥)] . (58b)

Methods for solving Riemann's problem may be found in fluid
dynamics text books such as Courant and Friedrichs (1948). We
will only summarize a method here. Positive-definite nonlinear
wave speeds Wy for discontinuous waves travelling to the right
(+) or to the left (-) may be found from the model equation of
state and the jump conditions in Eqs. (39), with

We = %pgvVvg (59)

These jump conditions also imply a useful relation for the jump
in the internal energy:

e, -€y = -2 (py + p) (V, = V) (60)

I1f we approximate rarefaction waves by discontinuous jumps, the
solution T, and Py, to the Riemann problem illustrated in Fig.
18b satisfies

(GL -<w ) ot (EL - <p>L+) / W_ = 0 . (61)
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The similarity of Eqs. (61) to the characteristic equations (15a)
for smooth flow is striking. In fact, in the limit of small
jumps between the states L+ and L-, the waves in the solution to
Riemann's problem are weak and W; approaches <C>p+. In this
limit of weak waves Eqs. (61) and (15a) become identical.

The Riemann problem can be solved iteratively by beginning
with the assumption of weak waves and replacing W; in Eq. (61)
with <C>1+. These sound speeds are computed from <V>1,+ and
<p>1+ by using the equation of state (56) together with Egs.
(57). We may then solve for a first guess Py] at Pr:

= <p>L+ + [(<p>L_ - <p>L+). - <C>L- (<U>L__ - <U>L+)]

P11

X <c> ./ (<C>, _+ <> ) . (62)

Using the jump conditions (39a), (39b), and (60) together with
the equation of state (56) and Eq. (59), we may derive a formula
for the wave speeds W in terms of the pressure py:

2 _ 1 .
Y2t we, (e - D Gy +opp) \

+2 (p, = pyys)] - (63)

Substituting our first guess P11 for P, in these equations

gives first guesses W;] at the wave speeds. These may now be
inserted in Eq. (61) in place of W: to give two estimates,

ur+], for Tp. We will use Newton's method to find the value

of Pp;, for which the difference between U+ vanishes. Usually
only a single iteration need be performed to achieve sufficient
accuracy for our purposes. Using only the first guess for Py, is
usually not sufficient.

The Newton iteration for Py, is illustrated in Flg. 19. It
requires a formula for dP;, / 9Up+, as can be seen in the figure.
This formula is obtained by differentiating the jump conditions

for discontinuous waves:

op F4<V>_ L WT
L . L* : (64)

- 2 -
duy <V We = (ypy + D) (pp = <p>p,)
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Inserting the first guesses p;,] and W+1 in this formula yields
@5py, / BuL_)l. These derivatives give a second guess

PL2 at Pp1,, and the iteration can then either be continued or
terminated as desired:

(dp; / 3u, ), @py / du ).

_(BpL /[ du, ), - @p / ou, )

(65)

1

i

If the iteration is terminated at this point, we estimate Ty, by

(a -u,_ . .) (@p, / 34, )
a, =g  + —e-t LA L L-1 (66)

@p; /9T ), - BOF, /9T ),

The manner in which the PPM scheme treats a strong shock is
1llustrated in Fig. 20 from Woodward and Colella (1983). 1In this
figure five zones near a strong shock are shown at various stages
of the calculation. This calculation uses a uniform Eulerian

(EL£l’le)
slope (3p, /3u )l

/4
"slope <C>;._ |
slope <C>

L+

(<u>L+,<p>L+)

u

Fig. 19 The Newton iteration for the solution of Riemann's
problem in the case involving two strong shocks. The
curved lines through the initial states represent all
the states which can be connected to the initial states
through discontinuous waves. r
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grid and the shock moves three quarters of a zone width to the
right in a timestep. The gas has a gamma law equation of state
(Eq. (14)) with y = 1.4. Ahead of the shock u =0, p =p = 1,
and behind the shock u = 3.4056, p = 4.4091, and p = 16. 1In
Fig. 20a the initial zone-averaged velocities <u> are

indicated by dotted lines, while the monotonized PPM inter-

- polation parabolae are represented by the solid lines. The shock
profile is very steep, with essentially only one zone describing
the internal structure of the shock. Figure 20b illustrates the
averaging over the domains of dependence for each zone interface
in order to generate appropriate Riemann problems. The dotted
lines again show the interpolation parabolae, while the solid
lines indicate the averages in the domains of dependence. Figure
20c shows the Riemann problems generated in Fig. 20b as dotted
lines. The solutions &, to these Riemann problems determine

the effective velocity gradients du/dm which compress the

zones in the Lagrangian step of the calculation. These effective
velocity gradients are shown by the solid lines in Fig. 20c. 1In
computing §j,- the Riemann solver is clearly doing its job of
taking values of the Riemann invariant transported by this wave
only from the "upstream" domains of dependence. 1In each case

ip, is nearly equal to the '"upstream" value <u>p,. This

suggests that we might have computed this simple result much more
cheaply. 1In this trivial instance that is indeed true, but the
Riemann solver pays for itself when strong shocks interact with
other continuous or discontinuous waves. Then reliable short
cuts are very difficult to devise. In Fig. 20d the remap step is
displayed. The monotonized interpolation parabolae are shown by
the solid lines in the Lagrangian zones, which have been
compressed and translated to the right. The dotted lines
represent the average values of the velocity in the original
Eulerian zones. Notice that the shock is once again confined
essentially to a single zone.

The ability of the PPM scheme to compute such thin numerical
shock structures without introducing post-shock oscillations 1is
critically dependent upon the use of nonotonicity constraints
coupled with a nonlinear Riemann solver. Consider the case shown
in Fig. 20. 1In order to avoid overcompressing the second zone
from the left in that figure, the interface velocity computed at
the right-hand side of that zone must be very nearly equal to the
post-shock velocity. This is indeed the case in the calculation,
because the monotonicity constraint has generated an interpolation
parabola for that zone which is almost flat and also the Riemann
solver has essentially chosen the '"upstream'" velocity from the
two values presented to it. As important as avoiding overcom-
pressing the second zone from the left in Fig. 20 is the need to
begin compressing the fourth zone. Again, the monotonicity
constraint keeps the average velocity large in the right-hand
domain of dependence of the third zone, and the Riemann solver
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Fig. 20 The propagation of a isolated strong shock on a uniform

grid by the PPM scheme. (a) Original zone-averaged data
(dotted lines) is used to generate monotone interpolation
parabolae (solid lines) within the five zones shown.

(b) By averaging over the interpolation parabolae (dotted
lines) within the domains of dependence of the zone
interfaces, constant states (solid lines) are obtained
for Riemann problems. (c) Solution of the Riemann
problems (dotted lines) yields interface velocities

which imply compressional velocity gradients (solid
lines) for the Lagrangian zones. (d) Interpolation
parabolae (solid lines) are generated for the compressed
Lagrangian zones which yield upon integration the new
average velocities in the original Eulerian zones

(dotted lines). The shock is again one zone wide after
moving 3/4 of a zone width to the right.
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chooses this velocity to be assigned to the zone interface. This
gives a relatively strong compressional velocity gradient for the
fourth zone.

The results in Fig. 20 demonstrate that with the shock moving
3/4 Ax in a single timestep there is very little room for
error. The third Eulerian zone is accelerated very nearly to the
post-shock velocity in this time step; the slightest readjustment
of the fluxes at the zone interfaces could result in an
overshoot. One might well ask how other difference methods
without monotonicity constraints and Riemann solvers accomplish
this feat. Of course, the answer is that they do not accomplish
it; but they may nevertheless propagate such strong shocks
without oscillations. The means by which this is achieved is an
artificial viscosity. The type of artificial viscosity which is
most easily described is that proposed by Lapidus (1967). It
amounts to adding to each interface flux Gy, p1,, and (Tp)y,
a small diffusive flux dpy, Ppr, and (TP)DL:

dp, = Cpp ( <V =<V>z1 ) (67a)
Pp, = CpL ( <w gy - <uw> ) R (67b)
(Gp)py, = Cpp ( <B>yp - <EB> ) (67c)

where Cpy, 1s a Lagrangian diffusion speed given by

C.. = C_.min { <p>

DL DO >} X

ZL °

max { (<u>Z - <w) , 0} . (67d)

L

Here Cpg is a constant of order unity. For the example in Fig.
20, the effect of the diffusive flux tp; would be to increase
ip,. In this example the monotonicity constraints and the
Riemann solver act in this same way. In effect they behave here
like a very complicated prescription for computing Cpp, which
gives precisely the desired amount of diffusive flux to prevent
osicllations near the shock. It is clear that no simple formula
like Eq. (67) with a constant value of Cpg will match this
performance. Therefore the value of Cpg must be chosen high
enough to be safe in all situations. This leads to too much
diffusion most of the time and much broader shock structures than
PPM delivers.

It is generally true that one designs a difference scheme to
give shock structures which are as narrow as possible. However,
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one can overdo this. As is illustrated in Woodward and Colella
(1983) and discussed further in Colella and Woodward (1983),
difference schemes which produce shocks which are too narrow may
be plagued by low level noise behind the shocks, particularly in
the entropy distribution. These difficulties show up most
strongly in two-dimensional calculations. For PPM this problem
arises when a strong shock is nearly aligned with one of the
coordinate directions (in 2-D) and when it is nearly stationary
with respect to the grid. For such nearly stationary shocks PPM
generates extremely narrow structures. Because the fundamental
frequency of any numerical noise generated in such narrow shocks
is just the frequency with which the shock crosses zone
boundaries, nearly stationary shocks tend to generate noise with
wavelengths of several zones. The PPM scheme is so accurate in
smooth flow that this noise is not effectively damped. In order
to eliminate this noise the shock structures must somehow be
broadened slightly.

This problem and its solution are illustrated in Fig. 21.
The dotted line in the figure displays the interpolated internal
zone structures of the density computed by the PPM scheme
described above. Twenty zones in the neighborhood of a very
strong, nearly stationary shock are shown. The shock is
extremely narrow, and the density oscillations behind it are
partly due to spurious sound waves travelling away from the shock
and partly due to spurious oscillations in the post-shock
entropy. In an earlier section we argued that a difference
scheme in conservation form must compute proper shock jumps.
However, the argument of that section does not apply to the case
in Fig. 21 because there is not sufficient dissipation in the PPM
scheme to damp the relatively long wavelength oscillations behind
the shock in a reasonable distance. The cure for this situation
is to prevent their generation within the shock region by
broadening the shock slightly. The oscillations are generated by
a periodic expansion and contraction of the numerical shock
structure as the shock crosses the zones. The shock is broadest
when it 1s centered at the middle of a zone and narrowest when at
a zone interface. The oscillations are drastically reduced when
the shock is spread by additional dissipative mechanisms so that
its shape varies only slightly with its phase relative to the
zone boundaries. Such a PPM shock profile is shown by the solid
line in Fig. 21.

The extra dissipation needed to give the solid line in Fig.
21 is added to PPM by flattening the interpolated zone structures
in the shock region at the outset of both the Lagrangian step and
the remap step. A more complicated and more effective dissipation
involving jiggling of the computational grid near stationary
shocks 1s discussed in Woodward and Colella (1983) and in Colella
and Woodward (1983). This viscosity is '"smart'"; it recognizes
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which shock structures may remain thin and which must be
broadened. It is also effective; it accomplishes the greatest
damping of post-shock noise with the least spreading of the shock
structure. However, it is too complicated to be described here.

The dissipation mechanism we will describe broadens all
shocks, whether they need it or not, to the point where
post-shock oscillations are strongly damped in the worst cases.
To accomplish this, the method relies on a measure of the shock
steepness, Sghke This measure must be sensitive to the
pressure profile, which controls the generation of spurious sound
waves behind the shock. The steepness of the pressure profile 1is
measured by comparing narrow- and wide-based differences centered
on a particular zone i. Thus we define a steepness parameter
Sp by:

T R iy m e e S PRV —_—T &“W ]
3t .'u -
27 ‘
3 \T [

= o O N w0 (W]
— - C\J
RHO (x) gamma-1.67: p@-7.58e-087, pl-.750: uB--0.899, ul'-B.IQS: ushk-0.1011

Fig. 21. Nearly stationary structures computed with PPM for
a very strong shock on a uniform grid. The preshock
(subscript 0) and post-shock (subscript 1) states
of this gas with vy = 5/3 are: pg =1, p1 = 4;
po = 7.5 x 10~7, p; = 0.75; ug = -0.899, u; = -0.149.
The dotted line shows the interpolated density structures
in 20 zones near the shock for the PPM scheme without
special shock broadening. The solid line shows these
structures as computed by the PPM scheme with the shock
broadening mechanism described in the text. This worst-

- case oscillation has been reduced in amplitude by a

factor of 20 by slightly broadening the numerical shock
structure as shown.
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= (< - < <p> - <p> .
This parameter is scaled from 0 to 1/2 via

Sy, = max {0, min {0.5, 5 (s, - 0.75)}} . (68b)

In well-resolved, smooth flow S, will have a value very close

to 1/2, so it is clear that Sp] will be nonzero only near

sudden jumps in p. The choice of the dimensionless constants in
the definition of Sg] indicates that we are aiming at broadened
shock structures with values of Sp around 0.8 to 0.85, values

at which PPM gives quite smooth post-shock regions in the worst
of cases. '

We wish to apply extra dissipation only near shocks.
Therefore we multiply Sg) by a parameter Aghk which is unity
near shocks and vanishes elsewhere. We wish to ignore shocks
with fractional pressure jumps dpg which are less than 1/3,
where

dp, = (p; = py) / pg . | (69)

Here the subscripts 0 and 1 refer to the pre- and post-shock
states, respectively. Large pressure gradients can be set up
without causing shocks if for example gravitational or
centrifugal forces are at work. Therefore we examine instead the
size of any compressional velocity jump relative to the sound
speed. The shock jump conditions allow a threshold in dpf to

be related to one in the quantity dMZ defined by

M = (u, - u0)2 / cg : (70)

For a gamma-law gas a threshold dpfo corresponds to a threshold

dMg given by

dMg = 2 (dpfo)2 / y[2y + (y+1) dpfbl } (71)

For each zone we estimate dM2 by

<dM2> = (<w - <w )2 / min { <c2> , <c2>

ZR ZL ZL (72)

ZR } )






[image: image60.png]304 P. R. WOODWARD

Then the parameter Aghik 1is given by

_ . 2 2
Agge = 1, if <du> > dM

and if  ( <, = <u> o ) > 0 |, (73)

= 0 , otherwise.

A value of 1/3 for dpfg in Eq. (71) is recommended. The shock
steepness parameter is then

Sshk = Ashk So1 . (74)

To achieve sufficient dissipation it is necessary to take for
Sshk not this value, but the maximum of this value as computed
for the zone in question and for its neighbor on the higher
pressure side.

Extra dissipation is achieved in the Lagrangian step by
flattening the montonized interpolated zone structures of all
variables by a factor (1 - Sgyk). That is, the new structure
is a blend of (1 - Sg,i) times the monotonized interpolated
structure and Sgh times a totally flat structure. This has
the effect of blending the PPM scheme with Godunov's first-order
scheme near shocks which are too thin. 1In the remap step the
same flattening procedure is used. For purely Lagrangian
calculations best results are obtained if the value of Sghik is
doubled. Some care must be taken when this technique is
.generalized to 2-D computations. One must be sure to sense the
presence of shocks which compress mainly in the y-direction.
Thus differences of the transverse component of velocity, Uy,
must figure in the definition of <dMZ> in Eq. (72). Also, a
numerical approximation of the velocity divergence should replace
the velocity difference in Eq. (73). Basically, the flattening
factor for a zone should take the larger of the values which
would be obtained for the zone in a 1-D x-sweep and a 1-D y-sweep.
This will give much needed dissipation along the direction of a
shock nearly aligned with the mesh in 2-D. An example of the
consequences of omitting such dissipation is given in Fig. 8 of
Woodward and Colella (1983).
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MULTIFLUID CALCULATIONS WITH PPM
The Multifluid Lagrangian Step

When Eulerian hydrodynamics calculations are performed in a
sequence of 1-D passes each of which consists of a Lagrangian
step followed by a remap, an especially simple and powerful
approach to multifluid hydrodynamics is easily employed. This
approach was first used by DeBar in his KRAKEN code in the late
1960's and it is described in DeBar (1974). The idea behind
DeBar's technique is to introduce a variable f; for each fluid
j in the problem. This variable is the fraction of the zone.
volume occupied by fluid j. In the Lagrangian step of the
calculation the fluids are treated as well mixed within the
zones, while in the remap step interfaces between the fluids are
constructed within each zone. An essential feature of this
method is its use of only the fractional volumes in the
surrounding zones to construct the configuration for the fluids
within each zone. This use of only local data makes the method
both simple and robust. In particular, the method does not break
down when a simply-connected region of fluid becomes multiply
connected. Thus the method can follow complicated flows such as
the breaking of water waves.

The Lagrangian step of a multifluid calculation in which the
fluids are treated as well mixed can be performed in a number of
ways. In the original KRAKEN code, the individual equations of
state of the fluids were used to compute partial pressures which
were summed to give the pressure of the zone. This pressure was
used to accelerate the zones, and all fluids in the zone were
assigned the same velocity. In KRAKEN an equation for the
internal rather than the total energy was solved. This equation
was solved separately for each fluid under the assumption that
all fluids experienced the same fractional change in volume.
Because of the differing compressibilities of the fluids, this
last assumption led to inaccuracies in certain situations, and
means of equilibrating the partial pressures within multifluid
zones were introduced in other, later codes employing the same
basic approach as KRAKEN.

We now describe a possible way of performing PPM Lagrangian
hydrodynamics for a zone containing two fluids. If we assume
that two fluids in a zone are always well mixed and in pressure
equilibrium, then for small changes in zone volume this mixed
fluid obeys an equation of state which can be derived from those
of the individual fluids. If we call the two fluids A and B,
with fractional volumes fp and fg = 1 - f,, then pressure
equilibrium implies that
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PA = PB ’ (75a)
dpp = dpp . (75b)
For small adiabatic changes we must then have
2 _ 2 |

The constancy of the mass fractions of the fluids implies that
for small changes

S S (76b)

p = prA + prB . - (77)
Differentiating this equation for p and using
df, = - af, (78a)
we obtaln
2
‘A
dp = £, + £ — dpA+(pA-pB) df, . (78b)
c
B
We now find
2 2
1 df, PASA ~ PpB) %A
?— -E—— = 2 ‘5—‘- . (78C)
B A PRy A

The definition of the composite sound speed, c, is
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2 _ 3p
c TS 'S , (79)
where the derivative is taken at constant entropy. Using the
definition of the composite pressure, p,
P = f,p, *+ fppp s (80)
we find
ap ap
2 2 A 2 B
¢ = fA Cy 5 lS + fB Cg 5 'S , (81)
which leads to
2 2
2 °p B A B
et = . (82)
[p.p (f2 c2 v £ c2 + £ £ (p I 0 cz)]
A" B A B B A A'B A A B B

Equations (80) and (82) allow both p and c2 to be computed, and
our model equation of state discussed earlier may be fitted to
this data. Lagrangian PPM hydrodynamics may then be computed as
for a single fluid, so long as the fractional volumes are
adjusted after the computation to achieve precise pressure
balance of the two fluids within the zone.

In practice, the method of treating fluids as well mixed
within zones for the purpose of Lagrangian hydrodynamical
calculations works very well. The reason for this must be that
the main falsification introduced appears in the sound speed
rather than in the pressure or velocity, which appear directly in
the fluxes of specific volume, momentum, and total energy. The
pressure and velocity are not greatly affected by assuming that
the fluids are well mixed, because these variables are continuous
across a fluid interface. In two dimensions, demanding that both
fluids share a common velocity makes the treatment of slip along
the fluid interface difficult. Any such slip must be smeared
over a thin region about two zones wide.

The Multifluid Remap Step

In the remap step of a multifluid Eulerian calculation
interfaces separating the various fluids within a zone must be
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drawn. The SLIC method of Noh and Woodward (1977) is a
particularly simple and effective means of drawing these
interfaces. It is a simplification of the original method of
DeBar (1974), and it is especially well behaved when many fluids
are present in a single zone. For the special case of only two
fluids in a zone SLIC is just about the simplest possible
procedure for defining a fluid interface, and it is remarkable
how well it works in practice. There are only five possible
fluid configurations, and these are illustrated in Fig. 22.

The SLIC algorithm is specifically designed to work in 1-D
passes using a minimum of data. The fluid interface within a
zone is constructed using only the fractional volumes of the
fluids in that zone and a knowledge of the presence or absence of
each fluid in each of the two neighboring zones. Representing
presence of the fluid by a 1 and absence by a 0, we may charac-
terize this data in neighboring zones by an ordered pair of num-
bers for each fluid. The pair (1,0), for example, would mean
that the fluid was present only in the neighboring zone on the
left. SLIC chooses the horizontal fluid configuration on the
left in Fig. 22 whenever these ordered pairs of numbers are the
same for both fluids in the zone. If we call the fluids A and B,
then the vertical configuration with A on the left will be chosen
if we have either (1,0) for fluid A or (0,1) for fiuid B. The
remaining vertical configuration is the same except that the
names of the fluids are interchanged. One of the two center-slab
configurations on the right in Fig. 22 will be chosen if the
ordered pairs for the two fluids are (0,0) and (1,1). These
center-slab configurations occur only rarely in practice. They
generally arise when there is a tendency to form spray at a badly
distorted fluid imterface. They will not be properly advected,
and the presence of many such zones in a problem is an indication
that the calculation should be terminated. Disregarding these
zones, SLIC simply chooses to represent the fluid interface
within a zone as horizontal or vertical. This gives a first-
order accurate description of the fluid interface. This
description is extremely robust; it makes it quite difficult for
a fluid region to break up or to form thin structures. This

7
/

Fig. 22 The five permitted two-fluid configurations in SLIC for
the x-pass of an "operator-split' calculation.

7
?
/
/

/i






[image: image65.png]PPM: PIECEWISE-PARABOLIC METHODS FOR ASTROPHYSICAL FLUID DYNAMICS 309

robustness is amply demonstrated by the 10-fluid problem
presented in Noh and Woodward (1977).

After the lengthy discussion of advection algorithms at the
beginning of this article it should seem natural to apply the PPM
advection scheme to the treatment of the fluid interface. 1If
this is done, it should be done only in regions where a single,
isolated fluid interface is to be described over a large enough
number of zone widths to make the high-order interpolations in
PPM meaningful. A means for applying PPM to the problem of fluid
interface definition is illustrated in Fig. 23. To construct the
representation of the fluid interface which appears at the left
in Fig. 23, the fractional volumes of the two fluids have been
summed over five-zone strips. The sums over vertical.strips have
been chosen to define the fluid interface, because viewed from
this direction the interface appears more horizontal. The figure
illustrates how the fluid interface might appear if the PPM
interpolation algorithm with monotonicity constraints were used
to construct it from data summed over strips. In the central
portion of Fig. 23 this form for the fluid interface has been
used within each strip to construct interfaces within zones which
match the fractional volumes prescribed there. This representa-
tion of the interface would be appropriate for the y-pass of the
calculation, because the monotonicity constraint would act to
damp strongly any short wavelength ripples on the fluid inter-
face. Such damping serves to prevent the creation of spray,
which cannot be adequately treated by the method unless it is
well resolved on the computational mesh.

For an x-pass of the calculation the representation in the
center of Fig. 23 is inappropriate. The portions of the fluid
interface which have been flattened by the monotonicity con-
straint would now cause an undesirable proliferation of multi-
fluid zones. 1In these zones the fluid interfaces are drawn
nearly horizontal, while the SLIC algorithm would draw them
vertical. A possible means of modifying the fluid interface to
deal with this problem is illustrated at the right in Fig. 23.

In constructing this part of the figure an additional monotoni-
city constraint has been applied. In each multifluid zone the
usual monotonicity criterion has been applied in the y-direction.
That is, the interface has been steepened if necessary to give
values of the fractional volume in the x-volume coordinate which
lies between those for the zones just above and below the zone in
question. Note that this constraint is not applied to the data
summed over strips but instead to that for individual zones.

The ideas illustrated in Fig. 23 are provisional and are now
under development. They do not provide a tested means of
improving the SLIC algorithm, but Fig. 23 should warn the
ambitious reader that improving significantly upon SLIC is not as
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easy as at first it seems. It also remains to be shown that
improvements in drawing the fluid interface make sense in the
absence of a better treament of the hydrodynamics in the
Lagrangian step and a better treatment of slip along the
interface. A true treatment of fluid slip requires that the
calculation not be split into separate x— and y-passes. However,
significant improvements can be made by accounting for the shear
term, formally third-order small, which was discussed earlier and
illustrated in Fig. 5 (J. LeBlanc, private communication).
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A////////////////// T
IR Y,

/////////
////////////////

Fig. 23 A proposed piecewise-parabolic embellishment of the
SLIC algorithm for defining a fluid interface.
(a) Monotonized PPM interpolation parabolae are
generated from fractional volume data summed in
five-zone strips. The direction of summation is
determined so that the fluid interface appears most
nearly horizontal. (b) The interface shapes constructed
in (a) are adjusted vertically to correspond to
fractional volumes in individual zones. This
representation is appropriate for advection in the
direction of summation in strips (vertical in this.
example). (c) For advection in the other direction
(horizontal in this example) the individual fluid
interfaces are steepened if necessary to satisfy a
monotonicity constraint in the direction of the strips
(vertical). This will prevent excessive proliferation
of multifluid zones. The block of 25 zones shown here
would be used only to generate the fluid interface
within the central zone. Generation of interfaces in
other zones is indicated here to give an idea of the
variety of situations which can arise.
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SIMULATION OF UNSTABLE SUPERSONIC JETS WITH PPM

As an example of an astrophysical application of multifluid
PPM hydrodynamics with SLIC tracking of fluid interfaces, we
present here some results from a study of Kelvin-Helmholtz
instabilities in supersonic jets. A detailed discussion of this
work may be found in Woodward (1983). An earlier example of the
use of SLIC imbedded in a different hydrodynamics code may be
found in Woodward (1979, 1980). The motivation for the work on
jet instability is the need to establish whether or not simple
hydrodynamical models are appropriate for the study of jets
emitted from the nuclei of active galaxies. A realistic
simulation of a hydrodynamical jet must be three-dimensional;
however, such calculations are beyond the capabilities of present
computers. Consequently, two—-dimensional simulations have been
performed. In the very detailed work of Norman et al. (1982,
1983, see also this volume), cylindrical symmetry was assumed,
and no catastrophic instabilities were observed. To complement
this work, I have performed two-dimensional simulations of
supersonic fluid sheets in Cartesian geometry. These simula-
tions, unlike those in cylindrical geometry, permit the "jet" to
meander. The meandering, or "firehose" instability is poten-
tially more disruptive than those Kelvin-Helmholtz modes allowed
in cylindrical geometry. Therefore it is important to see if
this instability grows rapidly for popular hydrodynamic models of
jets from active galactic nuclei. It is hoped that the behavior
of fluid sheets in two dimensions will be a good indicator of
that of roughly cylindrical jets in three dimensions.
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It is well known that an isolated slip surface between two
uniform fluids is stable when the motion of both fluids relative
to a disturbance of the slip surface exeeds a critical Mach
number slightly greater than unity. A similar result does not
hold for a fluid sheet (or jet) because of the possibility of
symbiotic interactions between perturbations at either side of
the sheet. Such interactions, which result in a violent insta-
bility of the fluid sheet, are illustrated in Fig. 24. The cal-
culation in Fig. 24 began with a sheet of gas with demnsity 0.1,
pressure 0.6, and x~-velocity 6.32 (Mach 2) located between
y = -0.5 and y = 0.5. This gaseous sheet was initially in pres-
sure equilibrium with a surrounding ambient gas of density 1,
pressure 0.6, sound speed 1, and x-velocity 0. Both gases obey a
gamma-law equation of state with y = 5/3. This system was per-
turbed by introducing a small vertical component to the velocity
within the "jet" (we will use this term loosely from now on):

uy = [0.05 sin (2nx/3) + 0.025 sin (4mx/3)] uxoe (83)

The subsequent flow, computed with PPM using a SLIC fluid
interface, is shown at times 0.5, 1, 1.5, and 2 in Fig. 24. At
each time 30 density contours are plotted with each contour level
a fixed factor higher than the preceding one. The lowest and
highest levels are given in the figure caption, and the lowest
contour is dotted. The fluid boundary as well as the shocks in
Fig. 24 are made evident by the bunching together of several
density contours. Centered rarefaction fans are marked by
regions in which several density contours appear to fan out from
a common center. The calculation simulates only a small section
of the jet, and periodic boundary conditions are applied at x = 0
and x = 3. The grid is very fine. There are 180x240 square
zones in the region 0 < x < 3 and -2 < y < 2 which is shown.
Eighty additional zones above and 80 below this region grow
steadily larger so that the y—-boundaries are at *12. This many
additional y-grid lines proved to be unnecessary, because the jet
was completely disrupted before sound singals could reach these
distant boundaries. To demonstrate the correctness of the
general flow pattern in Fig. 24, an identical calculation using
precisely half the grid resolution in each direction is presented
for comparison in Fig. 25. Note that even the amount of entrain-
ment of ambient gas into the jet 1s the same in these two calcu-
lations. Only the fine details of the flow near the jet bound-
aries require the finer grid for a more accurate description.

Although the initial disturbance given in Eq. (83) has no
y—-dependence within the jet, the disturbance at time 0.5, in Fig.
24a has quite a different character. It tends to be similar
along Mach lines rather than along vertical lines. Mach lines
are the sound wave fronts which are generated in supersonic flow
by signals emitted at specific points. The oblique features
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within the jet in Fig. 24a are weak shocks aligned at the Mach
angle in the frame of reference moving with the small kinks in
the jet boundaries which generate these disturbances. The lack
of y-dependence in the initial state was inconsistent with
causality, and the flow has rearranged itself accordingly in
short order. By time 1, in Fig. 24b, a characteristic and rather
special structure has emerged. Nearly all the various weak
shocks inside the jet have merged into two principal shocks of
greater strength. These shocks, which form a zig-zag pattern
inside the jet, are the means by which one jet boundary
influences and destabilizes the other.

The flow pattern in Fig. 24b is fundamental to an under-
standing of supersonic jet instability. Beginning at the left in
Fig. 24b, a shock is generated as the supersonic jet gas strikes
a kink in the upper wall of the channel. This shock then pro-
pagates at roughly the Mach angle to the opposite wall of the
channel. Here the shock strikes the wall and generates a dent in

Figure Captions

Fig. 24 The fundamental odd mode of instability of a Mach 2
jet. The jet density is initially 0.1 and the ambient
gas has a density of 1. Both are gamma-law gases with
Y = 5/3. They are initially in pressure equilibrium,
and the ambient sound speed is unity. Thirty density
contours, each larger by a fixed factor, are plotted at
times 0.5, 1, 1.5, and 2. A perturbation of the
transverse velocity of the jet causes a characteristic
zig-zag pattern of shocks within the jet to develop.
Eventually some of the jet material is reversed in
direction and ambient gas is entrained in the jet. By
time 2.5 the jet is completely disrupted. The section
of the grid which is shown is uniform, with 60 zones per
jet width. The calculation was performed with PPM using
a SLIC fluid interface.

Fig. 25 Results of a calculation identical to that in Fig. 24
except for the use of precisely half the grid resolution
in both x- and y-directions and half the number of
timesteps. The general morphology of the flow in this
calculation -- the amplitude of the jet oscillation, the
locations of shock fronts, and the amount of entrainment
of ambient gas into the jet -- agrees very well with the
results for the finer grid in Fig. 24. Only fine details
of the flow near the jet boundaries are not well repre-
sented here.
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Fig. 25
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it. The obliquity of the shock is such that the jet gas is
turned downward here into the channel wall. This turning is
aided by a small centered rarefaction fan which returns the
post-shock pressure to the value in the adjacent ambient gas.

The jet gas which has been turned into a collison course with the
channel wall again causes a shock to form. When this shock
reaches the opposite wall, the cycle is completed. The kink on
each wall generates a shock which turns the flow into the kink on
the opposite wall. When this turned gas strikes the wall, the
pressure generated both sustains a shock and further excavates
the kink in the wall. The effect of this interaction between the
perturbations on the two channel walls is a rapid growth of the
amplitude of the wobbling of the jet and of the strength of the
imbedded shocks. By time 1.5, in Fig. 24c, some of the jet gas
strikes the wall head on and is turned around to flow backwards
along the jet boundary. 1In Fig. 24d, at time 2, the two vortices
associated with this reverse flow are very large. Also the shocks
inside the jet are nearly orthogonal to the flow. They therefore
decelerate and heat the gas considerably. The propagation of the
kinks in the jet is supersonic with respect to the ambient gas,
and by time 1.5 fairly strong shocks are generated in that gas.
In addition, chunks of ambient gas are entrained in the jet so
that by time 2.5 the jet is completely disrupted.

Because the instability of the jet in Fig. 24 is driven by a
reinforcement of the perturbation on one boundary of the jet by
the perturbation on the other, it is natural to expect resonant
effects. In fact, if the two perturbations are to reinforce each
other the shocks set up on one side of the jet must strike the
other side in proper phase with the perturbation there. Because
the shocks must be inclined at nearly the Mach angle, there must
therefore be a resonance condition involving the Mach number of
the jet, the jet width, and the wavelength of the perturbation.
These parameters are near resonance for the jet in Fig. 24. This
particular resonant mode corresponds to a single zig—-zag of
shocks within the jet which are inclinded at roughly the Mach
angle. This is the fundamental odd mode, the resonant mode which
has the longest wavelength, the fastest growth rate, and the most
destructive effect upon the jet. It is a wobbling mode with
alternating symmetrical regions of positive and negative velocity
in the y-direction.

A whole series of modes can be constructed by drawing
additional shock zig-zags spaced evenly in phase. 0dd numbers of
zig-zags give odd, wobbling modes, while even numbers of zig-zags
give even, pinching modes. Even modes have even symmetry for the
density distribution about the jet center line, and they are
therefore the modes which appear when this line is treated as a
reflecting boundary (as is the case when cylindrical symmetry is
imposed). The fundamental even mode is shown in Fig. 26. The
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initial, unperturbed jet for this calculation was identical to
that used in the run in Fig. 24. However, 1in this case
reflection symmetry about the jet center line at y = 0 was
assumed. Also a sinusoidal perturbation of u,, within the jet
was introduced with only half the wavelength of the fundamental
odd mode:

uy = 0.1 y uyo sin(4mx/3) . | (84)

The double zig—-zag pattern which 1s characteristic of the funda-
mental even mode of jet oscillation is modified in Fig. 26 by the
Mach reflections of the shocks at the jet center. For higher
Mach numbers these become regular shock reflections, and a simple
double zig-zag pattern of shocks within the jet appears. The
grid used for the calculation in Fig. 26 is matched to that in
Fig. 24. There are 90x120 square zones in the region 0 < x < 1.5
and 0 < y < 2, and 40 additional grid lines of increasing separa-
tion carry the computational domain out to y = 5. The flow is
shown in Fig. 26 at time intervals of 0.5 beginning at t = 0.5.
This mode rapidly causes breaking waves to form along the jet
boundary and by time 2 a considerable amount of ambient gas has
been entrained in the jet; however, this mode is still less
disruptive than the fundamental odd mode in Fig. 24.

As can be seen at the earlier times displayed in Fig. 26, it
is possible to draw a tighter shock zig-zig pattern within the
jet at the Mach angle. Thus the fundamental even mode could be
generated at higher frequencies; however, at higher frequencies
its growth is less rapid and its effects are less disruptive of
the jet. This is demonstrated in Fig. 27a. In this calculation
the same.even perturbation of the jet as in Eq. (84) but with
half the wavelength was introduced. The flow is shown at time
1.5 in Fig. 27a, and the characteristic double zig-zig pattern of
internal shocks 1is evident. During the evolution of this run the
fundamental even mode shown in Fig. 27a competes with its first
harmonic. As the instability grows and the effective jet width
is reduced slightly by the entrainment of ambient gas, it becomes
possible to fit the double zig—-zag within the imposed wavelength
of 3/4 of the jet width. Then this fundamental even mode grows
in strength to dominate the flow. To obtain the second even
mode, with a quadruple zig-zag pattern of internal shocks, we
must decrease the wavelength of the perturbation further. In the
calculation shown at time 1.5 in Fig. 27b, a wavelength of 0.5
has been imposed: |

ug = 0.1 y uge sin(4mx) . (85)
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Fig. 26
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Fig. 26

Figure Captions

The fundamental even mode of instability of the Mach 2
jet in Fig. 24. This PPM computation uses a uniform
grid within the region shown, with 60 zones per jet
width as in Fig. 24. Density contours are shown at
times 0.5, 1, 1.5, and 2. The growth of this resonant
pinching mode is very rapid. The characteristic
x-pattern of internal shocks appears by time 0.5, and
the wave disturbances at the jet boundary break by time
l. Nevertheless, this mode is less disruptive than the
"firehose'" mode shown in Fig. 24. Note the Mach reflec-
tion of the internal shocks at the jet center line.

RHO. RHO

n-

Fig. 27

t-1.50e+00. 1.50e+00: PPMLR 10/14/83- 1 mach2xal. mach2wal
1820. 1768: 38 contours: 2.43e-82 to 2.20e+00. 5.53e-82 to 2.76e+00
The effects of short wavelength perturbations of even

symmetry about the jet center line are indicated by
these two PPM simulations. The unperturbed jets here
are the same as in Fig. 24. In both simulations the
grids are uniform in the region shown, with 120 zones
per jet width, and both flows are shown at time 1.5. At
the left the perturbation wavelength is 0.75 and at the
right it is 0.5 jet widths. At the left a competition
between the fundamental even mode of Fig. 26 and its

first harmonic 1s eventually won by the former mode; at

the right, the latter, harmonic mode is dominant.
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The second even mode now appears clearly, but despite its rapid
ruffling of the jet boundary it is less disruptive than the
fundamental even mode shown in Fig. 27a. The relatively minor
effect of this mode on the flow near the center of the jet can be
gauged by the weakness of the shocks which it sets up there.

In Fig. 28 the second odd mode of jet instability can be seen.
The calculation in Fig. 28 is identical to that in Fig. 24 except
in two respects. First, the grid is somewhat coarser. There are
120x160 square zones in the region 0 < x < 3 and -2 < y < 2,
Twenty y-grid lines of increasing separation on either side of
this region carry the computational domain out to y = x4, The
second difference between this calculation and that in Fig. 24 1is
of course the initial perturbation:

Uyo = 0.05 [sin (2rx) + sin (8mx/3)] uyxoe (86)

In1t1a11y the third resonant mode represented by the first term
in Uyo grows to produce at time 1.25 the shock lattice structure
shown in Fig. 28a. However, nonlinear coupling of this mode with
the fourth one (the second term in Uyo) soon causes one of the
zig-zag shocks to overwhelm the others, and the fundamental odd
mode emerges at time 2.25 in Fig. 28b. By time 3 entrainment of
ambient gas in the jet disrupts it considerably.

The experiment in mode-mode coupling represented in Fig. 28
demonstrates the dominance of the fundamental odd mode. 1In this
case it has arisen as the difference frequency oscillation corre-
sponding to the two shorter wavelength initial perturbations.
That this behavior is not just a general tendency for ever longer
wavelength oscillations to grow is demonstrated by two further
experiments. The flow in Fig. 29 began with the same initial
conditions as that in Fig. 28, except that the initial perturba-
tions had longer wavelengths by a factor of 4:

uyo = 0.05 [sin (mx/2) + sin (21x/3)] ugo - (87)

The grid has 360x120 square zones in the region 0 < x < 12 and
-2 < y < 2, with 10 additional y-grid lines of increasing
separation expanding the computational domain to y = *2.5. The
flow is displayed at time 2, and the mode in Fig. 24 is clearly
dominant. There is barely any hint of power at the difference
frequency, corresponding to a wavelength of 12. 1In Fig. 30 a
similar run is shown at time 3. Here the initial perturbation
contained a wavelength of 12:
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uyo = [0.06 sin (mx/6) + 0.02 sin (m1x/2)] uyo, . (88)

A somewhat coarser grid in x of 240 evenly spaced x-lines was
used, while a somewhat finer grid in y of 160 evenly spaced
y~-lines was used fromy = -2 toy = 2. On either side of this
domain forty additional y-lines of increasing separation carry
the grid to y = 6. In the flow at time 3 the long wavelength
initial perturbation has only modulated a pattern dominated by
the shorter wavelength.

These simulations suggest that if a meandering supersonic jet
has a principal wavelength discernable, this wavelength can be
related to the other parameters of the jet by assuming that the

RHO, RHO t-1.25e+00. 2.25e+00: PPMLR 12/11/82- 2 mach2kae. machZkai
n- 508, 932: 30 contours: 2.21e-02 to 2.56e+00. 2.93e-02 to 2.63e+00

Fig. 28 The second resonant odd mode of instability of a Mach 2
jet. The same jet as in Fig. 24 has here been perturbed
with disturbances with 3 and 4 wavelengths over the
length of the grid. At first, the longer wavelength
sets up an unstable resonant oscillation characterized
by the triple zig-zag of shocks within the jet which 1is
seen at the left (time 1.25). Later (time 2.25) at the
right, nonlinear coupling between the initial
disturbances has excited the dominant, fundamental odd
mode.
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fundamental odd resonant mode has been observed. This mode is so
violently unstable that if it is not seen, the jet is unlikely to
be a simple hydrodynamic jet of the type studied here. Instead,
it may contain a stabilizing internal magnetic field. Alterna-
tively it may be stabilized by a strong pressure gradient in the
external ambient gas which gives the jet a strongly preferred
direction of propagation and resists meandering (rivers flowing
down hills do not meander). Another possibility is that the jet
Mach number is so large (of the order of 100) that it gets where
it's going before the instability can develop. Remember that the
resonant wavelength scales linearly with the jet Mach number when
this is large (because of its relation to the Mach angle).

In the supersonic exhausts of jet engines the fundamental
even mode is usually dominant for some time, but the fundamental
odd mode, a helical mode for a cylindrical jet, eventually takes
over (cf. Yu and Steiner 1983). The reason for the initial
dominance of the even mode is an enormous even perturbation of
the jet caused by its sudden emergence into a pressure reservoir
to which it must adjust by either a lateral expansion or contrac-
tion. Norman et al. (1982) have suggested that hot spots of syn-
chrotron radiation emitted from astrophysical jets may be due to

DENSITY dt-2.48e-83 cournt-08.800; PPMLR 12/ 9/82- 1 machZhah
30 contours: 2.384e-02 to 3.995e+00 n - 632 t - 2.00271e+00

Fig. 29 The same initial jet as in Fig. 24 here has been
perturbed by 5% sinusoidal oscillations of the
transverse velocity with wavelengths of 3 and 4 jet
widths. Because the shortér wavelength initial
perturbation is near the fundamental resonant mode shown
in Fig. 24, this mode grows so rapidly that it disrupts
the jet before nonlinear mode-mode coupling can
introduce any significant oscillation with a wavelength
of 12 jet widths. Density contours are shown here at
time 2, shortly before the jet is disrupted.
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internal shocks of the type they observe in their calculations.
If such hot spots correspond to the even modes in their calcula-
tions, perhaps the astrophysical jets, like their terrestrial
counterparts, have suddenly emerged from a galaxy into an inter-
galactic pressure reservoir to which they adjust by-exciting
strong even modes of oscillation.
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Fig. 30 The same initial jet as in Fig. 24 here has been
perturbed by 6% and 2% sinusoidal oscillations 1in the
transverse velocity with wavelengths of 12 and 4 jet
widths. Despite its smaller initial amplitude, the
shorter wavelength perturbation soon dominates the
flow. Density contours are shown here at times 2 and
3. By time 3 the jet is nearly disrupted by a short
wavelength oscillation. Although it is not immediately
apparent, nonlinear effects have generated a large
amount of the fundamental resonant mode with a
wavelength of 3 jet widths.
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The PPM hydrodynamics scheme with SLIC fluid interfaces 1is a
powerful tool for investigating fluid flows. As the above inves-
tigation of jet instability demonstrates, nonlinear flow phenomena
are easily and accurately computed which can then be understood
in relatively simple terms. Although only one case may be com-
puted at a time, the calculations are cheap enough that many can
be afforded. This allows similarities and trends to be identified
which may be used to predict the outcome of further simulations
in order to test the correctness of their interpretation. From
this process a phenomenological understanding emerges, which can
be made quantitative as desired by performing additional simula-
tions. This procedure allows theoretical work to be extended
into regimes which are intractible for analytic methods.

The contrast between this numerical approach and analytic
techniques is illustrated by the problem of jet instability. The
numerical work sketched above and discussed more fully in
Woodward (1983) should be compared with the analytic work of
Ferrari et al. (1978) and of Hardee (1982, 1983). In that work
long formulae involving special functions and graphs of growth
rates are presented, but the role of resonant effects mediated by
shocks at the Mach angle in defining the dominant mode in a given
situation is obscured. Undoubtedly this is largely because such
shocks, even when they are weak, are inherently nonlinear
phenomena. Another reason that the Mach angle does not emerge
from the linear analysis is that the modes studied for supersonic
jets are not constrained to be causally meaningful. Flows which
may actually be realized in meaningful experiments must be
obtained by a superposition of a great many of the modes studied
analytically. Thus although one may conclude from the analytic
work that a supersonic jet 1s unstable, he may not learn what
that jet will actually do in nature.

The numerical and analytic approaches can reinforce one
another. The phenomenological understanding which emerges from a
series of numerical simulations can be used to guide analytic
work in profitable directions. As every student knows, it is
helpful to know the answer before beginning the analysis of a
problem. Numerical simulations, like physical experiments,
make this possible. Consider the example of supersonic jet
instability. In principle, we could find suitable trial
perturbations for an analytic treatment by the following method.
We could idealize the results of the simulations at the point
where a principal mode has been established but where the shocks
involved are still weak. This idealization would serve to remove
unavoidable small numerical noise from the computed result and
also to yield a perturbation simple enough to treat analytically.
If growth rates for such perturbations could be computed
analytically as functions of the jet parameters, the results
would be most useful. As the power of computing machinery and
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techniques continues to grow we may hope to see an accompanying

growth of such interplay of the numerical and analytical
approaches to theoretical physics.

Summary

Piecewise-parabolic methods for advection and for hydro-
dynamics have been discussed thoroughly here outside of the con-
text of applied mathematics from which they have grown. This is
not because other methods are without merit, but instead it is the
result of the author's personal preference. Nevertheless, many of
the fundamental 1ssues discussed =- construction of interpolation
functions, monotonicity constraints, contact discontinuity
steepeners, conservation form, operator splitting, multifluid
techniques, etc. —— are more universal than the limited context
in which they have been discussed here. The author hopes that
readers who do not intend to use piecewise-parabolic methods may
still find much to interest them in these pages.

This work was performed under the auspices of the U. S.
Department of Energy by the Lawrence Livermore National
Laboratory under contract No. W-7405-ENG-48.
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