
Draft. Not for Distribution. 2/19/05

The PPM Compressible Gas Dynamics Scheme

Paul R. Woodward

University of Minnesota, LCSE

Feb. 19, 2005

1. Introduction.

The development of the PPM gas dynamics scheme grew out of earlier work in the mid 1970s with

Bram van Leer on the MUSCL scheme [1-3]. The work of Godunov [4] inspired essential aspects of

MUSCL. Features that I introduced into the MUSCL code – directional operator splitting and a

Lagrangian step followed by a remap – were inspired by my work with the BBC code [6] at Livermore.

These features of BBC were derived in turn from the work in the 1960s by DeBar on the KRAKEN code

[5]. At Livermore, in the late 1970s, the use of moments of the internal cell distributions, which makes

MUSCL resemble finite element schemes, was abandoned for reasons of compatibility with Livermore

production codes. In order to recapture the accuracy of MUSCL while using only cell averages as the

fundamental data, PPM, the Piecewise-Parabolic Method, was developed in collaboration with Phil

Colella [7-10]. Over the last 20 years, PPM has evolved considerably in order to address shortcomings of

the scheme as it was laid out in [9] and [10]. A complete description of the scheme has not appeared in

print, but descriptions on the LCSE Web site associated with the PPMLib subroutine library exist [24].

PPM has also been extended to MHD [11-16] in collaboration with Wenlong Dai, applied extensively to

the study of jets and supersonic shear layers [10,17-22] in collaboration with Karl-Heinz Winkler, Steve

Hodson, Norm Zabusky, Jeffrey Pedelty, and Gene Bassett, used to simulate flow around stationary and

moving objects [23] in collaboration with B. Kevin Edgar, applied extensively to convection and

turbulence problems [25-46] in collaboration with David Porter, Annick Pouquet, Igor Sytine, and the

Livermore ASCI turbulence team, and most recently extended to multifluid gas dynamics problems.

Implicit versions of the method have also been worked on [47-52] in collaboration with Bruce Fryxell and,

later, Wenlong Dai. A cell-based AMR version of PPM has been under development [see 53] in

collaboration with Dennis Dinge. A complete description of the PPM algorithm at the time of this

writing can also be found on the LCSE Web site [54]. Versions of the PPM gas dynamics scheme have

become incorporated into 3 community codes aimed at astrophysics applications: FLASH [refs], ENZO

[refs], and VH-1 [refs].

Because the several improvements and modifications to the 1984 or 1986 versions of PPM in the

literature have not been published, we here lay out the present scheme for simple, single-fluid, ideal gas

dynamics in some detail for those aspects that most directly affect simulation of turbulent flows. The

aspects of the scheme that allow it to accurately capture and follow shocks will not be described here, for

lack of space. For these aspects of the PPM algorithm, which are rather complex, the reader is referred

to the Web documents [refs], since this treatment has changed since the scheme was last described

completely in the literature.

Draft. Not for Distribution. 2/19/05

2

2. Design Constraints.

Before launching into a systematic description of the PPM algorithm, it is worthwhile to first

explain the goals and constraints that have influenced its design. These are:

1. Directional operator splitting.

2. Robustness for problems involving very strong shocks.

3. Contact discontinuity steepening.

4. Fundamental data in the form of cell averages only.

5. Minimal dissipation.

6. Numerical errors nevertheless dominated by dissipation, as opposed to dispersion.

7. Preservation of signals, if possible, even if their shapes are modified, so long as they travel at

roughly the right speeds.

8. Minimal degradation of accuracy as the Courant number decreases toward 0.

The first of these design constraints was to guarantee very high processing speeds on all CPU

designs. It has the side benefit of allowing the PPM scheme to employ complicated techniques to achieve

high accuracy that would be impractical in a truly multi-dimensional implementation, especially in 3D.

Accuracy is still limited in principle by the use of 1-D sweeps, but in practical problems errors produced

by the use of 1-D sweeps have rarely, if ever, appeared to be important. The demand that the scheme be

robust in the presence of very strong shocks has produced a general orientation that dissipation, in the

right places, times, and amounts is good rather than bad. Early experience with Glimm’s random choice

scheme for multidimensional compressible gas dynamics in the 1970s illustrated the error of letting the

formal dissipation of the scheme vanish in smooth flow when the simulated flow contains shocks. In low-

speed turbulent flows, the need for dissipation in the numerical scheme is less obvious but no less real.

Nevertheless, a design goal has always been to minimize the dissipation consistent with an accurate

solution. The treatment of contact discontinuities involves a steepening algorithm that has an anti-

diffusion effect. This contact discontinuity steepening is included in PPM in order to allow multifluid

problems to be treated simply through the addition of passively advected constitutive properties, such as

the constants of an analytic representation of the equation of state. This steepening of contact discontin-

uities and the action of monotonicity constraints together serve to preserve signals that can be moved

across the grid accurately, even though this sometimes requires a falsification of the signal shape. Such

preserved but falsified signals travel at the fluid velocity, since very short wavelength sound waves, with

the exception of shocks, are difficult to propagate at the right speeds. In PPM we take the view that

signals that cannot be propagated at the right speeds are best dissipated. This view has led to an

intolerance in PPM for sound signals with very short wavelengths, such as, for example, 4 cell widths.

The final design goal on the above list, that the accuracy of the scheme should be maintained in the limit

of very many very small time steps, is achieved by increasing the formal order of the interpolation

discussed below as the edge of a grid cell is approached.

Draft. Not for Distribution. 2/19/05

3

The attitude that has been taken in the PPM design toward numerical dissipation is the most

relevant of the above goals and constraints for the use of PPM in simulating turbulent flows. We will

therefore describe in this paper the two portions of the PPM algorithm that most directly address

numerical dissipation – the interpolation scheme used in PPM and the manner in which it is applied to

constructing a picture of the structure of the flow within a grid cell. The remainder of the scheme that

will not be described here – the approximate Riemann solver used in PPM, the construction of fluxes of

conserved quantities at grid cell interfaces in Eulerian coordinates, the application of the conservation

laws, and the application of a smart diffusion at shocks, and only at shocks – has much less impact on

PPM’s numerical treatment of turbulence. So far as these other aspects of the scheme are concerned, it

should suffice to point out that shocks are thin and obey the conservation laws that determine both their

jumps and their propagation speeds and also to point out that these conservation laws assure that the

numerical dissipation of turbulent kinetic energy by the PPM scheme results in the appropriate amount of

heat being deposited locally, where the dissipation occurs.

3. PPM Interpolation.

The heart of any numerical scheme is its approach to interpolation. PPM utilizes the cell averages

of various quantities in a fairly broad stencil surrounding a cell in 3D in order to construct a picture of

the internal structure of the cell. Because the equations of hydrodynamics are coupled, the PPM

interpolation of the relevant quantities is also coupled. However, to see how the interpolation process

works, it is easiest to consider it first for the simple case of a single variable, which we will represent by

the symbol a . We will represent the cell averages of a by ia . We write the value of a at the

left- and right-hand interfaces of the cells as ,L ia and ,R ia . We will determine the coefficients of a

parabola 2
0 1 2()a x a a x a x= + + representing the distribution of the variable a within the cell in terms

of a cell-centered local coordinate ()/Mx x x x= − ∆ . Here Mx is the cell center and x∆ is the cell

width. For simplicity, we first assume a uniform grid. (In modern AMR codes, interpolation on non-

uniform grids is unnecessary.) Our first task is to determine whether or not the function ()a x is smooth

in the region near our grid cell. To do this, we will essentially compare the first and third derivatives of

the function in our cell. This process can be formulated in several different ways, all of which boil down

to essentially the same criterion. We begin by determining the unique parabola that has the prescribed

cell averages in our cell of interest and its two nearest neighbors.

If we write

1i iL ia a a −∆ = −

then we have

()1 2/2 ; ()/2L R R La a a a a a= ∆ +∆ = ∆ −∆

Here we have dropped the subscript i by writing Ra∆ for , 1L ia +∆ . Where possible, we will try to

eliminate confusing subscripts by such devices. However, all our subscript indices will refer to cells, and

Draft. Not for Distribution. 2/19/05

4

none to interfaces (no half-indices will be used). If no subscript index is given, the subscript i for our

cell of interest will always be implied. In PPM, interpolated variables are discontinuous at interfaces,

which makes the use of index subscripts such as 1/2i + ambiguous. Thus, ,R ia , or simply Ra , is not

equivalent to , 1L ia + .

We will consider a function to be smooth near our grid cell if the above unique parabola, when

extrapolated to the next nearest neighbor cells, gives a reasonable approximation to the behavior of the

function there. This will not be true, of course, if the third derivative of the function is sufficiently large.

We will consider the function to be smooth in our cell of interest if the parabola in its neighbor on the

left, when extrapolated into our cell’s neighbor on the right gives an accurate estimate of that cell’s

average, and if also that cell’s parabola gives a good estimate of the average in our cell’s neighbor on the

left. Writing the average of the extrapolated parabola in the neighbor cell as
1i i

a
±

 and in the next

nearest neighbor cell as
2i i

a
±

, we find that

1 11 2, 1 2 1 2 2, 11 1
2 () ; 2 ()i ii i i ii i

a a a a a a a a+ −− − + ++ −
− = − − = −

Here we have used the fact that, by construction of these parabolae, 11 ii i
a a ±±

= . We denote the

fractional error in this extrapolation by errf , given by

() () () (){ }2, 1 2 2 2, 1max / (, , / (,err i R R i L Lf a a a sign a a a a sign aα α+ −= − ∆ + ∆ − ∆ + ∆

Here sign is the Fortran sign transfer function, which applies the sign of its second argument to the

absolute value of its first argument. We also denote a trivial value of the quantity a by α . Thus the

term with the sign function is simply used to protect the divide operation in a Fortran program. Of

course, we ignore this error estimate when the slope of the function is very small, since in that case it is of

no consequence whether we get a “good” extrapolation or not. To get some perspective on this measure,

errf , of the smoothness of the function a on our grid, it is instructive to evaluate errf for sine waves of

wavelengths n x∆ . For the case where () sin(2 /())a x x n xπ= ∆ , we have 0a s a= , where 0a

is the value at the center of the cell and (2/) sin(/2)s x x= ∆ ∆ . The higher-order coefficients of the

interpolation parabola are given by 1 sin() cos(2 /())Ma s x x n xπ= ∆ ∆ , where Mx is the coordinate of

the cell center, and by 2 0(cos() 1)a s x a= ∆ − . We therefore find that for values of n ranging from

4 to 15, our fractional error, equal simply to 1 cos()x− ∆ , assumes the values: 1.00, 0.69, 0.50, 0.38,

0.29, 0.23, 0.19, 0.16, 0.13, 0.11, 0.10, and 0.09. If we assert that a sine wave over 14 cells is smooth and

one over 10 cells is not, then we may conclude that it is reasonable to assert that a function is smooth if

0.10errf ≤ and it is not smooth if 0.20errf ≥ . In between these two values, we may treat the function

as partially smooth, by taking a linear combination of a smooth and an unsmooth interpolation parabola.

The choice of which functions we will treat as smooth and which not comes from experience. Using only

cell averages, it takes five cell values to determine, for example, whether one is really in a shock or not or,

as we have just seen, whether the function is locally smooth or not. Under such conditions, it is simply

unreasonable to believe that one can properly treat a sine wave with a wavelength of only 6 cells. There

Draft. Not for Distribution. 2/19/05

5

are those in the community who believe this can be done, but PPM assumes this is impossible without

further independent information provided upon which the numerical scheme can operate. Experience also

shows that numerical noise, which can originate from a number of sources, tends to show up principally at

wavelengths between 4 and 8 cells. Signals that appear at these wavelengths are thus quite possibly

noise, and therefore deserve to be treated as if they might actually be noise. PPM takes the view that a

little noise is not bad, but too much is intolerable. This view is motivated by much experience indicating

that nearly total elimination of noise is usually accompanied by partial collateral elimination of the signal.

In PPM, we interpolate several different functions. Some of them, like the Riemann invariants, are

defined only as differences (the Riemann invariants are defined by inexact differentials). Other functions,

like the transverse velocities, are defined by cell averages. Some may have sharp transitions, associated

with contact discontinuities, that deserve special treatment. Below, we describe the most general

algorithm, for the special case of a uniform grid. This is the algorithm that PPM uses to interpolate a

sub-grid structure for the Riemann invariant associated with the entropy, for which the differential form

is given by

2/dA d dp cρ= −

From this most complicated interpolation algorithm, all other, simpler forms used in PPM can be derived

as special cases. We will therefore describe the interpolation for the entropy Riemann invariant in detail,

and later briefly note in which respects the other interpolations are degenerate cases of this one.

We begin the interpolation of dA by defining a variable A derived from it by determining the

arbitrary constant of integration such that the cell average of A vanishes. Thus each cell has its own

local scaling for A in which the cell average vanishes but the derivatives are correct. This local scaling

is much like the local, cell-centered coordinate, x , that we use to define the interpolation parabola in a

cell. There is a discontinuous jump in the integration constant when we go from one cell to its neighbor.

This jump is

() ()2 2
11/ /L L L L LiiA p c p p cρ ρ ρ −−∆ = ∆ − ∆ = − − −

For the gamma-law equation of state, we estimate 2
Lc via

() 12 2 2
1

1

1 1
2 2

i
iL

i

p p
c c c

γ γ

ρ ρ
−

−

−

⎡ ⎤
⎢ ⎥= + = +⎢ ⎥
⎢ ⎥⎣ ⎦

Here we see a common practice used in PPM, namely the evaluation of an estimate of the cell average of

a function of primitive fluid state variables as the function of the cell averages. Experience shows that

attempts to do better than this are usually unrewarded by compensating increases in simulation accuracy.

In the specific case of the kinetic energy, PPM does do a better job, but the effect on the flow accuracy is

only marginal in this case, and the cost is not insignificant.

Using the above definitions, we evaluate a fractional error estimate as follows:

Draft. Not for Distribution. 2/19/05

6

, 2 , 12 21
2

L i R L R L L i

err
L R

A A A A A A
f

A A dα
+ −∆ − ∆ +∆ + ∆ − ∆ +∆

=
∆ + ∆ +

Here dα represents a trivial Riemann invariant difference that is used to protect the divide in the

Fortran program. We note that this error estimate is very similar to but not exactly the same as the one

discussed earlier. Using this error estimate, we construct a measure, Ω , varying between 0 and 1, of the

roughness of the function near this grid cell as follows:

(){ }{ }min 1, max 0, 10 0.1errfΩ = −

We now construct estimates 1sA and 1mA of the first-order parabola coefficient, which gives the change

of the variable across the cell. The first, 1sA , applies to the parabola that has the 3 prescribed average

values in this and the nearest neighbor cells. The second, 1mA , applies to this parabola after the

application of a monotonicity constraint. These quantities will be used in constructing further quantities

below. We have already seen that ()1 /2s L RA A A= ∆ +∆ . Defining a sign variable, s , of absolute

value unity to have the sign of 1sA , we may then compute 1mA in the following sequence of steps:

{ }1 2 min ,m L RA s A s A= ∆ ∆ , { }{ }1 1 1max 0, min ,m s mA s s A A=

()1 1 11m s mA A A= Ω + −Ω

(The superiority of Fortran over mathematical notation for the description of numerical algorithms is here

becoming apparent.) We now define two estimates, sLA and mLA , of the value at the left-hand cell

interface. The first of these, sLA , corresponds to an unconstrained interpolation polynomial, while mLA

corresponds to one that is constrained.

()1, 1 1

1 1
6 2sL s i s LA A A A−= − − ∆ , ()1, 1 1

1 1
6 2mL m i m LA A A A−= − − ∆

We note that these interface value estimates involve the cell averages in two cells on either side of the

interface. The unconstrained estimate is the value of the unique cubic curve that has the prescribed

average values in these 4 cells. The constrained value is guaranteed to lie within the range defined by the

cell averages adjacent to the interface. Of course, both these values refer to the choice of integration

constant that gives a vanishing cell average to the right of this interface (in the cell of interest, i). We

desire a linear combination of these two interface value estimates, which we will regard as a provisional

estimate (1)pL sL mLA A A= −Ω + Ω . Rather than build this value pLA by blending the unconstrained

and constrained estimates, we find it more useful to build blended parabola coefficients,

1 1 1(1)p s mA A A= −Ω + Ω , and to form pLA from these. This procedure allows us to make use of the

coefficients 1pA later in our contact discontinuity detection and steepening algorithm. We now proceed

to modify our provisional interface values pLA in cells where the function is not smooth. First, we set

our interpolation function to a constant in cells where extrema occur, unless of course the function is

smooth there. Thus, if 0pL pRA A ≥ , we set new provisional values, indicated by a subscript q , as

Draft. Not for Distribution. 2/19/05

7

follows: (1)qL pLA A= −Ω , (1)qR pRA A= −Ω . Otherwise we simply set qL pLA A= and qL pLA A= .

Now, in cells where the function is not smooth, we constrain the internal structure to be monotone. We

must make sure in this process not to revise the cell structure further in the cells containing extrema. We

therefore construct limiting values, lLA and lRA , which we must be careful to set to 0 in cells

containing extrema. In the remaining cells, these values are: 2lL pRA A=− and 2lR pLA A=− . This

reflects the fact that a parabola having zero slope at one side of the cell will assume at the opposite

interface the negative of twice this value, so long as the cell average is zero. If these limiting values are

exceeded in cells where the function is not smooth, we must reset them to these limits. Therefore we

construct new, but still provisional, values rLA and rRA (in Fortran, of course, no new names are

required), which reflect this additional constraint:

() () 0 , (1) ,qR qL qL lL rL qL lL rL qLif A A A A then A A A otherwise A A− − < = −Ω + Ω =

() () 0 , (1) ,qR qL lR qR rR qR lR rR qRif A A A A then A A A otherwise A A− − < = −Ω + Ω =

From these provisional interface values, we construct provisional interpolation parabola coefficients:

()1 2 0 2, 3 , /12r rR rL r rL rR r rA A A A A A A A= − = + = −

For interpolation of sound-wave Riemann invariant differences, for which we do no contact discontinuity

steepening, the above values are our final results. However, for the entropy Riemann invariant

differences, we continue as described below. We also note that for interpolation of a variable, such as the

transverse velocity component, which is not expressed as a differential form, we may first construct

differences of the cell averages and then proceed as outlined above.

We wish to detect cells that are inside sharp jumps in the entropy Riemann invariant that are

associated with contact discontinuities. In such cells, it is inappropriate to try to fit smooth curves to

determine the subgrid structure, since it is actually discontinuous (PPM is solving the Euler equations).

For the purpose of computation, we will nevertheless require that the distribution inside the grid cell be a

parabola; however, we may use the knowledge that the actual structure is discontinuous to construct an

appropriate choice for this parabola. The idea here is quite simple. We build a test that detects cells

that are within contact discontinuity structures. Then we obtain estimates of the interface values for

such cells by extrapolating to the cell interfaces presumably smoother structures from outside the cell and

hence, hopefully, from outside the discontinuity. Together with the prescribed cell averages, these more

appropriate cell interface values allow us to build an improved, steeper parabola to describe the

distribution within the cell. Obviously, the function in such cells is not smooth, so we apply monotonicity

constraints to the new edge values and also to this improved parabola. This procedure works very well in

practice. A similar procedure can be adapted for use with other numerical schemes that employ linear

interpolation functions for the cell structures, but it is less effective. Apparently, the curvature provided

by the use of parabolae allows the dimensionless constants that will be introduced below to make the

steepening process effective for contact discontinuities without requiring that the steepening process be

Draft. Not for Distribution. 2/19/05

8

applied for marginal cases, which can occasionally turn out not to actually be contact discontinuities.

That is, using parabolae we are able to apply the steepening process only in unequivocal circumstances

and thus to avoid steepening structures by mistake that should not actually be steepened.

We begin, as with our test for function smoothness, with a measurement of the size of the third

derivative of the function relative to its first derivative. Reusing the symbol s for a different sign

variable, we build a steepness measure S in a sequence of steps as follows:

() ()1 1 1/ 10sR sL s sS A A A A s dα= − − +

Here s has absolute value unity and has the same sign as 1sA in order to protect the divide without

altering the sign of the overall expression. As before, dα is a trivial Riemann invariant difference. We

must take care to realize that the numerator in this expression is not necessarily zero, since the edge

values that appear there come from cubic curves rather than the parabolae that define the 1sA values.

We must also take care to realize that because each cell has its own value of the integration constant for

this Riemann invariant’s differential form, we must set , 1sR sL i RA A A+= +∆ . With those cautions, we

see that this expression for 1S is very similar to our measure of the lack of function smoothness, except

that no absolute value signs appear in it. The first expression in the numerator for the variable difference

across the cell involves cubic interpolation, which accounts for the third derivative of the function. From

this we subtract 1sA , which removes the part that is due to the first 2 function derivatives. To obtain

1S , we divide by an estimate of the first derivative. The lack of absolute value operations in this

formula for 1S is caused by our desire to detect sharp jumps in the function, and to reject sudden flat

spots. Flat spots will correspond to negative values of 1S . We now scale 1S and limit it to the range

from 0 to 1:

(){ }{ }2 1max 0, min 1, 20 0.05S S= −

To guard against applying our contact discontinuity steepening anywhere but at true sharp jumps in the

entropy, we reset 2S to zero where the second derivative of the function does not change sign and also

where the amplitude of the jump is not sufficient to warrant this special treatment (we do not want to

preserve, or worse, to amplify small numerical glitches). Thus:

2, 1 2, 1 3 3 20, 0,s i s iif A A then S otherwise S S− + ≥ = =

Here we use the earlier definition of the coefficients of the parabola that has the prescribed 3 cell

averages, writing ()2 /2s R LA A A= ∆ −∆ . To eliminate trivial jumps from consideration, we form 4S :

4 4 3, 0,L Rif A A d then S otherwise S Sα∆ + ∆ < = =

Before proceeding with the steepening algorithm, we make one further test to make certain that

steepening is appropriate. This test makes sense for contact discontinuities, but for other variables, such

as a fractional volume of a second fluid, it might not. Therefore this last test is optional, but we do use it

for the entropy. The calling program to the interpolation routine provides two variable differences along

Draft. Not for Distribution. 2/19/05

9

with the differences LA∆ . If the jump is one of the type we seek to detect, the differences B∆ will be

very small compared with the differences D∆ . Both these sets of differences are cell centered and have

the same units. We enforce this demand by constructing our final steepness measure, S , as follows:

40 / 0.1, 0,if D or B D then S otherwise S S∆ = ∆ ∆ ≥ = =

In previous versions of PPM, the B∆ were pressure differences and the D∆ were estimates of 2c ρ∆ ,

while the density was the quantity being interpolated with potential contact discontinuity steepening.

We still perform this additional test, although it is somewhat redundant when interpolating the entropy

Riemann invariant, for which the differential form is just 2/A p cρ∆ = ∆ −∆ .

With our contact discontinuity detection process complete, and all cells inside such structures

marked by S , varying from 0 to 1, we are at last ready to begin the steepening operation. Much

earlier, we computed constrained variable differences 1mA across the cells. In principle, these variable

differences could be only partially constrained, but it is safe to assume that if our cell is in a contact

discontinuity, the parameter Ω that measured the function roughness assumes the value unity in this

and the neighboring cells. We define cell interface values, cLA and cRA , appropriate for a contact

discontinuity structure by extrapolating the constrained slopes of the function in neighboring cells to the

interfaces of our cell of interest: 1, 1 /2cL L m iA A A −= −∆ + and 1, 1 /2cR R m iA A A += ∆ − . We

then construct our nearly final estimates for the interface values as:

(1)tL rL cLA S A S A= − + , (1)tR rR cRA S A S A= − +

We must once again apply the constraints on the implied parabola and then compute the coefficients of

that parabola, just as before (however, hardly any cells are steepened, and hence this extra work occurs in

a scalar loop for only these cells, which incurs hardly any additional computational cost). These

operations will not be repeated here. They are just like those we performed to arrive at first qLA and

then rLA beginning with pLA .

It is worthwhile to note the ways in which the above interpolation algorithm addresses the

previously listed design constraints for PPM. Some of the points are obvious, but others are less so. In

particular, it is not obvious that dissipation errors will dominate dispersion errors, although this is in fact

the case. The reason for this is the action of the monotonicity constraints on all short wavelength

disturbances, which always fail our test for function smoothness. The monotonicity constraints are

nonlinear, in that they alter the shape of a sine wave by introducing higher frequency components

through effects such as the clipping of extrema. Their overall effect is strongly dissipative for very short

wavelength signals, which of course are the ones for which the numerical scheme would otherwise

introduce significant dispersion errors. This dominance of dissipation over dispersion error as a design

goal may seem incompatible with the goal of minimal dissipation. Our task is to deliver as little

dissipation as possible while still having dissipation overwhelm dispersion. PPM’s use of parabolae rather

than the more commonly used linear interpolation functions is meant to address this design goal. The use

of cubic interpolation functions to help define these parabolae through interpolation of cell interface

Draft. Not for Distribution. 2/19/05

10

values reduces dissipation errors still further, since not all parabolae provide equally good fits. However,

even more importantly this use of cubic interpolation in PPM preserves the accuracy of the scheme in the

limit of vanishing Courant number. Since, as is common practice, we will determine a single time step

value for the entire grid based upon Courant number limitations for the single most demanding cell, the

bulk of the cells we update will have very small Courant numbers. When AMR is added to the scheme,

the Courant numbers used for the bulk of the cells are likely to become even smaller. Therefore it is very

important for the accuracy of the calculation to hold up in this limit. The use of cubic interpolation of

cell interface values is our way of addressing this issue in PPM. Over many years of applying PPM to a

wide variety of flow problems, very little Courant number sensitivity has ever appeared.

The monotonicity constraints and contact discontinuity detection and steepening algorithms

incorporated in PPM have important consequences for the propagation of barely resolved or effectively

unresolved signals. Our design goal is to preserve these signals, so long as we can propagate them at

roughly the proper speeds, rather than to destroy them through numerical diffusion processes. The

monotonicity constraints and, to a far greater degree, the contact discontinuity steepening in PPM have

this effect. They act upon passively advected signals, such as entropy variations, that can easily be

propagated at the correct speeds. They apply an artificial compression along with their other effects, such

as maintaining positivity where appropriate. This tends to maintain signal amplitude while altering

signal shape when the signal is not adequately resolved. As the description of the contact discontinuity

detection algorithm shows, we take great care to apply the steepening method only where appropriate,

since some small signals, better described as numerical glitches of various types and causes, deserve to be

dissipated.

4. Using the Interpolation Operators to Build a Subgrid-Scale Model for a Cell.

The above interpolation process is quite elaborate. Nevertheless, it is not the entire story of PPM

interpolation. As we remarked earlier, the equations of gas dynamics are coupled, and therefore the PPM

interpolations of the fluid state variables are also coupled. The goal is to come up with a complete and

consistent picture of the internal structure of a grid cell – that is, to come up with a subgrid-scale model.

This is not a turbulence model, but it is a subgrid-scale model. This model must satisfy, for

consistency, certain primary constraints. First, the integrated mass, momenta, and total energy must be

consistent with the prescribed cell averages of these quantities. This reflects the need for the numerical

scheme to be in strict conservation form in order to correctly capture and propagate shocks. PPM

regards the fundamental cell averages on which it operates to be the cell averages of density and pressure

(both volume-weighted) and those of the 3 velocity components (all mass-weighted). From these, PPM

defines the mass, momenta, and total energy of a cell to be: m xρ∆ = ∆ , xu m∆ , yu m∆ ,

zu m∆ , and ()22 21
1 2 x y z

p
x u u u m

γ
∆ + + + ∆

−
 . Here we do not bother to include the cell

widths in the transverse directions, y∆ and z∆ , because they cancel out of all our equations for the

x-pass. The last expression, for the cell’s total energy, is misleading. At the beginning of the grid cell

Draft. Not for Distribution. 2/19/05

11

update for a 1-D pass, we compute the total energy of the cell in just this way. However, once we have

done this, we make a more accurate estimate of the cell’s kinetic energy and then revise its thermal

energy, keeping this total constant. We do this by using nearest neighbor cells to compute cell-centered

slope estimates for all 3 velocity components. We then apply the standard monotonicity constraints to

these slopes. All these computations are similar to the following steps, for the slope of yu in the z

direction:

()1 1

1
2z y y yk k

u u u
+ −

∆ = − , () () (){ }1 1max
2 min ,z y y y y yk k

u s u u s u u
+ −

∆ = − −

(){ }{ }
max

max 0, min ,mz y z y z yu s s u u∆ = ∆ ∆

Here s has absolute value unity and the same sign as z yu∆ . We now estimate the cell’s average

kinetic energy to be given by

() () ()

() () ()

() () ()

2 2 22

2 2 22

2 2 22

1
2

12
1
12
1
12

kin x mx x my x mz x

y mx y my y mz y

z mx z my z mz z

E u u u u

u u u u

u u u u

⎡ ⎤= + ∆ + ∆ + ∆⎢ ⎥
⎣ ⎦

⎡ ⎤+ + ∆ + ∆ + ∆⎢ ⎥
⎣ ⎦
⎡ ⎤+ + ∆ + ∆ + ∆⎢ ⎥
⎣ ⎦

This process captures the first correction to the average kinetic energy that arises from the internal

structure of the velocity within the grid cell. The method would still be second-order accurate without

this correction, but this correction proves to be of some marginal value (relative to its implementation

cost) in flows involving strong shear layers. Terms of this sort make up part of some turbulence closure

models, although one might argue that this is inappropriate, since they have nothing specifically to do

with turbulence. In PPM we must compute estimates for cell averages of several other quantities, and

including terms like these for all those computations would roughly double the cost of the scheme. This

has been tried, and little noticeable benefit is delivered in practical problems. Therefore only these

velocity terms are included in PPM. One can see why these terms are important as follows. The velocity

slopes can be very large in a cell, because shear layers that are stretching due to the local flow or due to

their own instability naturally become ever thinner. The contribution to the kinetic energy from the

velocity slope terms can therefore be significant, and can thus have a significant effect upon the pressure

(since the total energy is prescribed), and hence upon the dynamics. Nevertheless, this effect upon the

dynamics is strongly localized, so that omitting the terms, as was done in PPM for many years, only

tends to increase by roughly 50% the numerical friction in thin, strong (roughly sonic or supersonic) shear

layers.

In order to propagate signals, we need to interpolate their subgrid structures. We therefore apply

the previously described interpolation algorithm to the 5 Riemann invariants of the Euler equations for 3-

D compressible flow. For the two transverse components of the velocity, yu and zu , which are

advected passively with the fluid velocity in the x-pass, we form differences and then apply the

Draft. Not for Distribution. 2/19/05

12

interpolation scheme described above. We do no contact discontinuity detection or steepening for these

variables, even though they may in fact jump at such discontinuities. We have already discussed in detail

the treatment for the entropy Riemann invariant. The sound wave Riemann invariants, which we denote

by R± , are defined by the following differential forms and their corresponding numerical

approximations:

x

dp
dR du

C± = ± () ()111
2 /L

L xL x x iii
L

p
R u u u p p C C

C± −−−

∆
∆ = ∆ ± = − ± − +

Here we introduce the Lagrangian sound speed C cρ= , and we approximate its cell average as

C c pρ γ ρ= = . The pressure, of course, is p , and only the x-component of velocity

appears because we are describing the x-pass of the directionally split PPM algorithm. It is disturbances

in R+ that propagate to the right at speed xs u c+ = + and disturbances in R− that propagate to

the left at speed xs u c− = − . We interpolate parabolae to describe the structure of these sound wave

signals in the grid cells, using LR±∆ in place of LA∆ in the algorithm previously described, and of

course performing no contact discontinuity detection or steepening. Performing interpolations for the

Riemann invariants attempts to uncouple the gas dynamic equations as much as possible. However, we

will not work in terms of these variables directly. Instead, we will immediately go about constructing

interpolation parabolae for the primary fluid state variables – the density, pressure, and 3 components of

velocity – in a manner that attempts to achieve as much consistency as possible with the interpolated

structures of the Riemann invariant signals. To perform our hydrodynamical cell update, we will require

internal cell structures for all these variables as well as the total energy. Any choice of structures for 5

variables will imply structures for all the others, but those implied structures may not satisfy reasonable

constraints, such as monotonicity or positivity when appropriate. PPM attempts to achieve consistency

between interpolated and implied structures by first interpolating constrained parabolae for the Riemann

invariant signals, constructing the implied parabolae for the primary state variables, and then

constraining those implied parabolae where appropriate. In a sense this is an attempt to “have it both

ways,” which is of course impossible. However, experience has shown that the extra labor involved in this

process delivers additional accuracy and robustness of a value worthy of its computational and

programming cost.

From the interpolated parabolae for the sound wave Riemann invariants, we may compute the cell

interface values of the pressure and x-velocity as follows:

()/2L L L Lp p C R R+ −= + − , ()/2R R R Rp p C R R+ −= + −

()/2xL x L Lu u R R+ −= + + , ()/2xR x R Ru u R R+ −= + +

We also compute a measure, Ω , of the lack of smoothness of the associated functions as the maximum

of the values found for the two sound wave Riemann invariants separately during the process of their

interpolation: { }max ,R R+ −
Ω = Ω Ω . We will use this measure Ω to control the application of

constraints to our interpolation parabolae for p and xu . We first apply monotonicity constraints,

Draft. Not for Distribution. 2/19/05

13

controlled by Ω , to the cell interface pressures and x-velocities obtained above. When 1Ω = , we

demand that the interface values lie within the ranges defined by the averages in adjacent cells. We then,

again when 1Ω = , demand that the parabolae defined by these constrained interface values and the cell

averages are monotone. These constraints are essentially the same as those described earlier for the

interpolation of the entropy Riemann invariant, and hence they will not be stated in detail here. Once

the interpolation parabola for the pressure has been so derfined, we may use the interpolated interface

values for the entropy to determine interface values for the density. Using the maximum of the Ω

measures for the pressure and for the entropy, we may then constrain the interface densities and

ultimately the parabolae that they and the cell averages define.

At the end of this lengthy process, we have interpolation parabolae defined for the density, pressure,

and all 3 velocity components. The formulae presented assume uniform cell sizes, although more general

formulae are easily derived and were presented in the description of PPM in [9]. We can think of these

interpolations as occurring in a cell number variable, so that they are valid, although potentially

somewhat less accurate, even if the cell size is smoothly varying. Nevertheless, we must take care in

interpreting these parabolae. Some of the variables described by them, such as the velocity components,

must be considered to vary according to mass fraction across each cell, since the (mass-weighted) cell

average is associated directly with the conserved cell momentum. For the velocities, therefore, we take

the interpolation variable x within the cell to have its origin at the center of mass and to describe

fractions of the cell mass rather than of the cell volume. For the pressure or the density, whose volume

integrals are directly associated with the mass and internal energy, we must interpret x as having its

origin at the center of the cell in a volume coordinate and to describe volume fractions within the cell.

Our use of the uniform grid formulae therefore reflects an assumption that all interpolated quantities are

smoothly varying in a cell fraction variable, be it a volume or a mass fraction. We know this assumption

to be false at contact discontinuities and slip surfaces (for some of the variables) and at shocks, but we

have augmented our interpolation procedure to deal with these discontinuities. The interpolation is

therefore valid, so long as we interpret it properly.

The process described above has enabled us to construct a subgrid-scale model for each cell. Since

each fluid state variable varies as a simple parabola inside a cell, this subgrid-scale model cannot possibly

describe subgrid-scale turbulent motions. To perform that function, the model would have to be

augmented by the addition of one or more new state variables, such as a subgrid-scale turbulent kinetic

energy variable, which could also be given an interpolation parabola within the cell. Nevertheless, our

demand that the structure of a velocity component within a cell be no more complicated than a parabola,

and our constraints on that parabola, provide a powerful mechanism to dissipate kinetic energy of small-

scale motions unresolvable or marginally resolvable on our grid into heat. This is one of the important

functions of turbulence closure models, especially when incorporated into difference schemes that lack any

other method to accomplish this very necessary dissipation. In this respect, turbulence models can be

used to stabilize otherwise nonlinearly unstable numerical schemes, a role that has nothing to do with

turbulence itself and that confuses the purpose and function of a turbulence model. As we will see later,

Draft. Not for Distribution. 2/19/05

14

with PPM we may compute turbulent flow directly from the Euler equations that govern it, and we

accomplish the dissipation of small-scale motions through the truncation errors of our numerical scheme

rather than from differencing an explicit viscous diffusion term. We take the view that the details of this

dissipation are unimportant so long as kinetic energy turning up on the smallest possible scales in our

computation is dissipated into heat with no unphysical side effects. We presume that in a far more

expensive and careful simulation of all relevant physics, this same kinetic energy would be dissipated in

any event, and the same amount of heat generated (since total energy is conserved), but the (hopefully

unimportant) details on tiny length and time scales would differ. The assumption here is that the kinetic

energy that appears on scales where the numerical dissipation comes into play has arrived there due to a

physical process, such as a turbulent cascade, that is correctly simulated in our calculation based on the

Euler equations because it has nothing to do with the molecular viscosity which has been omitted in

deriving the Euler equations from the more general Navier-Stokes equations.

5. Summary.

We have given a complete description of the PPM interpolation scheme. This is the part of the

PPM scheme that is most important in determining the fashion in which PPM simulates low-speed

turbulent flows. Due to the complexity of PPM and the limitations of space, we have chosen a complete

description of part of this scheme over a partial description of all of it. We have presented no simple

examples of the accuracy the scheme delivers in practice, although such examples can be found in the

references below. The reader can, however, go to the LCSE Web site at www.lcse.umn.edu, download a

Windows application that runs PPM in simple situations, consult the user guide, and run test problems of

various classic types for him- or herself. At this same Web site, a complete description of the PPM

scheme can be found [54]. PPM achieves its robustness and accuracy through complexity, and this has its

cost. From the above description, that cost might not be clear. On a difficult flow problem involving

many strong shocks, on the average each cell update for a 1-D pass involves 921 flops and 249

vectorizable logical operations (which do not count as flops). This work is performed at a speed of 1255

Mflop/s on a 1.7 GHz Intel Pentium-M CPU working from its cache memory in a laptop machine. This

laptop performance degrades to 954 Mflop/s for a full 1283 3-D grid brick update, so that full 1283 test

runs can be performed overnight at a hotel. These speeds are for 32-bit arithmetic, which is all that PPM

ever requires. On a 3.2 GHz Intel Pentium-4 CPU, these 32-bit rates become 1607 Mflop/s and 1273

Mflop/s, respectively, while the corresponding rates for 64-bit arithmetic, which is unnecessary but

quoted for comparison purposes with other applications, are 1132 Mflop/s and 938 Mflop/s, respect-

ively. PPM performance has scaled essentially linearly on every multiprocessing machine on which the

code has ever been implemented, including ASCI machines at DoE labs with over 6000 CPUs [55,56,45].

6. References.

1. van Leer, B., J. Comput. Phys., 23, 276 (1977).

2. van Leer, B., J. Comput. Phys., 32, 101 (1979).

Draft. Not for Distribution. 2/19/05

15

3. van Leer, B., and P. R. Woodward, Proc. Internat. Conf. Comput. Meth. Nonlinear Mech.,

edited by J. T. Oden (Amsterdam:North-Holland), p. 234.

4. Godunov, S. K., Nat. Sb., 47, 271 (1959).

5. DeBar, R., “Fundamentals of the KRAKEN Code,” Lawrence Livermore National Laboratory

Report UCIR-760 (1974).

6. Sutcliffe, W. G., “BBC Hydrodynamics,” Lawrence Livermore National Laboratory Report

UCID-17013 (1973).

7. Woodward, P. R., and P. Colella, “High-Resolution Difference Schemes for Compressible Gas

Dynamics,” Lecture Notes in Phys. 141, 434 (1981).

8. Woodward, P. R., and P. Colella, “The Numerical Simulation of Two-Dimensional Fluid Flow

with Strong Shocks,” J. Comput. Phys. 54, 115-173 (1984).

9. Colella, P., and P. R. Woodward, “The Piecewise-Parabolic Method (PPM) for Gas Dynamical

Simulations,” J. Comput. Phys. 54, 174-201 (1984).

10. Woodward, P. R., “Numerical Methods for Astrophysicists,” in Astrophysical Radiation

Hydrodynamics, eds. K.-H. Winkler and M. L. Norman, Reidel, 1986, pp. 245-326.

11. Wenlong Dai and P. R. Woodward, “An Approximate Riemann Solver for Ideal

Magnetohydrodynamics,” Journal Computational Physics 111, 354-372 (1994).

12. Wenlong Dai and P. R. Woodward, “Extension of the Piecewise-Parabolic Method to

Multidimensional Ideal Magnetohydrodynamics,” Journal of Computational Physics 115, 485-

514 (1994).

13. Wenlong Dai and P. R. Woodward, “Interactions between Magnetohydrodynamical Shocks and

Denser Clouds,” Astrophysical Journal 436, 776-783 (1994).

14. W. Dai and P. R. Woodward, “A Simple Riemann Solver and High-Order Godunov Schemes

for Hyperbolic Systems of Conservation Laws,” Journal of Computational Physics 121, 51

(1995).

15. Dai, Wenlong, and P. R. Woodward, “A Simple Finite Difference Scheme for Multidimensional

Magnetohydrodynamical Equations,” Journal of Computational Physics 142, 331-369 (1998).

16. Dai, Wenlong, and P. R. Woodward, “On the Divergence-Free Condition and Conservation

Laws in Numerical Simulations for Supersonic Magnetohydrodynamical Flows,” Astrophysical

J., 493 (1998).

17. Woodward, P. R., “Simulation of the Kelvin-Helmholtz Instability of a Supersonic Slip Surface

with the Piecewise-Parabolic Method (PPM),” in Numerical Methods for the Euler Equations of

Fluid Dynamics, eds. Angrand, Dervieux, Desideri, and Glowinski, SIAM, 1985.

Draft. Not for Distribution. 2/19/05

16

18. Woodward, P. R., “Simulations of Supersonic Jet Instability using the Piecewise-Parabolic

Method (PPM),” in High Speed Computing, Scientific Applications and Algorithm Design, R.

B. Wilhelmson, editor, Univ. of Illinois Press, 1988.

19. Winkler, K.-H., J. W. Chalmers, S. W. Hodson, P. R. Woodward, and N. J. Zabusky, “A

Numerical Laboratory,” Physics Today, Oct., 1987.

20. Pedelty, J. A., and P. R. Woodward, “Numerical Simulations of the Nonlinear Kink Modes in

Linearly Stable Supersonic Slip Surfaces,” J. Fluid Mech., 225, 101-120 (1991).

21. Bassett, G. M., and P. R. Woodward, “Numerical Simulation of Nonlinear Kink Instabilities of

Supersonic Shear Layers,” Journal of Fluid Mechanics 284, 323-340 (Feb. 10, 1995).

22. Bassett, G. M., and P. R. Woodward, “Simulation of the Instability of Mach 2 and Mach 4

Gaseous Jets in 2 and 3 Dimensions,” Astrophysical Journal 441, (March 10, 1995).

23. Edgar, B. K., and P. R. Woodward, “Diffraction of a Shock Wave by a Wedge: Comparison of

PPM Simulations with Experiment,” AIAA Paper 91-0696, and Video Journal of Engineering

Research, 3, 25-33+cover illustration (1993).

24. Edgar, B. K., Woodward, P. R., and Anderson, S. E., PPM code library, with documentation

and examples, available at www.lcse.umn.edu/PPMlib.

25. Porter, D. H., A. Pouquet, and P. R. Woodward, “Supersonic Homogeneous Turbulence,”

Lecture Notes in Physics, 392, 105-125 (1991).

26. Porter, D. H., A. Pouquet, and P. R. Woodward, “A Numerical Study of Supersonic

Turbulence,” Theoretical and Computational Fluid Dynamics, 4, 13-49 (1992).

27. Porter, D. H., A. Pouquet, and P. R. Woodward, “Three-Dimensional Supersonic Homogeneous

Turbulence: A Numerical Study,” Phys. Rev. Lett., 68, 3156-3159 (1992).

28. Porter, D. H., A. Pouquet, and P. R. Woodward, “Kolmogorov-Like Spectra in Decaying Three-

Dimensional Supersonic Flows,” Phys. Fluids A, 6, 2133-2142 (1994).

29. Woodward, P. R., “Superfine Grids for Turbulent Flows,” IEEE Computational Science &

Engineering, Vol. 1, No. 4, pp. 4-5+cover illustration, (December, 1994).

30. Woodward, P. R., D. H. Porter, B. K. Edgar, S. E. Anderson, and G. Bassett, “Parallel

Computation of Turbulent Fluid Flow,” Proc. Parallel CFD ’94 Conference, Kyoto, Japan,

May, 1994; published in Computing Applications Mathematics, Vol. 14, no. 1, pp 97-105

(1995).

31. Mirin, A. A., R. H. Cohen, W. P. Dannevik, A. M. Dimits, D. E. Eliason, D. H. Porter, O.

Schilling and P. R. Woodward, “Three-Dimensional Simulations of Compressible Turbulence on

High-Performance Computing Systems,” Eighth SIAM Conference on Parallel Processing for

Scientific Computing, Minneapolis (1997), LLNL Report UCRL-JC-125949.

32. Schilling, O., R. H. Cohen, W. P. Dannevik, A. M. Dimits, D. E. Eliason, A. A. Mirin, D. H.

Porter and P. R. Woodward, “Three-Dimensional High-Resolution Simulations of Compressible

Draft. Not for Distribution. 2/19/05

17

Rayleigh-Taylor Instability and Turbulent Mixing,” Sixth Int’l. Workshop on the Physics of

Compressible Turbulent Mixing, Marseille, France (1997), LLNL Report UCRL-JC-125308.

33. Cohen, R. H., W. P. Dannevik, A. M. Dimits, D. E. Eliason, A. A. Mirin, D. H. Porter, O.

Schilling, and P. R. Woodward, “Three-dimensional high-resolution simulations of the

Richtmyer-Meshkov mixing and shock-turbulence interaction,” in Proc. Of the 6th International

Workshop on the Physics of Compressible Turbulent Mixing, Marseille, France, 18-21 June,

1997, pp. 128-133. LLNL Report UCRL-JC-125309.

34. Cohen, R. H., A. M. Dimits, A. A. Mirin, W. P. Dannevik, R. G. Eastman, D. E. Eliason, O.

Schilling, D. H. Porter and P. R. Woodward, “Three-Dimensional PPM Simulations of Re-

shocked Richtmyer-Meshkov Instability,” VHS Video (1997), LLNL Report UCRL-MI-128783.

35. Porter, D. H., P. R. Woodward, and A. Pouquet, “Inertial Range Structures in Decaying

Turbulent Flows,” Physics of Fluids 10, 237-245 (1998).

36. Porter, D. H., A. Pouquet, and P. R. Woodward, “Intermittency in Compressible Flows,” Proc.

Seventh European Turbulence Conference, St. Jean C. F., France, July, 1998, ed. Uriel Frisch.

37. Porter, D. H., A. Pouquet, I. Sytine, and P. R. Woodward, “Turbulence in Compressible

Flows,” Physica A 263, 263-270 (1999).

38. Sytine, I. V., D. H. Porter, P. R. Woodward, S. W. Hodson, and K.-H. Winkler 2000,

“Convergence Tests for Piecewise Parabolic Method and Navier-Stokes Solutions for

Homogeneous Compressible Turbulence,” J. Comput. Phys., 158, 225-238 (2000).

39. Cohen, R. H., W. P. Dannevik, A. M. Dimits, D. E. Eliason, A. A. Mirin, Y. Zhou, D. H.

Porter, and P. R. Woodward, “Three-Dimensional Simulation of a Richtmyer-Meshkov

Instability with a Two-Scale Initial Perturbation,” Physics of Fluids, 14, 3692-3709 (2002); also

available as LLNL Preprint UCRL-JC-144836 (2000).

40. Porter, D. H., Pouquet, A., and Woodward, P. R., “Measures of Intermittency in Driven

Supersonic Flows,” Pysical Review E 66, 026301 (2002).

41. Porter, D. H., and P. R., Woodward, “3-D Simulations of Turbulent Compressible Convection,”

Astrophysical Journal Suppl. 127, 159-187 (2000); available at www.lcse.umn.edu/conv3d.

42. Porter, D. H., P. R. Woodward, and M. L. Jacobs, “Convection in Slab and Spheroidal

Geometries,” Proc. 14th International Florida Workshop in Nonlinear Astronomy and Physics:

Astrophysical Turbulence and Convection, Univ. of Florida, Feb., 1999; in Annals of the New

York Academy of Sciences 898, 1-20 (2000); available at www.lcse.umn.edu/convsph.

43. Woodward, P. R., D. H. Porter, I. Sytine, S. E. Anderson, A. A. Mirin, B. C. Curtis, R. H.

Cohen, W. P. Dannevik, A. M. Dimits, D. E. Eliason, K.-H. Winkler, and S. W. Hodson,

“Very High Resolution Simulations of Compressible, Turbulent Flows,” in Computational

Fluid Dynamics, Proc. of the 4th UNAM Supercomputing Conference, Mexico City, June, 2000,

Draft. Not for Distribution. 2/19/05

18

edited by E. Ramos, G. Cisneros, R. Fernández-Flores, A. Santillan-González, World Scientific

(2001); available at www.lcse.umn.edu/mexico.

44. Woodward, P. R., Porter, D. H., and Jacobs, M., “3-D Simulations of Turbulent, Compressible

Stellar Convection,” Proc. 3-D Stellar Evolution Workshop, Univ. of Calif. Davis I.G.P.P.,

July, 2002; also available at www.lcse.umn.edu/3Dstars.

45. Woodward, P. R., Anderson, S. E., Porter, D. H., and Iyer, A., “Cluster Computing in the

SHMOD Framework on the NSF TeraGrid,” LCSE internal report, April, 2004, available on

the Web at www.lcse.umn.edu/turb2048.

46. LCSE movies from a variety of turbulent fluid flow simulations can be downloaded and/or

viewed at www.lcse.umn.edu/MOVIES.

47. Fryxell, B., P. R. Woodward, P. Colella, and K.-H. Winkler, “An Implicit-Explicit Extension of

the PPM Scheme for Lagrangian Hydrodynamics in One Dimension,” J. Comput. Phys. 63, 283

(1986).

48. Dai, Wenlong, and P. R. Woodward, “A High-Order Iterative Implicit-Explicit Hybrid Scheme

for 2-D Hydrodynamics,” in Numerical Methods for Fluid Dynamics V, pp. 377-383, eds. K.

W. Morton and M. J. Baines, Oxford Science Publications (1995).

49. Dai, Wenlong, and P. R. Woodward, “Iterative Implementation of an Implicit-Explicit Hybrid

Scheme for Hydrodynamics,” Journal of Computational Physics 124, 217-229 (1996).

50. Dai, Wenlong, and P. R. Woodward, “A Second-Order Iterative Implicit-Explicit Hybrid

Scheme for Hyperbolic Systems of Conservation Laws,” Journal of Computational Physics 128,

181-196 (1996).

51. Dai, Wenlong, and P. R. Woodward, “Numerical Simulations for Radiation Hydrodynamics. I.

Diffusion Limit,” Journal of Computational Physics 141, 182-207 (1998).

52. Dai, Wenlong, and P. R. Woodward, “Numerical Simulations for Radiation Hydrodynamics II.

Transport Limit,” Journal of Computational Physics 157, 199-233 (2000).

53. Dinge, D., and P. R. Woodward, “A Parallel Cell-by-Cell AMR Method for the PPM

Hydrodynamics Code,” International J. Modern Phys. C, 14, 1-24 (2003).

54. Woodward, P. R., 2005. “A Complete Description of the PPM Compressible Gas Dynamics

Scheme,” LCSE internal report available from the main LCSE page at www.lcse.umn.edu.

55. Woodward, P. R., and S. E. Anderson, “Portable Petaflop/s Programming: Applying

Distributed Computing Methodology to the Grid Within a Single Machine Room,” Proc. of the

8th IEEE International Conference on High Performance Distributed Computing, Redondo

Beach, Calif., Aug., 1999; available at www.lcse.umn.edu/HPDC8.

56. Woodward, P. R., and D. H. Porter, 2005. “PPM Code Kernel Performance,” LCSE internal

report available at www.lcse.umn.edu.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

