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I. Introduction. 
 Over the last several years, our team at the Laboratory for 

Computational Science & Engineering (LCSE) at the University 
of Minnesota has been developing cluster computing applications 
under our SHMOD framework (Shared Memory On Disk) in 
order to achieve the benefits of fault tolerant, dynamically load 
balanced computation with no compromise in delivered perform-
ance [13-16].  The SHMOD framework provides a natural exten-
sion of the concept of shared memory from a single machine to an 
entire cluster.  It is based upon the concept of shared data objects 
that are implemented as disk files, even though these might 
actually reside in memory (in the disk buffer cache or on a RAM 
disk).  In this respect it is based on ideas similar to the early Linda 
system and to efforts to build shared file systems (cf. [17-21]).  
The use of the disk file abstraction, however, separates the 
SHMOD approach from efforts to implement software distributed 
shared memory (cf. [1-4]), as well as from alternative out-of-core 
cluster computing approaches such as global arrays (cf. [5-12]). 

An obvious limitation of the SHMOD approach is that 
applications must be restructured so that they require only, or 
essentially only, serial access to shared data.  Also, the application 
should be structured to ingest shared data in large gulps rather 
than in small sips.  A large granularity of the shared files is crit-
ical to overcoming the limitations of data access latency.  Finally, 
reading and writing of shared data files should be overlapped 
completely with computation, so that it comes at essentially no 
performance cost.  Restructuring of application codes to conform 
to this shared data access model can represent a significant cost; 
however, once the application is restructured, the benefits of 
SHMOD are numerous.  In this paper, we outline the principal 
features of our present SHMOD implementation and illustrate 
their effectiveness through the example of a Mach 1 homogeneous 
turbulence simulation on a varying number of TeraGrid nodes at 
NCSA using a 20483 computational mesh.  The SHMOD 
framework has proved to be highly scalable (up to 330 Gflop/s 
delivered performance on all available nodes, namely 250, at 
NCSA) and highly flexible (persistent computation through all 
kinds of events on dynamically adjusting numbers of nodes). 

Our SHMOD approach is built upon a simple remote I/O 
server, the sRIO and ipRIO servers (www.lcse.umn.edu/shmod), 
that were built at the LCSE by Sarah Anderson and Anusha Iyer 
and that utilize standard file systems at nodes.  Originally, we 
utilized MPI to send control messages between collaborating 
processes.  However, MPI limited us to a constant number of 
network nodes, and it did not allow us to react easily to node 
failures.  We therefore replaced the functionality that it was 
providing for our SHMOD applications with a globally accessible 
mySQL database.  Other efforts needing to manage large numbers 
of files and/or tasks on a network have used similar database 
coordination mechanisms [22].  In general, our effort differs from 
data grid efforts based on Globus [23,24] in that we seek higher 
delivered data access bandwidths to support a tightly coupled 

computational model and we have so far restricted our attention to 
execution on single cluster systems.  The importance of high de-
livered network bandwidth will become clear in the discussion 
below. 

II. Structure of a SHMOD Application. 
A SHMOD application must have a special structure.  The 

application must be broken down into a series of separate tasks 
arranged in the order in which they should be launched.  This is a 
recommended launch order, and it can be altered as a result of 
conditions that can only be known at run time.  However, it is 
assumed that any task in this ordered list can be launched if a 
specific set of preceding tasks on the list have been completed.  
These task completion conditions for launch can be included as 
part of the task list, or they can be written into the task selection 
logic of the application itself.  Each task operates upon a 
designated set of named data objects that we implement in the 
form of disk files.  (If there is sufficient memory, these files will 
in fact be memory resident, because the operating system will 
automatically cache them.)  We will refer to the set of disk files 
upon which a task operates as its “data context.”  The task can 
always be launched as soon as its data context is ready.  This 
condition on the data context can always be translated into a 
condition on the completion of a set of previous tasks.  We 
enforce the simplifying discipline that we do not dive below the 
granularity defined by the task decomposition in order to refine 
constraints upon events such as task launches.  The output of each 
task is a new set of data files, which may in some cases be 
overwritten on earlier files that are no longer in use.  It is an 
essential simplifying feature of our SHMOD applications that 
once a task is launched, it may run until completion without 
interruption and without any communication with any other task. 

The very high parallel performance of SHMOD applications 
comes from the decomposition of the application into so large a 
number of tasks that at just about any point in the ordered task list 
many more tasks can be executing simultaneously than there are 
network nodes available to perform those tasks.  So long as this 
condition is fulfilled, and it is usually possible to guarantee that it 
is for jobs of sufficient scale, all available network nodes can 
always be kept busy.  If there is sufficient network bandwidth, 
then any participating network node that becomes available for 
work can simply grab the next task on the ordered list, since there 
need be no preference for operations upon local data.  However, 
the network bandwidth requirements can be minimized by making 
intelligent task selections that take data location and deliverable 
bandwidth to the data into account along with position in the task 
ordering. 

A. Structure of a SHMOD Task. 
All tasks in a SHMOD application have the same basic 

structure.  These tasks are performed by various server processes.  
Such a server is started up on a network node whenever that node 
becomes available for use by the application.  On a remote super-
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computer center, nodes are obtained through batch queue 
requests, and once the nodes are granted, the server processes are 
started up.  On our local systems, we implement the server 
processes as system services and as screen savers.  In either case, 
the first action of such a server is to look for work in a globally 
accessible mySQL database.  In this model, the management 
function appears passive, since it appears to be implemented in a 
passive database (you call it, it does not call you).  However, a 
management executive routine is incorporated in each server’s 
code that allows the server to interpret the contents of the database 
and to make intelligent decisions about task selection based upon 
this global knowledge and a common set of logical rules. 

This mode of operation permits simple fault tolerance, as we 
shall see, and it allows servers to come and go without disrupting 
the work flow.  It does, however, introduce an issue of version 
control which has to be managed.  This model also requires that 
upon task selection each server process must acquire the global 
knowledge of the database, think about it, modify it, and put it 
back.  Clearly, this is critical code and the database locking 
mechanisms must be used when executing it.  The key point that 
makes this approach practical is that the required global 
knowledge is very small, and the time to transmit it to the server 
is essentially the same as the time to contact the server at all (this 
database communication in SHMOD is limited by latency and not 
by bandwidth).  Also, the server can think every possible useful 
thought about this global information in, say, a millisecond, so 
that this time interval is also negligible.  Under these circum-
stances, there is no advantage to making a single intelligent 
manager process as opposed to a myriad of identical intelligent 
manager subroutines (distributed management). 

Once the server has selected its next task, it reads the data 
context for that task from the locations specified in the task record 
in the database.  These read operations could be from local 
memory, local disk, remote memory, or remote disk, but in each 
case they are logical disk file read operations that are specified by 
file names and paths, byte offsets into the files, and numbers of 
bytes to be read.  In order to support this file read mechanism of 
data access, the application must be structured so that it takes in 
necessary data in a small number of large sequential read opera-
tions.  This structure assures that performance will be bandwidth 
limited rather than latency limited.  This restructuring is not hard 
to do once one realizes that this operation is just a data copy.  We 
do not identify useful data and then access it repeatedly over the 
course of the computation.  Instead, we pay the price of an 
optimized sequential copy at the outset (and another one at the 
end) which allows us to put the data into our own local memory 
workspace, from which we can begin to work with it at the 
granularity of cache lines rather than, for example, that of 100 MB 
data records.  This data copy is overlapped with computation in 
high performance implementations (see below), so that the CPU is 
kept busy and the cost of this copy is minimized.  Most of the 
tasks we are talking about here have a truly enormous granularity, 
so that hundreds of MB are being copied at a time.  Nevertheless, 
this copy of task data into a private workspace proves to be an 
excellent strategy at all levels of the memory hierarchy, extending 
upward to a CPU task within an SMP, in which case the shared 
data is brought onto the CPU’s own board, and even to a subtask 
within that CPU task, in which case the data is brought into the 
cache memory of the processor before being operated upon.  
Thus, even though our strategy of copying data may at first seem 
wasteful, it is a natural extension of best practices at all levels of 
today’s memory hierarchy. 

Once the task data context has been copied into the network 
node’s local memory, the server operates upon it according to the 

particular application, be it gas dynamics, scientific visualization, 
or any other application.  The organization of the data in the local 
memory into relatively small cache lines means that this data can 
now be effectively transposed, for example, or accessed at a small 
level of granularity to deal with such application features as AMR 
grids or multimaterial flow.  Once the server has finished operat-
ing on the data, it copies the result back to the globally shared 
data space by means of a small set of file write operations, with 
file paths, byte offsets, and byte lengths.  Only when these data 
write-back operations are successfully completed does the server 
access the global database once more to register its task 
completion and to select a new task to perform. 

B. Structure of a High-Performance SHMOD Task. 
In order to obtain high performance from a SHMOD applica-

tion, on most networks it is necessary to overlap the two data 
communication steps – the initial data reads and the final data 
writes – with computation.  This is easily done by instantiating a 
separate communications thread for the task server.  The global 
control database is still accessed only once per task, after all 
writes are successfully completed, but now this occurs during the 
execution of a subsequent task.  Upon this database access a new 
task is selected.  The data context for that task is read while the 
present task computation continues, so that once that computation 
is complete the server will be able to proceed immediately to the 
computation for the next task.  This requires holding one addition-
al copy of a task data context at the server’s node throughout the 
computation, but it has so far been easy to find a task granularity 
that makes this possible while still delivering excellent local and 
excellent parallel performance. 

It is important to note that the desire to hide all data transfer 
costs behind overlapped CPU computation tends to set limits on 
the task granularity.  We have already seen that this requirement 
forces tasks to be smaller than they might be, so that an extra task 
data context can fit into the local memory.  Since we usually need 
at least 2 full copies (an old and a new) of the data context for the 
task computation itself, the need to fit one more into the local 
memory reduces the maximum task granularity by only a third.  
However, the need to overlap communication with computation 
forces the task granularity up, since for most tasks we do there is 
more useful computation that can be performed on each word of 
the data the larger the task data context becomes.  Quite generally, 
larger tasks can be usefully made more computationally intensive, 
and this gives us more time to transmit the necessary data.  How 
these issues play out in practice is illustrated in the example 
discussed below. 

III. Characteristics of the PPM Numerical Method 
that Permit a Practical SHMOD Implementa-
tion. 

 The  PPM gas dynamics codes [25-28] have been in use for 
decades to simulate compressible flows involving strong shocks 
and multimaterial boundaries.  These codes have enjoyed very 
high performance parallel implementations on a number of very 
different computer architectures (cf. [13]).  A reason that this has 
been possible, aside from a willingness of our team to rewrite 
these codes again and again, is that this numerical method has 3 
very special properties: 
1. The numerical method is explicit, which means that it updates 

the fluid state in a grid cell using only information contained in 
that cell and in its near neighbors within a particular difference 
stencil. 

2. The numerical method employs directional operator splitting, 
which means that it is formulated in terms of a sequence of 1-D 
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passes, each of which treats derivatives of the flow quantities 
only in a single grid direction. 

3. The numerical method is of high accuracy, which means that it 
performs a relatively large amount of computation on each data 
element in order to achieve a good representation of the gas 
dynamics. 
It is easiest to see how these features permit a SHMOD imple-

mentation in the light of a specific example. 

IV. The Turbulence Problem. 
Nearly everyone has at one time or another been advised to 

fasten his or her seatbelt because of an encounter with unantici-
pated turbulence.  In astrophysics, turbulence is nearly always 
anticipated, since the miniscule viscosity of astrophysical flows 
and their nearly universal instability gives rise to turbulence 
almost everywhere.  For this reason, simulation of astrophysical 
flows can be improved by embedding models of small-scale 
turbulence into the governing equations, or equivalently into the 

numerical simulation algorithms.  For many years our team at the 
LCSE has been simulating homogeneous, compressible turbu-
lence as well as turbulent convection in stars in the hope of 
producing better subgrid-scale models of the turbulence phenom-
enon for use in astrophysical simulations [29-37]. 

In September and October of 2003, our team ran a PPM 
simulation of Mach 1 homogeneous turbulence on a grid of 20483 
cells on the NCSA TeraGrid cluster of 250 dual-processor 1.3 
GHz Itanium-2 nodes.  We used a SHMOD implementation to 
keep this run going in a friendly user period while the availability 
of nodes was varying quite widely over time.  All of the data, 
some 5 TB, from this simulation was sent to the San Diego 
Supercomputer Center using the Storage Resource Broker, and we 
sent a copy of 2 TB of this data – a time history of the evolution 
of the vorticity of the gas – to our lab in Minnesota for the 
purpose of generating visualizations of the flow dynamics.  A few 
of these visualizations appear at the right on these pages, and 
movies made from this data can be found on our Web site at  

Fig. 1A.  Volume visualization using the LCSE’s utility HVR (www.lcse.umn.edu/hvr) of the distribution of the magnitude of the 
vorticity in the PPM simulation of Mach 1 homogeneous turbulence discussed in the text.  The flow in the cubic domain, with periodic 
boundary conditions, is shown as some regions near strong shear layers begin to become turbulent.  Blue regions have the weakest 
vorticity values, and as the vorticity increases in strength, the color goes through red to yellow and finally to white. 
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www.lcse.umn.edu/AVIs.   Initial analysis of some of the more 
quantitative data reveal that the behavior of the gas in this 
simulation is consistent with our team’s theoretical ideas about 
small-scale turbulence (cf. [34-36]). 

A. Task Granularity. 
For the purpose of this run, we decomposed our 8.6 billion cell 

grid into 1024 grid bricks, each with 128×2562 cells.  In order to 
update each of these bricks for two full time steps as an 
independent task, we needed to augment each brick with face, 
edge, and corner chunks that came either from the boundary 
conditions (periodic in each dimension) or from portions of 
neighboring bricks.  These “ghost cell” chunks were 20 grid cells 
thick.  This surface-to-volume ratio, together with the fact that we 
can progressively shrink the ghost cell regions as we perform 
sweep after sweep of the PPM algorithm, meant that ¼ of the 
computational labor performed in each brick update was redun-
dant with work performed in the updates of neighboring bricks.  

This cost of redundant computation, which is introduced to 
increase the task granularity, is the principal cost overhead of our 
SHMOD implementation.  Note that it is a constant fraction of the 
labor regardless of the number of participating nodes or of the 
number of grid bricks in the problem. 

The task granularity we chose for this problem resulted in 1024 
tasks per round of grid brick updates.  Since we had at most 250 
nodes available to us, this meant that there were always, on 
average, 4 or more tasks for each node to perform in each round 
of updates.  This fact resulted in the ability of nodes to proceed to 
the next round of updates before all bricks of the previous round 
were updated.  Consequently, all nodes were constantly kept busy.  
However, this also meant that at the beginning of each round of 
updates (that is, at the beginning of a pair of time steps) we did 
not have all the data from the previous round to bring to bear on 
the task of choosing the value for the next time step interval.  As a 
result we chose this time step value speculatively.  We used all 
available data, and in the event that our choice proved too large, 

Fig. 1B.  Volume visualization of the distribution of the magnitude of the vorticity in the PPM simulation of Mach 1 homogeneous 
turbulence discussed in the text.  The flow is shown about midway through the transition from the original, smoothly stirred flow to 
fully developed turbulence.  Patches where the turbulent transition is complete can be seen as well as regions containing shear layers 
that are beginning to become unstable.  The relation between color and vorticity magnitude is similar to that in Fig 1a. 
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which essentially never happened in this particular problem, we 
were prepared to roll back the computation and to begin that 
round of updates all over again.  The time step value is the result 
of a global reduction operation.  We used data from previous time 
steps to produce a speculative value.  We were conservative, 
which produces a guess that is systematically a bit smaller than it 
needs to be, but that avoids producing the over-large value that 
might force us to roll the computation back.  By doing this we 
paid a very small price in taking a slightly larger number of time 
steps than would in principle be necessary, but we saved the time 
that many nodes would otherwise have been forced to waste 
waiting upon stragglers to complete each time step update round.  
This technique represents a general approach that one can adopt to 
the handling of global reductions in SHMOD applications. 

 Our chosen task granularity had other consequences.  We 
obtained 660 Mflop/s sustained computational performance from 
each participating CPU, averaged over the entire computation and 
over all CPUs participating.  This is 13% of the Itanium-2 peak 

performance, which seems to be a fairly good delivered perform-
ance level for this CPU.  It was achieved in part because the entire 
workspace for the 1-D update of a single grid strip and for the 
preparation of that data fits into the CPU’s 3 MB cache memory.  
PPM performs about 960 flops to update each grid cell for a 
single 1-D sweep, and there are 6 such sweeps (over a grid brick 
of progressively shrinking size) during one grid brick update task.  
For our grid bricks of  128×2562 cells, the amount of work this 
involves is about 6 times the number of flops that would be 
required to update the average size of the brick during this 
process, namely  148×2762 cells, for a single 1-D sweep.  This is  
10.8 Gflops, and at the 1.32 Gflop/s aggregate performance of the 
node’s dual CPUs this takes about 49 seconds.  Now the reason 
for our choice to update each grid brick for 2 time steps in a single 
task rather than just for 1 time step should be clear.  This gives us 
almost twice the time for the data from the previous update to be 
written back and for the data for the next update to be acquired 
over the network.  It also roughly halves the frequency of node 

Fig. 1C.  Volume visualization of the distribution of the magnitude of the vorticity in the PPM simulation of Mach 1 homogeneous 
turbulence discussed in the text.  The transition from the original, smoothly stirred flow to fully developed turbulence is now well 
underway.  Few shear layers remain that have not developed into large tangles of intertwined vortex tubes.  Nevertheless, patches (blue 
regions) of relative calm remain in this turbulent flow.  The relation between color and vorticity magnitude is similar to that in Fig 1a. 
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requests to lock, acquire, modify, and replace the contents of our 
small global database.  There are, with all 250 nodes cooperating, 
an average of only 5 such database hits per second. 

In designing a SHMOD application, it is important to under-
stand the relationship between task granularity, parallel computa-
tion overhead (redundant computation in ghost cell regions), and 
network bandwidth requirements.  (These are embedded in a PPM 
parallel performance spreadsheet described and available at 
www.lcse.umn.edu/PPM-performance-spreadsheet.)  The larger 
we make our tasks, the longer we generally will have to 
communicate the necessary data.  The proper choice of granular-
ity represents a balance between the needs to have many more 
parallel tasks than processing nodes, to have the tasks fit into the 
node memories, to have enough time to send the data over the 
network while the CPU is busy with computation, and to have a 
sufficiently low frequency of interaction with the global database.  
The acceptable ranges for each of these considerations is 
sufficiently broad that we have so far had no difficulty in satisfy-
ing all these constraints simultaneously on every system on which 
we have run.  We believe that the turbulence computation report-
ed here could easily have scaled up to 1024 nodes, had they been 
available, without significant loss in per-node performance. 

Perhaps the most unusual aspect of SHMOD computation is the 
enormous amount of data movement over the network that it 
involves.  For this reason it is difficult to appreciate that only 
modest networking requirements flow from this feature of our 
paradigm.  The reason for this is that all network communications 
can be implemented as asynchronous background tasks, so that 
the network is in continuous, rather than sporadic use.  Applica-
tions that have been restructured for SHMOD implementation do 
not have any significant network latency requirements.  For 
SHMOD, it is only network bandwidth  that  usually  matters, and 
that is almost always more than sufficient on modern networks, at 
least for PPM computation.   For example, in the case reported 
here, if each node needed to communicate every grid brick over 
the network, taking 49 seconds to read one in and to write one 
back, then the necessary network bandwidth to each node would 
be only 9.0 MB/sec (equivalent to Fast Ethernet).  This estimate 
assumes that the node data all comes from other nodes on the 
network, and that the node at issue never needs to serve any data 
that it owns to other nodes.  If all the nodes serve each other data, 
then we would need about twice this network bandwidth, or only 
18 MB/sec.  Since our data transmissions were sent on the 
Myrinet interconnect of the NCSA TeraGrid cluster at 100 to 150 
MB/sec, sustained, we obviously had plenty of bandwidth on this 

Fig. 1D.  Volume visualization of the distribution of the magnitude of the vorticity in a thin slice of the PPM simulation of Mach 1 
homogeneous turbulence discussed in the text.  The relation between color and vorticity magnitude is identical to that in Fig 1b.  Here 
the flow is shown a the time of Fig 1b, viewed closer up but from the same angle and with clipping planes making only a slice of the 
domain near the center visible.  The slice shown extends across the entire diagonal width of the cubical problem domain, revealing the 
wealth of detail that is captured by the PPM scheme operating on this very fine, 20483 grid.  This high degree of captured detail allows 
predictions of alternative turbulence closure models to be compared with the simulation data to generate statistically significant 
quantitative measures of their predictive capability. 
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system.  For files stored on the single disks at each node and not 
in the node’s disk buffer cache, there was also enough bandwidth 
to handle this requirement.  It was therefore unnecessary for us to 
implement any favoritism for tasks that involve data on a given 
node, but which might not be at precisely the best position in the 
ordered task list. 

Note that we were able to make the choices of task granularity 
reported above because the job we set out to do was very large.  It 
would have been much harder to use the same large number of 
nodes efficiently to do a much smaller problem.  In fact, if we 
were to scale our problem down to a size so small that it could be 
completed in only, say, a single hour, then SHMOD computation 
would appear much less attractive.  This is not a problem, because 
small problems, in our experience, consume only a minor fraction 
of the CPU time that we use.  Small problems can be done 
efficiently in the SHMOD paradigm on small resources.  For 
example, at the same time that this simulation ran, we were 
running a much smaller, one billion cell PPM simulation of shear 
layer instability at the same high efficiency level under the 
SHMOD paradigm on our own local 32-CPU Unisys ES-7000.  
Very small problems tend to have different requirements, such as 
ease of setup and immediate presentation of graphical results, so 
that efficiency is not the primary concern for these runs.  It is a 
fundamental and very important aspect of the SHMOD approach 
that it looks increasingly more attractive at increasingly large 
scale.  It is important to realize that a computational technique 
that is very well suited to very large scale computation may not be 
the paradigm of choice for small runs.  And conversely, methods 
that work well for modest problems may barely work at all when 
attempted at scale. 

B. Flexible, Fault Tolerant Job Execution. 
One of the greatest benefits of SHMOD is an extremely 

flexible and fault tolerant job execution model.  The reason for 
this is the persistent problem image implemented in the many 
separate task data contexts, which are files resident on nonvolatile 
disk storage (these are dumped to disk when the run is interrupted, 
even if during the run they are cached in memory by the operating 
system).  If we absorb a bit more of our network bandwidth, we 
can even mirror these data contexts on multiple network nodes, so 
that the loss of a node will produce barely a glitch in the ongoing 
computation.  The second feature of SMOD computation that is 
responsible for highly flexible job execution is the independence 
of the computing and the storage resources.  A new node can join 
the computation at any point, select a task from the global 
database, and perform that task regardless of the location of its 
data context.  With equal ease, nodes can leave the ongoing job in 
order to do work for other users.  (See the performance logs in 
Fig. 2.)  This means that enormous fluid dynamical simulations 
can actually run as background jobs at supercomputer centers.  
With equal force we may conclude that SHMOD allows fluid 
dynamicists with access to only modest resources to compute the 
largest problems, if only they are willing to wait long enough.  In 
fact, SHMOD elevates the disk from the level of storage to the 
level of memory in the functional hierarchy.  In so doing, 
SHMOD has the potential to very significantly reduce the cost of 
high performance fluid dynamical computation by replacing in 
systems designed for this purpose most of the RAM, usually the 
costliest system component, with disk, which is usually the 
cheapest component. 

C. Working Data. 
A diagram of the system we used is shown in Fig. 3.  The 

performance logs for this job shown in Fig. 2 indicate that it was 

always possible to find 80 nodes available on this system during 
the friendly user period when we were running.  A single active 
problem image consisted of 1024 files of 160 MB each, so that 
with 80 nodes acting as file servers for the entire problem (these 
nodes also participated in the computation), one such problem 
image could be accommodated using half the 4 GB memory on 
each of these nodes.  We always kept both an old and a new 
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problem image, so that not all of this data could be memory 
resident on the 80 nodes so long as we also used them for 
computation.  Nevertheless, the single 60 GB scratch disk on each 
node was able to keep up.  The performance logs clearly show 
that the per-node performance was essentially independent of the 
number of nodes participating.  This means that not only were the 
80 nodes able to serve data contexts to as many as 250 total 
nodes, but also that this service had a negligible impact on their 
computational performance.  It is also important to realize that 
since the memories of about 160 nodes were required to hold all 
the working data for this computation, during close to half of this 
run we could not have executed our code at all on this system 
without the benefit of SHMOD memory on disk. 

V. Future Work. 
We have also used our SHMOD framework to implement our 

utility programs that post-process and visualize our simulation 
data on multiple PC clusters [38].  We would like to integrate the 
operation of these multiple stages of the fluid flow simulation and 
visualization pipeline, now automated individually for unattended 
execution, into a single, fully automated workflow.  Once we set a 
run going we would like to obtain data analysis and visualization 
products automatically as it executes, and we would like to be 
able to interact with the run on demand to change these default 
products or to change run parameters such as the frequency of 
generation of these products.  We would also like to integrate this 
software with automated transport of files over wide area 
networks using the Globus toolkit, in order to achieve a fully 
automated, continental-scale Grid-based implementation of the 
workflow. 
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