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1. Introduction 
The PPM gas dynamics scheme is described in detail elsewhere in this book 

(see also [1-5]).  Here we review applications of PPM to turbulent flow problems.  
In particular, we will focus our attention on simulations of homogeneous, 
compressible, periodic, decaying turbulence.  The motivation for this focus is that 
if the phenomenon of turbulence is indeed universal, we should find within this 
single problem a complete variety of particular circumstances.  If we choose to 
ignore any potential dependence on the gas equation of state, choosing to adopt 
the gamma-law with  γ = 1.4  that applies to air, we are then left with a one-
parameter family of turbulent flows.  This single parameter is the rms Mach 
number of the flow.  We note that a decaying turbulent flow that begins at, say, 
Mach 1 will, as it decays, pass through all Mach numbers between that value and 
zero.  Of course, we will have arbitrary possible entropy variations to deal with, 
but turbulence itself will tend to mix different entropy values, so that these 
entropy variations may not prove to be so important as we might think.  In all 
our simulations of such homogeneous turbulence, we begin the simulation with a 
uniform state of density and sound speed unity and average velocity zero.  We 
perturb this uniform state with randomly selected sinusoidal velocity variations 
sampled from a distribution peaked on a wavelength equal to half that of our 
periodic cubical simulation domain.  The PPM simulations of this type that will 
be reviewed here have the amplitudes of these velocity variations chosen in order 
to achieve an initial rms Mach number of either ½ or unity. 

We exploit the numerical dissipation of PPM, which is strongly targeted at the 
very smallest scales that can be described on our grid.  This type of viscosity 
allows us to have in our simulations the largest possible dynamic range of scales 
of motion that is essentially unaffected by viscosity of any kind, either numerical 
or real.  The idea here is that information will pass preferentially down the 
spectrum from larger to smaller scales of motion.  Therefore, as long as we 
dissipate any small-scale motions into the proper amount of heat at the proper 
places and the proper times, we should be able to compute the dynamics of the 
larger scales correctly and accurately.  In essence, were this not so, then there 
would be no hope to simulate the dynamics of a turbulent flow without 
computing all the motions on all the scales, however small.  Nevertheless, we 
demand a consistency with this assumption from the results of our simulations, 
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and this consistency is, thankfully, observed. 

2. Large-Scale Simulations of Turbulent Flows in 3D 
Together with our collaborator, Annick Pouquet, we decided in 1991 to exploit 

the high resolving power of our PPM gas dynamics scheme and the power of the 
University of Minnesota’s Cray-2 supercomputer to simulate decaying, homogen-
eous, compressible turbulence in 3D [6].  We initialized the flow on a periodic, 
cubical domain of 2563 grid cells so that the rms Mach number of the flow was 
unity.  Because of Kolmogorov’s compelling arguments based upon dimensional 
analysis and self-similarity [7], we expected to see a  k -5/3  velocity power 
spectrum develop.  Instead, what we observed was a  k -1  behavior between the 
energy containing scales and the scales on which the numerical dissipation of 
PPM came into play [8,9].  The Kolmogorov behavior was nevertheless present as 
the spectrum decayed, since the spectra at different times, when plotted together 
on the same graph, traced out a clear envelope with a  k -5/3  slope.  This result 
was a surprise, since we knew from separate measurements of the effective 
viscosity of PPM [10,11] that all scales above 12, or at the most 16, grid cell 
widths were essentially inviscid.  This was our first introduction to a physical 
effect, which we later clearly showed occurs with the Navier-Stokes viscosity as 
well, of a pile-up of kinetic energy near the end of the turbulent cascade.   An 
argument offered by Jack Herring at the time was that the removal of kinetic 
energy on the very smallest scales supported by the computational grid inhibited 
scales just larger than this from transferring their energy through nonlinear 
interactions with smaller scales.  In earlier 2-D simulations of homogeneous, 
compressible turbulence with PPM [8], we had observed no such effect near the 
end of the spectrum.  The flattening of the near-dissipation-range spectrum 
occurs only in 3D, and only in the solenoidal component of the velocity field. 

In 1992, we were able to clarify this process of flattening of the velocity power 
spectrum just before the dissipation range of scales is reached.  Using the 
University of Minnesota’s new Connection Machine at the Army High Perform-
ance Computing Research Center, we were able to expand the grid of our earlier 
2563 simulation to 5123 cells.  At last a short segment of the Kolmogorov inertial 
range emerged [12-14].  We were able to see that for the PPM dissipation the 
Kolmogorov inertial range extends to a shortest disturbance wavelength of about 
32 grid cell widths.  This scale marks the end of the indirect effects of the PPM 
dissipation rather than of its direct effects, since the propagation with PPM of a 
16-cell sinusoidal velocity disturbance is very accurate over the brief duration of 
any of these turbulence simulations.  From this work, we concluded that to study 
the statistics of the inertial range of turbulence, we needed a truly enormous grid, 
since with only 5123 cells our inertial range was only about a factor of 3 in length. 
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With a dissipation such as the Navier-Stokes dissipation, which acts signifi-
cantly on much larger scales than the PPM dissipation, the inertial range on a 
5123 grid would be even smaller.  Indeed, several years later we performed a 
resolution study with both PPM-Euler and PPM-Navier-Stokes methods.  This 
study used resolved Navier-Stokes simulations, for which the velocity power 
spectrum does not change upon a grid refinement if the coefficient of viscosity is 
held constant.  We discovered that on a 5123 grid such a Navier-Stokes 
simulation of decaying, Mach ½ turbulence reveals no inertial range at all [26].  
The flattening of the spectrum before the dissipation range in Navier-Stokes flows 
was confirmed in 2002 by 
a Japanese group using 
the Earth Simulator to 
perform Navier-Stokes 
simulations of decaying 
homogeneous turbulence 
on grids up to 40963 [32]. 

In 1993 our quest for a 
machine that could simu-
late turbulence on a 10243 
grid led us to collaborate 
with Silicon Graphics [15].  
A cluster of multiproces-
sor SGI machines was 
built for us temporarily in 
the Silicon Graphics man-
ufacturing facility.  The 
combined cluster gave a 
sustained computational 
performance of 5 Gflops, 
which was not a record at 
the time.  However, the 

Fig. 1. Two contrasting visualizations of homogeneous, compressible turbulence as 
computed on a 1024³ grid with the PPM scheme in 1993.  In the upper panel, vorticity 
structures near the dissipation range of length scales are shown in a small region of the 
fully developed turbulent flow.  In the lower panel, the data has been filtered before 
the vorticity image was rendered.  These vorticity structures are in the Kolmogorov 
inertial range of length scales.  Each region shown is the same width relative to that of 
the vortex tubes it contains.  The two images here were rendered for direct and 
unbiased comparison.  In each sub-volume shown, the same volume fraction is 
occupied by each opacity/color level.  The very different appearance of these images 
therefore reflects real differences in their dynamics.  The relatively straight vortex 
tubes near the dissipation range do not readily kink to form still smaller structures. 
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key feature of this system, aside from its very low cost (it cost us nothing), was 
its tremendous memory capacity, which made it the only system in the world at 
the time that was capable of carrying out a turbulence simulation on a 10243 
grid.  Some results of this simulation are shown in Figure 1 (see also [12-14,16, 
22,23,25]).  Unfortunately, the SGI personnel had to dismantle this system and 
distribute its components to customers before we could compute long enough to 
let the velocity power spectrum completely settle.  It was not until 1997, using a 
new ASCI computer system at Los Alamos, in collaboration with Karl-Heinz 
Winkler and Steve Hodson, that we were at last able to calculate this flow 
completely.  Using a new Itanium-based cluster system at NCSA in 2001 we were 
able to do a similar computation, this time at Mach 1, and to bring a complete, 
detailed set of data over the Internet to our lab in Minnesota [30,31,33].  In 2003, 
we were able, on a new Itanium cluster at NCSA, to simulate Mach 1 
homogeneous turbulence with PPM on a grid of 20483 cells [34,35]. 

The images in Figure 1 show the difference in the structures that develop in 
the near dissipation range and in the Kolmogorov inertial range.  Since the 
Fourier transform of a line vortex has a  k -1  spectrum, it is not surprising to find 
spaghetti-like structures in the near dissipation range.  In order to get a clear 
view of the structures in the inertial range, we applied a Gaussian filter to the 
data from this run, thus removing the spaghetti structures and letting the 
macaroni-like structures of the inertial range come clearly into view.  Here we 
still see vortex tubes, but they are shorter and they appear to kink much more 
easily. 

3. Purpose of the Simulations:  Validation and Testing of Turbulence 
Models 
The principal purpose of our turbulence simulations has been to create data 

sets which can be regarded in much the same way as experimental data, except 
that the simulations make possible the capture of data that is more complete and 
more detailed than is now possible from laboratory experiments.  From our 
recent PPM simulation of Mach 1 homogeneous turbulence on a 20483 grid, for 
example, we get values of all fluid state variables sampled at 8.6 billion locations 
at regular time intervals (see our description of the data handling in [35]).  From 
this data we can build grids of macrocells, each a cube of 32, 64, or even 128 grid 
cells on a side, in which we have computed in detail the “subgrid-scale” turbu-
lence.  From this data we can correlate the amount of subgrid turbulence and its 
time rate of change with the local character of the flow on larger scales and 
compare these results with the predictions or assumptions of turbulence closure 
models.  In order to do this with confidence, we need to establish the range of 
scales on which the dissipation of the PPM gas dynamics scheme has a significant 
effect. 
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If our macrocells are large 
enough, the effects of this 
dissipation on the flow on 
scales resolved by the macro-
cells should be minimal.  On a 
fine enough grid, we will be 
able to have the flow on the 
macrogrid be essentially in-
viscid, while at the same time 
the flow we have computed 
inside each macrocell may still 
be essentially inviscid on the 
largest sub-macrogrid scales.  
A test of a turbulence model 
could then be constructed, in 
which the model is used in a 
large eddy simulation on the 
macrogrid, or perhaps on a 
grid finer than this by a small 
factor (2 or 4), and the results 
are compared to the macro-
grid data from the 20483 PPM 
run plus the statistical prop-
erties of the sub-macrogrid-
scale turbulence directly 
computed in that run.  To be 
of value, such a large eddy 
simulation would have to come closer to the data from the 20483 run than a 
simple Euler calculation with a code like PPM using the same, coarser grid as the 
run with the turbulence model.  Such a test remains to be performed, but now we 
have the data that makes such testing possible. 

In order to determine the range of scales in our simulations with PPM that are 
essentially unaffected by the dissipation of this numerical scheme, we have 
performed grid resolution studies in both 2D [8] and 3D [26].  In these studies we 
have taken a single initial condition and computed its evolution with both the 
standard PPM Euler scheme described in this book and with this scheme to 
which the Navier-Stokes dissipation terms, for a Prandtl number of unity, have 
been added.  For each numerical scheme, we have progressively refined the grids 
and computed to the same final time level.  For the Navier-Stokes runs, in which 
there is a coefficient of viscosity to be chosen, we have used the smallest values 
for which a grid refinement, keeping this coefficient constant, will yield essentially 

Fig. 2.  Power spectra of the solenoidal (top) and 
compressional velocity fields in a series of PPM 
simulations of the same Mach ½ (rms) decaying, 
homogeneous, compressible turbulence problem 
carried out on grids of 64³, 128³, 256³, 512³, and 
1024³ cells. 
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the same velocity power 
spectrum in the computed 
result on the finer grid.  As 
the grid is progressively 
refined, higher and higher 
Reynolds numbers can be 
reached. 

It is the purpose of an 
Euler scheme to produce an 
approximation to the limit as 
the Reynolds number goes to 
infinity of well resolved 
Navier-Stokes simulations. On 
any particular grid, one may 
compare the closeness to this 
limit solution, to the extent 
that it can be known, of either 
the highest Reynolds number 
flow that can be correctly 
computed from the Navier-
Stokes equations on that grid 
or of the Euler flow that can 
be computed on that grid.  
Our convergence studies 
essentially yield this compar-
ison.  If we take either the 
highest resolution Euler or 
Navier-Stokes solution as our 
best approximation to the 
desired infinite Reynolds number limit, then we need only compare Euler and 
Navier-Stokes runs at any of the coarser grid levels.  By this measure we find 
that the Euler solutions are better approximations to the high Reynolds number 
limit on a given grid than are the Navier-Stokes solutions.  This of course is no 
surprise, since the Euler scheme is designed to approximate this limit, while the 
Navier-Stokes solution is not.  It is also apparent from these resolution studies 
that both limit sequences, that of the progressively finer Euler simulations and 
that of the progressively higher Reynolds number Navier-Stokes flows, approach 
the same limit, at least so far as the velocity power spectrum is concerned.  The 
PPM simulation sequence approaches the limit faster, and for any given grid 
resolution has a larger range of scales in the velocity power spectrum that have 
actually converged to the limit to within a given tolerance. 

Fig. 3.  Power spectra of the solenoidal (top) and 
compressional velocity fields in a series of PPM-
Navier-Stokes simulations of the same Mach ½ 
(rms) decaying, homogeneous, compressible turbu-
lence problem carried out on grids of 64³, 128³, 
256³, and 512³ cells at Reynolds numbers of 500, 
1260, 3175, and 8000.  A PPM run with 1024³ 
cells is shown for comparison. 
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The manner in which the velocity power spectra for the sequence of PPM runs 
in [26] converges is shown in Figure 2.  The top panel of the figure gives the 
spectra for the solenoidal component of the velocity field, while the bottom panel 
gives spectra for the compressional component, which contains only about a tenth 
of the kinetic energy.  The Kolmogorov trend is indicated in each panel.  The 
flattening of the power spectrum for the solenoidal component in the near 
dissipation regime is clearly seen (such a flattening is not seen in our 2D 
resolution study [8]).  As the grid is refined, this feature in the spectrum simply 
translates to smaller scales, while the portion of the spectrum above this feature 
at each grid resolution (scales larger than about 32 cell widths) is essentially 
converged.  This same sort of behavior is seen in the compressional spectrum, 
except that the converged portion of the spectrum extends all the way down to a 
scale of about 10 to 12 cell widths.  The sequence of Navier-Stokes simulations 
whose spectra are shown in Figure 3, also taken from [26], clearly show that a 
much broader portion of the spectrum on any particular grid is affected by the 
Navier-Stokes viscosity than is affected on that same grid by the PPM numerical 
viscosity.  Of course, were this not so PPM would be a terrible Euler scheme, so 
this is no surprise.  However, the Navier-Stokes spectra for the solenoidal 
component of the velocity field also show the flattening in the near dissipation 
range, so that it is clear that this feature of the turbulent velocity spectrum is 
physically real and not a numerical artifact.  In the PPM simulations, this 
feature is no doubt different in detail from that of the Navier-Stokes flows; but 
since it is not a feature of interest for scales of reasonable size in the very high 
Reynolds number limit we seek to approximate, we do not regard its detailed 
shape as important.  In fact, we can clearly see that were we to continue to refine 
our grid, this feature would move on down the spectrum.  In this respect, it is a 
numerical error feature, since for the infinite Reynolds number limit it occurs at 
infinite, rather than any finite, wave number.  Recent work of Yokokawa et al. 
[32] on the Earth Simulator shows this feature as well in Navier-Stokes flows that 
are unresolved in our sense here – that is, the coefficient of viscosity is too small 
for the grid resolution used – but which are computed on grids up to 40963. 

4. Potential Role of Turbulence Models 
The above results of our grid resolution studies show that motions on scales 

between about 12 and 32 grid cell widths are being falsified, with respect to the 
infinite Reynolds number limit, by the pile up of energy toward the bottom end 
of the turbulent cascade.  The damping of motions shorter than 12 grid cell 
widths is a necessary feature of numerical simulation,  at  least  for  compressible 
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flows like these that contain shocks.  However, our simulations could perhaps be 
improved in the range of scales from 12 to 32 cell widths.  If indeed the reason 
for the excess kinetic energy in the simulation on these scales is the difficulty of 
sending this energy further down the spectrum, then perhaps removing the excess 
on these scales via a turbulence model and placing it into a reservoir of subgrid-
scale turbulence could improve the ability of the simulated flow to approximate 
the infinite Reynolds number limit.  It is not clear that the application of a 
turbulence model will in fact improve the solution, since it may well matter 
precisely how the excess kinetic energy is removed and precisely what is done 
with it.  For example, a simple dissipation of this excess energy directly into heat 
may not be helpful, since the proper flow structures on these scales of 12 to 32 
cell widths are turbulent vorticity structures as shown in the lower panel of 
Figure 1;  however, dissipation of excess kinetic energy into heat may simply 
leave the spaghetti-like structures of the upper panel of that figure intact, while 

Fig. 4.  Volume rendering of a thin diagonal slice through the cube of turbulence 
computed at NCSA in 2003 with our PPM Euler code on a grid of 2048³ cells.  The 
logarithm of the vorticity magnitude is shown, with the highest values of vorticity 
rendered as white, and with progressively smaller values rendered as yellow, red, 
purple, blue, and finally black.  The flow is shown at 1.15 sound or flow crossing times 
(the initial rms velocity is Mach 1) of the energy containing scales, which are half the 
size of the cubical computational domain.  At this stage it is clear that small-scale 
turbulence is developing  more rapidly in some regions of this flow than in others, 
despite the statistical homogeneity imposed on the initial condition for the problem. 
Analysis of the flow on larger scales in these regions can reveal why the turbulence is 
developing rapidly there and not elsewhere. 
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only weakening them a bit.  The convergence studies discussed above indicate 
that, for a given turbulent flow, if we provide enough grid cells to  resolve any 
desired scale with 32 or more cell widths, then a PPM Euler simulation should 
suffice to give a good approximation to the high Reynolds number limit on those 
scales or larger ones.  To be useful, augmentation of a scheme like PPM with a 
turbulence model must do better than this by giving us correct statistical flow 
behavior on scales smaller than 32 cell widths.  That this is possible remains to 
be established.  In short, we know that the velocity power spectrum we obtain in 
the near dissipation range is wrong, in the sense that the spectrum at these same 
wavenumbers will change upon a grid refinement, but we do not know that a 
turbulence model can make the description of the flow in this range right. 

Not only can the data from our PPM simulations of turbulence be used to 
validate proposed turbulence models, the data can also point the way to 
formulations of such models.  A key element of any such model is an equation for 
the rate of generation of small-scale turbulent kinetic energy in terms of the local 
larger-scale flow.  Our turbulence simulations have such fine grids that they allow 
us to construct estimates of this energy transfer to small-scale motions and to 
visualize those estimates.  Then we may seek characteristics of the regions where 
turbulence is growing in strength and to establish that these characteristics are 
indeed well correlated with growth of turbulence (i.e. they do not tend to occur 
elsewhere).  Following this approach, we first noticed such a correlation in data 
from a simulation of a Richtmyer-Meshkov instability experiment [28], which we 
carried out as members of a large collaboration ([24,27], see also [17-21]) centered 
on the ASCI turbulence team at Livermore.  Analyzing the 3 TB data set from 
this run, which was carried out on an 8 billion cell grid using our sPPM code, we 
noticed that the local topology of the flow was well correlated with the regions 
from which growing turbulent motions emerged, transported along with the local, 
large-scale fluid velocity [27,31,33].  These regions turned out to be those where 
the flow was compressing in one dimension and expanding in the other two.  The 
time reversal of this sort of flow – compression in two dimensions and expansion 
in the remaining one – was correlated with decay of small-scale turbulent 
motions.  The first sort of flow results when you clap your hands.  The 
compression magnifies diffuse shear, and the squirting out in the other two 
dimensions creates shear in a thin layer even if none was originally present.  The 
fluid instabilities that lead to turbulence are then secondary consequences of this 
large-scale organization of the flow.  In the time-reversed case, which is a flow 
like the squirting of toothpaste from a tube or like the flow in a tornado, the 
vorticity becomes organized into tubes that tend to be aligned, so that they 
naturally merge into larger structures.  This process leads to transport of energy 
up the spectrum, from small scales to larger ones.  After noticing these correla-
tions in the Richtmyer-Meshkov flow, we realized that we had been seeing them 



 10

for years, without understanding their significance in this regard, in our 
simulations of compressible convection (see description elsewhere in this volume).  
In those convection flows we also saw that the intensity of turbulence was 
correlated with the compression of the gas in all 3 dimensions, which amplifies 
the vorticity and takes large-scale motions directly into smaller-scale ones by 
simple compression.  We also saw that expansion of the convection flow in local 
upwellings is correlated with diminishing turbulent intensity [33]. 

5. Correlation of the Action of a Turbulent Cascade with the Local Flow 
Topology. 
To see the relation between the rate of generation of subgrid-scale kinetic 

energy, which we write as  FSGS  below,  and the topology the larger-scale flow, 
we follow the classic Reynolds averaging approach.  We apply a Gaussian filter 
with a prescribed full width at half maximum, Lf , to our simulation data to 
arrive at a set of filtered, or “resolved,” variables and a set of “unresolved” state 
variables that fluctuate rapidly in space.  For any particular state variable, Q , 
we define the filtered (or “resolved”) value, Q , by 

2 2
1 1( ( )) ( ( ))3 3

1( ) ( ) /f fk x x k x xQ x e Q x d x e d x− − − −= ∫ ∫ , 

where the wavenumber of the filter, fk , is related to the full width at half 
maximum, Lf , by Lf = 1.6688/kf ,  and where the integral in the denominator is, 
of course, equal to  (2π)3/2/(2kf)

3.   The mass-weighted, or Favre, average of a 
state variable, Q , is denoted by Q .  Manipulating the Euler equations using 
these definitions in order to arrive at the time rate of change of the kinetic 
energy in a frame moving with the filtered flow velocity, we get: 
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Here  kSGS  is the subgrid-scale kinetic energy,  D/Dt  denotes the co-moving time 
derivative, and  τij  is the subgrid-scale stress (SGS) tensor,   

ij i j i ju u u uτ ρ ρ= −  

Using our simulation data we can establish the relative importance of the 
various terms grouped on the right in the above expression for the time rate of 
increase of subgrid-scale kinetic energy per unit mass in the co-moving frame.  
Preliminary analysis indicates that, statistically, the divergence terms tend to 
average out and that the first terms in brackets on the right, the  p DV  work 
terms, also tend to have little effect on the average.  However, the term   
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ij j iuτ− ∂    has systematic behavior that tends to make it dominant over space 
and over time.    We will refer to this term as the forward energy transfer to sub- 
grid scales, or  FSGS .   By analysis of several detailed data sets from PPM simu-
lations of turbulent flows, we have correlated this  FSGS  term to the topology of 

Lf = 34 ∆x 
t = 1.87 

Lf = 34 ∆x 
t = 1.18

Lf = 68 ∆x 
t = 1.18

Lf = 68 ∆x 
t = 1.87 

Lf = 136 ∆x 
t = 1.18

Lf = 136 ∆x 
t = 1.87 

Fig. 5.  Data from a PPM simulation of homogeneous, Mach 1, decaying turbulence on 

a grid of 2048³ cells [34] was used to evaluate the term  SGS ij j iF uτ=− ∂   at 2 differ-

ent times and using 3 different Gaussian filter widths.  SGSF  is plotted above as the 

abcissa, and the corresponding values of the model equation discussed in the text are 

plotted as the ordinate.  The two quantities are seen to be well correlated for this run.
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the filtered flow field, expressed in terms of the determinant of the deviatoric 
symmetric rate of strain tensor, given by: 

( ) 1 2
2 3

ji
D ijij

j i

uu
S u

x x
δ

⎛ ⎞∂∂ ⎟⎜ ⎟⎜= + − ∇ ⋅ ⎟⎜ ⎟⎟⎜ ∂ ∂⎝ ⎠
 

There is of course also a correlation with the divergence of this velocity field, so 
that a model for this forward energy transfer term results in the following form: 

( )2 detMODEL f D SGSFT AL S C k uρ= + ∇ ⋅  

This model equation is intended for use in a large eddy simulation in which the 
subgrid-scale kinetic energy, kSGS , is carried as an additional independent var-
iable, so that it is available for use in the second, compressional term above.  We 
find the best fits for the coefficients  A  and  C  in the model are: 

0.75A = − ,       0.90C = −  

The best fit coefficient for a term in the norm of the rate of strain tensor is zero. 
The results of the above set of coefficients are shown on the previous page for 

data from our 20483 PPM simulation at 2 times during the run and for 3 choices 
of the filter width (the model values are along the x-axes and the actual ones 
along the y-axes).  The fits are very good in all cases, so that we are encouraged 
to construct a subgrid-scale turbulence model using this model equation.  
Whether such a model can deliver improved simulation capabilities for our PPM 
code remains to be established. 

6. Visual Evidence for the Correlation of FSGS with det(S). 
The above correlation diagrams provide quantitative confirmation of ideas that 

occurred to us from visual explorations of many turbulent flows.  Their import-
ance depends upon our association of the term  SGS ij j iF uτ=− ∂   with a useful 
approximation to the actual transfer of turbulent kinetic energy from the larger 
to the smaller scales in the flow.  We therefore present below a few visual repre-
sentations of fairly thin slices through a selected region of our PPM simulation of 
decaying Mach 1 turbulence on a 20483 grid.  These provide qualitative, visual 
support for our identification of  SGS ij j iF uτ=− ∂   as a measure of the rate of 
turbulent kinetic energy transfer, and they also support the correlation of  FSGS  
with the determinant, ( )det S , of the local rate of strain tensor for the filtered 
velocity field.  Here we do not use the deviatoric tensor, since that becomes large 
in shocks.  In arriving at the quantitative correlations presented earlier, we 
sensed strong shocks in the flow and rejected results generated inside shock 
structures.  The results presented below have been generated from data that was 
blended over bricks of 43 cells.  Due to inadvertant erasure of the data from this 
large run by the San Diego Supercomputer Center in late 2003, a handful of such 
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blended data dumps is all the quantitative data that now remains (140 detailed 
dumps of the vorticity distributions, sent to our lab during the run, also remain), 
and we are therefore forced to use this reduced resolution data here. 

At each of 5 times – 0.30, 0.51, 0.71, 0.90, and 1.10 – we have plotted the 
magnitude of the vorticity, u∇× , generated from the averaged velocities in the 
bricks of 43 cells, in the upper left quadrant of our image panel.  This quantity 
allows easy visual recognition of regions where small-scale turbulence is devel-

Fig. 6a.  Data from a PPM simulation of homogeneous Mach 1 decaying turbulence on 

a grid of 2048³ cells [34], blended over bricks of 4³ (velocity components iu ) and 64³ 

cells (velocitiy components iu ), was used to create visualizations of u∇×  (upper 

left),  ( )2 2 2( ) ( ) ( ) /2x x y y z zu u u u u uρ − + − + −   (upper right),  det( )S  (lower 

left), and  u∇⋅  (lower right) in a thin slice of the flow at time  0.30  (see text).
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oping.  In the upper right quadrant of each image panel we show a different 
measure of small-scale turbulent kinetic energy, namely 

( )2 2 2 /2x y zPKE u u uρ ′ ′ ′= + +  

where the primes denote the difference between the velocity component  ui  
averaged over a brick of 43 cells and  iu ,  the average of this velocity component 
over a brick of 643 cells centered on the 43 brick.  This perturbed kinetic energy, 
PKE, is constructed so that smooth variations of  iu   do not contribute.   In the 
lower two quadrants of each image panel, we show  ( )det S   at the left and  

u∇⋅   at the right.  Here the divergence is constructed from the velocities,  ui ,  
averaged over the 43-cell bricks, so that it gives a good representation of the 
shocks in this flow.  The rate of strain tensor,  S ,  defined below, is constructed 

Fig. 6b.  Same as Fig. 6a, but at time  0.51 (see discussion in the text).
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from the velocities, iu , averaged over 5123 bricks of 643 cells each (that is, we use 
a moving average on 643 cells): 

( )/2ij i j j iS u u= ∂ +∂  

This plot of  ( )det S   gives us a good idea of where a turbulence model might 
suggest that energy is being transferred to motions on the smallest scales.  If such 
a suggestion were to be correct, we would expect to notice this turbulent energy 
appearing at a later time in the plots of  PKE  at the upper right in each panel.  
We would also expect to see the tangles of small vortex tubes characteristic of 
fully developed turbulence appearing in the corresponding plots of the magnitude 
of the vorticity at the upper left. 

Color versions of these figures can be found on the LCSE Web site, but even 
the black-and-white versions here are fairly easily interpreted, once we realize 

Fig. 6c.  Same as Fig. 6a, but at time  0.71 (see discussion in the text).
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that the positive values of the determinant  ( )det S   that are rendered as blue in 
the color plots show up as the whitest features in black and white.  Since the 
locations of shocks are determined during the standard PPM gas dynamics 
computation, it is an easy matter to set  ( )det S   to zero in those locations in an 
implementation of a turbulence model while keeping the term in FTMODEL  involv- 
ing the divergence of the filtered velocity active.  Recognizing that, to first order, 
the vorticity tends to be advected with the large-scale flow, we can see from the 
upper-left quadrants of Figure 6 that the flow in this slice of the volume involves 
a stream coming from the upper right and eventually traveling through to the 
lower left.  At time 0.30, in Fig. 6a, we see that our measure, PKE, of the 
turbulent kinetic energy is picking up false signals in strong shock fronts, which 
show up clearly in the plot of  u∇⋅ .  At this early time, there is no small-scale 

Fig. 6d.  Same as Fig. 6a, but at time  0.90 (see discussion in the text).
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turbulence in evidence in the vorticity plot, but we see that  ( )det S   is large and 
negative in the region between the two roughly parallel shock fronts, where the 
gas is being squeezed in the direction of shock propagation but where the flow is 
roughly divergence free.  In this same region, the shear causes a low-level, smooth 
feature to appear in the vorticity plot.  This is not turbulence, but a precursor to 
turbulence that is being signaled by large negative values of ( )det S .  The picture 
at time 0.51 is much more confused.  Several strong shocks are evident.  While 
the shearing region between the shocks at time 0.30 has now traveled into the 
middle of the picture, and its vorticity has intensified, there is still no small-scale 
turbulence.  The PKE plot again mainly picks up false signals from the shocks, 
but the strong feature in ( )det S  extending from the top middle to the center of 
the plot and then off to the right middle is located well behind the shocks.  This 

Fig. 6e.  Same as Fig. 6a, but at time  1.10 (see discussion in the text).
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feature, marking gas in which conditions are ripe for the development of small-
scale turbulence, is reflected in the vorticity plot, where a strong region of 
intensifying shear can clearly be discerned.  By time 0.71 shock features no longer 
dominate the PKE plot, because small-scale turbulent features are at last 
beginning to emerge.  The slip surface that is being driven downward and to the 
left by the stream of gas from the upper right is now very thin and is beginning 
to display a ribbed appearance from developing small-scale folds.  These give rise 
to the strongest features in the vorticity plot, the PKE plot, and in the plot of 

( )det S , but there are no corresponding features at all in the plot of u∇⋅ , so we 
can be assured that we are not observing effects caused directly by the compressi-
bility of the gas. 

From time 0.71 onward, the large-scale flow nearly stagnates in the region of 
the strongest vorticity features, near the head of the stream plunging from the 
upper right toward the lower left.  Clear evidence in the vorticity plot of small-
scale turbulence is seen along the edges of this plunging flow, and corresponding 
features unrelated to shocks stand out in the PKE plots.  The plots of ( )det S  
indicate energy transfer to turbulence in these regions, but they also identify 
regions, less noticeable in the vorticity plots, where small-scale turbulence is 
destined later to appear.  By time 1.10, several regions of positive  ( )det S   have 
appeared.  These are shown in blue in the color versions on the LCSE Web site, 
and they show up here as the whitest regions.  Unlike the situation at earlier 
times, many of these regions are not correlated with shock fronts.  It is natural to 
argue that the strength of the local shear in the filtered velocity field should be a 
good indicator of energy transfer to small-scale turbulence, and there is support 
for this view in the plots of Figure 6.  However, such arguments cannot locate 
regions where the energy transfer runs in the opposite direction, namely from 
small-scale to larger-scale motions.  This, we believe, is a major advantage of  

( )det S   as an indicator of turbulent energy tranfer. 

7. Summary. 
Together with many collaborators, we have used the high resolving power and 

low numerical viscosity of the PPM gas dynamics scheme to simulate homogen-
eous, compressible, decaying turbulence in great detail.  We have shown that 
such Euler simulations converge more rapidly to the high Reynolds number limit 
of viscous flows than do simulations based upon the Navier-Stokes equations.  
The simulations can provide high quality data for use in understanding turbu-
lence and in guiding the development of statistical models of turbulence.  In this 
respect, such simulations can play a role similar to experiments;  but, unlike 
experiments, they can produce hundreds of snap shots of the flow, with all the 
state variables sampled at billions of locations in each one.  Processing of this 
data is producing insights useful in the design of turbulence models. 
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