

Cluster Computing in the SHMOD Framework
on the NSF TeraGrid

Paul R. Woodward, Sarah E. Anderson, David H. Porter, and Anusha Iyer
paul@lcse.umn.edu, saraha@cray.com, dhp@lcse.umn.edu, anusha@cs.umn.edu

Laboratory for Computational Science & Engineering
University of Minnesota

I. Introduction.
 Over the last several years, our team at the Laboratory for

Computational Science & Engineering (LCSE) at the University
of Minnesota has been developing cluster computing applications
under our SHMOD framework (Shared Memory On Disk) in
order to achieve the benefits of fault tolerant, dynamically load
balanced computation with no compromise in delivered perform-
ance [13-16]. The SHMOD framework provides a natural exten-
sion of the concept of shared memory from a single machine to an
entire cluster. It is based upon the concept of shared data objects
that are implemented as disk files, even though these might
actually reside in memory (in the disk buffer cache or on a RAM
disk). In this respect it is based on ideas similar to the early Linda
system and to efforts to build shared file systems (cf. [17-21]).
The use of the disk file abstraction, however, separates the
SHMOD approach from efforts to implement software distributed
shared memory (cf. [1-4]), as well as from alternative out-of-core
cluster computing approaches such as global arrays (cf. [5-12]).

An obvious limitation of the SHMOD approach is that
applications must be restructured so that they require only, or
essentially only, serial access to shared data. Also, the application
should be structured to ingest shared data in large gulps rather
than in small sips. A large granularity of the shared files is crit-
ical to overcoming the limitations of data access latency. Finally,
reading and writing of shared data files should be overlapped
completely with computation, so that it comes at essentially no
performance cost. Restructuring of application codes to conform
to this shared data access model can represent a significant cost;
however, once the application is restructured, the benefits of
SHMOD are numerous. In this paper, we outline the principal
features of our present SHMOD implementation and illustrate
their effectiveness through the example of a Mach 1 homogeneous
turbulence simulation on a varying number of TeraGrid nodes at
NCSA using a 20483 computational mesh. The SHMOD
framework has proved to be highly scalable (up to 330 Gflop/s
delivered performance on all available nodes, namely 250, at
NCSA) and highly flexible (persistent computation through all
kinds of events on dynamically adjusting numbers of nodes).

Our SHMOD approach is built upon a simple remote I/O
server, the sRIO and ipRIO servers (www.lcse.umn.edu/shmod),
that were built at the LCSE by Sarah Anderson and Anusha Iyer
and that utilize standard file systems at nodes. Originally, we
utilized MPI to send control messages between collaborating
processes. However, MPI limited us to a constant number of
network nodes, and it did not allow us to react easily to node
failures. We therefore replaced the functionality that it was
providing for our SHMOD applications with a globally accessible
mySQL database. Other efforts needing to manage large numbers
of files and/or tasks on a network have used similar database
coordination mechanisms [22]. In general, our effort differs from
data grid efforts based on Globus [23,24] in that we seek higher
delivered data access bandwidths to support a tightly coupled

computational model and we have so far restricted our attention to
execution on single cluster systems. The importance of high de-
livered network bandwidth will become clear in the discussion
below.

II. Structure of a SHMOD Application.
A SHMOD application must have a special structure. The

application must be broken down into a series of separate tasks
arranged in the order in which they should be launched. This is a
recommended launch order, and it can be altered as a result of
conditions that can only be known at run time. However, it is
assumed that any task in this ordered list can be launched if a
specific set of preceding tasks on the list have been completed.
These task completion conditions for launch can be included as
part of the task list, or they can be written into the task selection
logic of the application itself. Each task operates upon a
designated set of named data objects that we implement in the
form of disk files. (If there is sufficient memory, these files will
in fact be memory resident, because the operating system will
automatically cache them.) We will refer to the set of disk files
upon which a task operates as its “data context.” The task can
always be launched as soon as its data context is ready. This
condition on the data context can always be translated into a
condition on the completion of a set of previous tasks. We
enforce the simplifying discipline that we do not dive below the
granularity defined by the task decomposition in order to refine
constraints upon events such as task launches. The output of each
task is a new set of data files, which may in some cases be
overwritten on earlier files that are no longer in use. It is an
essential simplifying feature of our SHMOD applications that
once a task is launched, it may run until completion without
interruption and without any communication with any other task.

The very high parallel performance of SHMOD applications
comes from the decomposition of the application into so large a
number of tasks that at just about any point in the ordered task list
many more tasks can be executing simultaneously than there are
network nodes available to perform those tasks. So long as this
condition is fulfilled, and it is usually possible to guarantee that it
is for jobs of sufficient scale, all available network nodes can
always be kept busy. If there is sufficient network bandwidth,
then any participating network node that becomes available for
work can simply grab the next task on the ordered list, since there
need be no preference for operations upon local data. However,
the network bandwidth requirements can be minimized by making
intelligent task selections that take data location and deliverable
bandwidth to the data into account along with position in the task
ordering.

A. Structure of a SHMOD Task.
All tasks in a SHMOD application have the same basic

structure. These tasks are performed by various server processes.
Such a server is started up on a network node whenever that node
becomes available for use by the application. On a remote super-

 2
computer center, nodes are obtained through batch queue
requests, and once the nodes are granted, the server processes are
started up. On our local systems, we implement the server
processes as system services and as screen savers. In either case,
the first action of such a server is to look for work in a globally
accessible mySQL database. In this model, the management
function appears passive, since it appears to be implemented in a
passive database (you call it, it does not call you). However, a
management executive routine is incorporated in each server’s
code that allows the server to interpret the contents of the database
and to make intelligent decisions about task selection based upon
this global knowledge and a common set of logical rules.

This mode of operation permits simple fault tolerance, as we
shall see, and it allows servers to come and go without disrupting
the work flow. It does, however, introduce an issue of version
control which has to be managed. This model also requires that
upon task selection each server process must acquire the global
knowledge of the database, think about it, modify it, and put it
back. Clearly, this is critical code and the database locking
mechanisms must be used when executing it. The key point that
makes this approach practical is that the required global
knowledge is very small, and the time to transmit it to the server
is essentially the same as the time to contact the server at all (this
database communication in SHMOD is limited by latency and not
by bandwidth). Also, the server can think every possible useful
thought about this global information in, say, a millisecond, so
that this time interval is also negligible. Under these circum-
stances, there is no advantage to making a single intelligent
manager process as opposed to a myriad of identical intelligent
manager subroutines (distributed management).

Once the server has selected its next task, it reads the data
context for that task from the locations specified in the task record
in the database. These read operations could be from local
memory, local disk, remote memory, or remote disk, but in each
case they are logical disk file read operations that are specified by
file names and paths, byte offsets into the files, and numbers of
bytes to be read. In order to support this file read mechanism of
data access, the application must be structured so that it takes in
necessary data in a small number of large sequential read opera-
tions. This structure assures that performance will be bandwidth
limited rather than latency limited. This restructuring is not hard
to do once one realizes that this operation is just a data copy. We
do not identify useful data and then access it repeatedly over the
course of the computation. Instead, we pay the price of an
optimized sequential copy at the outset (and another one at the
end) which allows us to put the data into our own local memory
workspace, from which we can begin to work with it at the
granularity of cache lines rather than, for example, that of 100 MB
data records. This data copy is overlapped with computation in
high performance implementations (see below), so that the CPU is
kept busy and the cost of this copy is minimized. Most of the
tasks we are talking about here have a truly enormous granularity,
so that hundreds of MB are being copied at a time. Nevertheless,
this copy of task data into a private workspace proves to be an
excellent strategy at all levels of the memory hierarchy, extending
upward to a CPU task within an SMP, in which case the shared
data is brought onto the CPU’s own board, and even to a subtask
within that CPU task, in which case the data is brought into the
cache memory of the processor before being operated upon.
Thus, even though our strategy of copying data may at first seem
wasteful, it is a natural extension of best practices at all levels of
today’s memory hierarchy.

Once the task data context has been copied into the network
node’s local memory, the server operates upon it according to the

particular application, be it gas dynamics, scientific visualization,
or any other application. The organization of the data in the local
memory into relatively small cache lines means that this data can
now be effectively transposed, for example, or accessed at a small
level of granularity to deal with such application features as AMR
grids or multimaterial flow. Once the server has finished operat-
ing on the data, it copies the result back to the globally shared
data space by means of a small set of file write operations, with
file paths, byte offsets, and byte lengths. Only when these data
write-back operations are successfully completed does the server
access the global database once more to register its task
completion and to select a new task to perform.

B. Structure of a High-Performance SHMOD Task.
In order to obtain high performance from a SHMOD applica-

tion, on most networks it is necessary to overlap the two data
communication steps – the initial data reads and the final data
writes – with computation. This is easily done by instantiating a
separate communications thread for the task server. The global
control database is still accessed only once per task, after all
writes are successfully completed, but now this occurs during the
execution of a subsequent task. Upon this database access a new
task is selected. The data context for that task is read while the
present task computation continues, so that once that computation
is complete the server will be able to proceed immediately to the
computation for the next task. This requires holding one addition-
al copy of a task data context at the server’s node throughout the
computation, but it has so far been easy to find a task granularity
that makes this possible while still delivering excellent local and
excellent parallel performance.

It is important to note that the desire to hide all data transfer
costs behind overlapped CPU computation tends to set limits on
the task granularity. We have already seen that this requirement
forces tasks to be smaller than they might be, so that an extra task
data context can fit into the local memory. Since we usually need
at least 2 full copies (an old and a new) of the data context for the
task computation itself, the need to fit one more into the local
memory reduces the maximum task granularity by only a third.
However, the need to overlap communication with computation
forces the task granularity up, since for most tasks we do there is
more useful computation that can be performed on each word of
the data the larger the task data context becomes. Quite generally,
larger tasks can be usefully made more computationally intensive,
and this gives us more time to transmit the necessary data. How
these issues play out in practice is illustrated in the example
discussed below.

III. Characteristics of the PPM Numerical Method
that Permit a Practical SHMOD Implementa-
tion.

 The PPM gas dynamics codes [25-28] have been in use for
decades to simulate compressible flows involving strong shocks
and multimaterial boundaries. These codes have enjoyed very
high performance parallel implementations on a number of very
different computer architectures (cf. [13]). A reason that this has
been possible, aside from a willingness of our team to rewrite
these codes again and again, is that this numerical method has 3
very special properties:
1. The numerical method is explicit, which means that it updates

the fluid state in a grid cell using only information contained in
that cell and in its near neighbors within a particular difference
stencil.

2. The numerical method employs directional operator splitting,
which means that it is formulated in terms of a sequence of 1-D

 3

passes, each of which treats derivatives of the flow quantities
only in a single grid direction.

3. The numerical method is of high accuracy, which means that it
performs a relatively large amount of computation on each data
element in order to achieve a good representation of the gas
dynamics.
It is easiest to see how these features permit a SHMOD imple-

mentation in the light of a specific example.

IV. The Turbulence Problem.
Nearly everyone has at one time or another been advised to

fasten his or her seatbelt because of an encounter with unantici-
pated turbulence. In astrophysics, turbulence is nearly always
anticipated, since the miniscule viscosity of astrophysical flows
and their nearly universal instability gives rise to turbulence
almost everywhere. For this reason, simulation of astrophysical
flows can be improved by embedding models of small-scale
turbulence into the governing equations, or equivalently into the

numerical simulation algorithms. For many years our team at the
LCSE has been simulating homogeneous, compressible turbu-
lence as well as turbulent convection in stars in the hope of
producing better subgrid-scale models of the turbulence phenom-
enon for use in astrophysical simulations [29-37].

In September and October of 2003, our team ran a PPM
simulation of Mach 1 homogeneous turbulence on a grid of 20483
cells on the NCSA TeraGrid cluster of 250 dual-processor 1.3
GHz Itanium-2 nodes. We used a SHMOD implementation to
keep this run going in a friendly user period while the availability
of nodes was varying quite widely over time. All of the data,
some 5 TB, from this simulation was sent to the San Diego
Supercomputer Center using the Storage Resource Broker, and we
sent a copy of 2 TB of this data – a time history of the evolution
of the vorticity of the gas – to our lab in Minnesota for the
purpose of generating visualizations of the flow dynamics. A few
of these visualizations appear at the right on these pages, and
movies made from this data can be found on our Web site at

Fig. 1A. Volume visualization using the LCSE’s utility HVR (www.lcse.umn.edu/hvr) of the distribution of the magnitude of the
vorticity in the PPM simulation of Mach 1 homogeneous turbulence discussed in the text. The flow in the cubic domain, with periodic
boundary conditions, is shown as some regions near strong shear layers begin to become turbulent. Blue regions have the weakest
vorticity values, and as the vorticity increases in strength, the color goes through red to yellow and finally to white.

 4

www.lcse.umn.edu/AVIs. Initial analysis of some of the more
quantitative data reveal that the behavior of the gas in this
simulation is consistent with our team’s theoretical ideas about
small-scale turbulence (cf. [34-36]).

A. Task Granularity.
For the purpose of this run, we decomposed our 8.6 billion cell

grid into 1024 grid bricks, each with 128×2562 cells. In order to
update each of these bricks for two full time steps as an
independent task, we needed to augment each brick with face,
edge, and corner chunks that came either from the boundary
conditions (periodic in each dimension) or from portions of
neighboring bricks. These “ghost cell” chunks were 20 grid cells
thick. This surface-to-volume ratio, together with the fact that we
can progressively shrink the ghost cell regions as we perform
sweep after sweep of the PPM algorithm, meant that ¼ of the
computational labor performed in each brick update was redun-
dant with work performed in the updates of neighboring bricks.

This cost of redundant computation, which is introduced to
increase the task granularity, is the principal cost overhead of our
SHMOD implementation. Note that it is a constant fraction of the
labor regardless of the number of participating nodes or of the
number of grid bricks in the problem.

The task granularity we chose for this problem resulted in 1024
tasks per round of grid brick updates. Since we had at most 250
nodes available to us, this meant that there were always, on
average, 4 or more tasks for each node to perform in each round
of updates. This fact resulted in the ability of nodes to proceed to
the next round of updates before all bricks of the previous round
were updated. Consequently, all nodes were constantly kept busy.
However, this also meant that at the beginning of each round of
updates (that is, at the beginning of a pair of time steps) we did
not have all the data from the previous round to bring to bear on
the task of choosing the value for the next time step interval. As a
result we chose this time step value speculatively. We used all
available data, and in the event that our choice proved too large,

Fig. 1B. Volume visualization of the distribution of the magnitude of the vorticity in the PPM simulation of Mach 1 homogeneous
turbulence discussed in the text. The flow is shown about midway through the transition from the original, smoothly stirred flow to
fully developed turbulence. Patches where the turbulent transition is complete can be seen as well as regions containing shear layers
that are beginning to become unstable. The relation between color and vorticity magnitude is similar to that in Fig 1a.

 5

which essentially never happened in this particular problem, we
were prepared to roll back the computation and to begin that
round of updates all over again. The time step value is the result
of a global reduction operation. We used data from previous time
steps to produce a speculative value. We were conservative,
which produces a guess that is systematically a bit smaller than it
needs to be, but that avoids producing the over-large value that
might force us to roll the computation back. By doing this we
paid a very small price in taking a slightly larger number of time
steps than would in principle be necessary, but we saved the time
that many nodes would otherwise have been forced to waste
waiting upon stragglers to complete each time step update round.
This technique represents a general approach that one can adopt to
the handling of global reductions in SHMOD applications.

 Our chosen task granularity had other consequences. We
obtained 660 Mflop/s sustained computational performance from
each participating CPU, averaged over the entire computation and
over all CPUs participating. This is 13% of the Itanium-2 peak

performance, which seems to be a fairly good delivered perform-
ance level for this CPU. It was achieved in part because the entire
workspace for the 1-D update of a single grid strip and for the
preparation of that data fits into the CPU’s 3 MB cache memory.
PPM performs about 960 flops to update each grid cell for a
single 1-D sweep, and there are 6 such sweeps (over a grid brick
of progressively shrinking size) during one grid brick update task.
For our grid bricks of 128×2562 cells, the amount of work this
involves is about 6 times the number of flops that would be
required to update the average size of the brick during this
process, namely 148×2762 cells, for a single 1-D sweep. This is
10.8 Gflops, and at the 1.32 Gflop/s aggregate performance of the
node’s dual CPUs this takes about 49 seconds. Now the reason
for our choice to update each grid brick for 2 time steps in a single
task rather than just for 1 time step should be clear. This gives us
almost twice the time for the data from the previous update to be
written back and for the data for the next update to be acquired
over the network. It also roughly halves the frequency of node

Fig. 1C. Volume visualization of the distribution of the magnitude of the vorticity in the PPM simulation of Mach 1 homogeneous
turbulence discussed in the text. The transition from the original, smoothly stirred flow to fully developed turbulence is now well
underway. Few shear layers remain that have not developed into large tangles of intertwined vortex tubes. Nevertheless, patches (blue
regions) of relative calm remain in this turbulent flow. The relation between color and vorticity magnitude is similar to that in Fig 1a.

 6

requests to lock, acquire, modify, and replace the contents of our
small global database. There are, with all 250 nodes cooperating,
an average of only 5 such database hits per second.

In designing a SHMOD application, it is important to under-
stand the relationship between task granularity, parallel computa-
tion overhead (redundant computation in ghost cell regions), and
network bandwidth requirements. (These are embedded in a PPM
parallel performance spreadsheet described and available at
www.lcse.umn.edu/PPM-performance-spreadsheet.) The larger
we make our tasks, the longer we generally will have to
communicate the necessary data. The proper choice of granular-
ity represents a balance between the needs to have many more
parallel tasks than processing nodes, to have the tasks fit into the
node memories, to have enough time to send the data over the
network while the CPU is busy with computation, and to have a
sufficiently low frequency of interaction with the global database.
The acceptable ranges for each of these considerations is
sufficiently broad that we have so far had no difficulty in satisfy-
ing all these constraints simultaneously on every system on which
we have run. We believe that the turbulence computation report-
ed here could easily have scaled up to 1024 nodes, had they been
available, without significant loss in per-node performance.

Perhaps the most unusual aspect of SHMOD computation is the
enormous amount of data movement over the network that it
involves. For this reason it is difficult to appreciate that only
modest networking requirements flow from this feature of our
paradigm. The reason for this is that all network communications
can be implemented as asynchronous background tasks, so that
the network is in continuous, rather than sporadic use. Applica-
tions that have been restructured for SHMOD implementation do
not have any significant network latency requirements. For
SHMOD, it is only network bandwidth that usually matters, and
that is almost always more than sufficient on modern networks, at
least for PPM computation. For example, in the case reported
here, if each node needed to communicate every grid brick over
the network, taking 49 seconds to read one in and to write one
back, then the necessary network bandwidth to each node would
be only 9.0 MB/sec (equivalent to Fast Ethernet). This estimate
assumes that the node data all comes from other nodes on the
network, and that the node at issue never needs to serve any data
that it owns to other nodes. If all the nodes serve each other data,
then we would need about twice this network bandwidth, or only
18 MB/sec. Since our data transmissions were sent on the
Myrinet interconnect of the NCSA TeraGrid cluster at 100 to 150
MB/sec, sustained, we obviously had plenty of bandwidth on this

Fig. 1D. Volume visualization of the distribution of the magnitude of the vorticity in a thin slice of the PPM simulation of Mach 1
homogeneous turbulence discussed in the text. The relation between color and vorticity magnitude is identical to that in Fig 1b. Here
the flow is shown a the time of Fig 1b, viewed closer up but from the same angle and with clipping planes making only a slice of the
domain near the center visible. The slice shown extends across the entire diagonal width of the cubical problem domain, revealing the
wealth of detail that is captured by the PPM scheme operating on this very fine, 20483 grid. This high degree of captured detail allows
predictions of alternative turbulence closure models to be compared with the simulation data to generate statistically significant
quantitative measures of their predictive capability.

 7
system. For files stored on the single disks at each node and not
in the node’s disk buffer cache, there was also enough bandwidth
to handle this requirement. It was therefore unnecessary for us to
implement any favoritism for tasks that involve data on a given
node, but which might not be at precisely the best position in the
ordered task list.

Note that we were able to make the choices of task granularity
reported above because the job we set out to do was very large. It
would have been much harder to use the same large number of
nodes efficiently to do a much smaller problem. In fact, if we
were to scale our problem down to a size so small that it could be
completed in only, say, a single hour, then SHMOD computation
would appear much less attractive. This is not a problem, because
small problems, in our experience, consume only a minor fraction
of the CPU time that we use. Small problems can be done
efficiently in the SHMOD paradigm on small resources. For
example, at the same time that this simulation ran, we were
running a much smaller, one billion cell PPM simulation of shear
layer instability at the same high efficiency level under the
SHMOD paradigm on our own local 32-CPU Unisys ES-7000.
Very small problems tend to have different requirements, such as
ease of setup and immediate presentation of graphical results, so
that efficiency is not the primary concern for these runs. It is a
fundamental and very important aspect of the SHMOD approach
that it looks increasingly more attractive at increasingly large
scale. It is important to realize that a computational technique
that is very well suited to very large scale computation may not be
the paradigm of choice for small runs. And conversely, methods
that work well for modest problems may barely work at all when
attempted at scale.

B. Flexible, Fault Tolerant Job Execution.
One of the greatest benefits of SHMOD is an extremely

flexible and fault tolerant job execution model. The reason for
this is the persistent problem image implemented in the many
separate task data contexts, which are files resident on nonvolatile
disk storage (these are dumped to disk when the run is interrupted,
even if during the run they are cached in memory by the operating
system). If we absorb a bit more of our network bandwidth, we
can even mirror these data contexts on multiple network nodes, so
that the loss of a node will produce barely a glitch in the ongoing
computation. The second feature of SMOD computation that is
responsible for highly flexible job execution is the independence
of the computing and the storage resources. A new node can join
the computation at any point, select a task from the global
database, and perform that task regardless of the location of its
data context. With equal ease, nodes can leave the ongoing job in
order to do work for other users. (See the performance logs in
Fig. 2.) This means that enormous fluid dynamical simulations
can actually run as background jobs at supercomputer centers.
With equal force we may conclude that SHMOD allows fluid
dynamicists with access to only modest resources to compute the
largest problems, if only they are willing to wait long enough. In
fact, SHMOD elevates the disk from the level of storage to the
level of memory in the functional hierarchy. In so doing,
SHMOD has the potential to very significantly reduce the cost of
high performance fluid dynamical computation by replacing in
systems designed for this purpose most of the RAM, usually the
costliest system component, with disk, which is usually the
cheapest component.

C. Working Data.
A diagram of the system we used is shown in Fig. 3. The

performance logs for this job shown in Fig. 2 indicate that it was

always possible to find 80 nodes available on this system during
the friendly user period when we were running. A single active
problem image consisted of 1024 files of 160 MB each, so that
with 80 nodes acting as file servers for the entire problem (these
nodes also participated in the computation), one such problem
image could be accommodated using half the 4 GB memory on
each of these nodes. We always kept both an old and a new

PPM Performance on TeraGrid IA64

0

50

100

150

200

250

300

350

400

450

1 399 797 1195 1593 1991 2389 2787 3185 3583 3981 4379 4777 5175

Timestep

PPM Performance on TeraGrid IA64

0

50

100

150

200

250

300

1 400 799 1198 1597 1996 2395 2794 3193 3592 3991 4390 4789 5188

Timestep

Number of Nodes as a Function of Time Step Number

Aggregate Gflop/s as a Function of Time Step Number

Fig. 2. Scalability the 20483 PPM turbulence run.

 8
problem image, so that not all of this data could be memory
resident on the 80 nodes so long as we also used them for
computation. Nevertheless, the single 60 GB scratch disk on each
node was able to keep up. The performance logs clearly show
that the per-node performance was essentially independent of the
number of nodes participating. This means that not only were the
80 nodes able to serve data contexts to as many as 250 total
nodes, but also that this service had a negligible impact on their
computational performance. It is also important to realize that
since the memories of about 160 nodes were required to hold all
the working data for this computation, during close to half of this
run we could not have executed our code at all on this system
without the benefit of SHMOD memory on disk.

V. Future Work.
We have also used our SHMOD framework to implement our

utility programs that post-process and visualize our simulation
data on multiple PC clusters [38]. We would like to integrate the
operation of these multiple stages of the fluid flow simulation and
visualization pipeline, now automated individually for unattended
execution, into a single, fully automated workflow. Once we set a
run going we would like to obtain data analysis and visualization
products automatically as it executes, and we would like to be
able to interact with the run on demand to change these default
products or to change run parameters such as the frequency of
generation of these products. We would also like to integrate this
software with automated transport of files over wide area
networks using the Globus toolkit, in order to achieve a fully
automated, continental-scale Grid-based implementation of the
workflow.

VI. Acknowledgements:
We would like to thank the TeraGrid team and especially Rob

Pennington’s team at NCSA for their cooperation on this project,
which was carried out under a friendly user period. This work
built on earlier experiments in SHMOD computing at NCSA
supported by the NSF PACI program through NCSA (grant ACI-
9619019, subaward 786) and aided by considerable assistance
from Rob Pennington’s team. The development of the PPM
algorithm and its associated data analysis and visualization
software has been supported by DoE through the Office of
Science (DE-FG02-03ER25569) and the ASCI program as well as
by NSF through the PACI program and a CISE Research
Resources grant (CNS-0224424). We have also enjoyed generous
local support through the University of Minnesota’s Minnesota
Supercomputer Institute and Digital Technology Center. We also
acknowledge help from the Intel compiler team in our first
optimizations of PPM for the Itanium processor family and a
donation by Unisys of a 32-processor ES-7000 on which we
developed and optimized the more recent Itanium-2 versions of
our codes under the SHMOD paradigm.

VII. References:
1. Amza, C., Cox, A. L., Dwarkadas, S., Keleher, P., Lu, H., Rajamony,

R., Yu, W., and Zwaenepoel, W., 1996. “TreadMarks: Shared Mem-
ory Computing on Networks of Workstations,” IEEE Computer, Vol.
29, No. 2, pp. 18-28, Feb. 1996. (available at http://www.cs.rice.-
edu/~willy/TreadMarks/papers.html)

2. Scales, D., and Lam, M., 1994. “The Design and Evaluation of a
Shared Object System for Distributed Memory Machines,” Proc.
First Symposium on Operating Systems Design and Implementation,
Nov. 1994.

3. Erlichson, A., Nuckolls, N., Chesson, G., and Hennessy, J., 1996.
“SoftFLASH: Analyzing the Performance of Clustered Distributed
Virtual Shared Memory,” Proc. of the 7th Int. Conf. On Architectural

Support for Programming Languages and Operating Systems,
Cambridge, MA, pp.210-20. (available at http://wwwflash.-
stanford.edu/architecture/papers/paperlinks.html)

4. Bilas, A., Iftode, L., and Singh, J. P., 1998. “Evaluation of Hardware
Support for Shared Virtual Memory Clusters,” Proc. of the 12th ACM
International Conf. on Supercomputing (ICS’98), Melbourne,
Australia. July, 1998.

5. Nieplocha, J., Harrison, R., and Littlefield, R., 1994. “Global Arrays:
A Portable ‘Shared-Memory’ Programming Model for Distributed
Memory Computers,” Proc. Supercomputing ’94, pp 340-349;
available at www.emsl.pnl.gov/docs/global/papers/super94.pdf.

6. Nieplocha, J., Harrison, R., and Ian Foster, 1996. “Explicit
Management of Memory Hierarchy,” Advances in High Performance
Computing, Ed. L. Grandinetti, J. Kowalik, M. Vajtersic, NATO ASI
3/30: pp 185-198; available at www.emsl.pnl.gov/docs/global/-
papers/nato.pdf

7. Nieplocha, J., and Foster, I., 1996. “Disk Resident Arrays: An Array-
Oriented I/O Library for Out-of-Core Computations,” Proc. IEEE
Conference on Frontiers of Massively Parallel Computing, Frontiers
’96, pp 196-204.

8. Nieplocha, J., Harrison, R. J., Kumar, M. K., Palmer, B., Tipparaju,
V., and Trease, H., “Combining Distributed and Shared Memory
Models: Approach and Evolution of the Global Arrays Toolkit,” Proc.
POOHL 2002 workshop of ICS-2002, NYC, 2002; available at
www.emsl.pnl.gov/docs/global/papers/jarek.pdf.

9. Palmer, B., and Nieplocha, J., “Efficient Algorithms for Ghost Cell
Updates on Two Classes of MPP Architectures,” Proc. PDCS-2002;
available at www.emsl.pnl.gov/docs/global/papers/ghosts.pdf.

10. Salmon, J., and Warren, M. S., 1997. “Parallel Out-of-Core Methods
for N-Body Simulation,” Proc. 8th SIAM Conf. On Parallel Process-
ing for Scientific Computing.

11. Fink, S. J., and Baden, S. B., 1997. “Runtime Support for Multi-Tier
Programming of Block-Structured Applications on SMP Clusters,”
Lecture Notes in Computer Science, ed. Y. Ishikawa et al., Vol. 1343,
1-8. (available at http://www-cse.ucsd.edu/groups/hpcl/scg/-
kelp.html)

12. Baden, S. B., and Fink, S. J., 1999. “A Programming Methodology
for Dual-Tier Multicomputers,” IEEE Transactions on Software
Engineering, 26, 212-26 (2000).
(available at http://www-cse.ucsd.edu/groups/hpcl/scg/kelp.html)

Fig. 3. System diagram for the PPM turbulence run.

 9
13. Woodward, P. R., 1996. “Perspectives on Supercomputing: Three

Decades of Change,” IEEE Computer, Vol. 29, Oct. 1996, pp. 99-
111. An edited manuscript of this paper, with illustrations, is
available at http://www.lcse.umn.edu/computer.

14. Woodward, P. R., and S. E. Anderson, “Portable Petaflop/s
Programming: Applying Distributed Computing Methodology to the
Grid Within a Single Machine Room,” Proc. of the 8th IEEE
International Conference on High Performance Distributed
Computing, Redondo Beach, Calif., Aug., 1999; available at
www.lcse.umn.edu/HPDC8.

15. Anderson, S. E., B. K. Edgar, D. H. Porter, and P. R. Woodward,
“Cluster Programming with Shared Memory on Disk”, Proceedings of
“Linux Clusters: the HPC Revolution” conference, June 25-27, 2001,
Urbana, IL; available at http://www.linuxclustersinstitute.org/Linux-
HPC-Revolution/Archive/PDF01/Anderson_uminn.pdf

16. Anderson, S. E., 2003, SHMOD library. www.lcse.umn.edu/shmod.
17. Soltis, S., T. Ruwart, and M. O’Keefe, “The Global File System,”

Proc. 5th NASA Conference on Mass Storage Systems and
Technologies, Sept., 1996.

18. Soltis, S., G. Erickson, K. Preslan, M. O’Keefe, and T. Ruwart, “The
Design and Performance of a Shared Disk File System for IRIX,”
Proc. 15th IEEE Symposium on Mass Storage Systems, March, 1998.

19. Elder, A., T. M. Ruwart, B. D. Allen, A. Bartow, S. E. Anderson, and
D. H. Porter, 2000, “The InTENsity PowerWall: A Case Study for a
Shared File System Testing Framework,” Proc. 17th IEEE
Symposium on Mass Storage Systems / 8th NASA Goddard
Conference on Mass Storage Systems and Technologies, March,
2000.

20. Cluster File Systems, Inc., 2002. “Lustre: A Scalable, High-
Performance File System,” available at www.lustre.org/docs/-
whitepaper.pdf

21. Panasas, Inc., 2003. “Panasas ActiveScale File System,” available at
www.panasas.com/docs/Panasas_ActiveScale_DS.pdf

22. NCSA MEAD Expedition (Modeling Environment for Atmospheric
Discovery) home page, www.ncsa.uiuc.edu/expeditions/MEAD.

23. Foster, I., D. Kohr, R. Krishnaiyer, and J. Mogill, “Remote I/O: Fast
Access to Distant Storage,” Proc. Workshop on I/O in Parallel and
Distributed Systems (IOPADS), pp. 14-25, 1997.

24. Allcock, B., J. Bester, J. Bresnahan, A. L. Chervenak, I. Foster, C.
Kesselman, S. Meder, V. Nefedova, D. Quesnal, S. Tuecke, “Data
Management and Transfer in High Performance Computational Grid
Environments,” Parallel Computing Journal, 28, 749-771 (2002).

25. Woodward, P. R., and Colella, P., 1984. “The Numerical Simulation
of Two-Dimensional Fluid Flow with Strong Shocks,” J. Comput.
Phys. 54, 115-173.

26. Colella, P., and Woodward, P. R., 1984. “The Piecewise-Parabolic
Method (PPM) for Gas Dynamical Simulations,” J. Comput. Phys. 54,
174-201.

27. Woodward, P. R., 1986. “Numerical Methods for Astrophysicists,” in
Astrophysical Radiation Hydrodynamics, eds. K.-H.Winkler and M.
L. Norman, Reidel, 1986, pp. 245-326.

28. Edgar, B. K., Woodward, P. R., Anderson, S. E., Porter, D. H., and
Dai, Wenlong, 1999. PPMLIB home page at http://www.lcse.-
umn.edu/PPMlib.

29. Woodward, P. R., 1994. “Superfine Grids for Turbulent Flows,” IEEE
Computational Science & Engineering, Vol. 1, No. 4, pp. 4-5+cover
illustration, (December, 1994).

30. Porter, D. H., and Woodward, P. R., “3-D Simulations of Turbulent
Compressible Convection,” Astrophysical Journal Suppl. 127, 159-
187 (2000); available at www.lcse.umn.edu/conv3d.

31. Porter, D. H., Woodward, P. R., and Jacobs, M. L., “Convection in
Slab and Spheroidal Geometries,” Proc. 14th International Florida
Workshop in Nonlinear Astronomy and Physics: Astrophysical
Turbulence and Convection, Univ. of Florida, Feb., 1999; Annals of
the New York Academy of Sciences Vol. 898, pp. 1-20, (2000);
available at www.lcse.umn.edu/convsph.

32. Sytine, I. V., D. H. Porter, P. R. Woodward, S. H. Hodson, and K.-H.
Winkler, “Convergence Tests for Piecewise-Parabolic Method and
Navier-Stokes Solutions for Homogeneous Compressible
Turbulence,” J. Computational Physics 158, 225-238 (2000).

33. Green, K., 2001. “Going with the Flow,” NCSA Access Magazine,
Fall 2001, available at www.ncsa.uiuc.edu/News/Access/-
Stories/itaniumflow.

34. Woodward, P. R., D. H. Porter, I. Sytine, S. E. Anderson, A. A.
Mirin, B. C. Curtis, R. H. Cohen, W. P. Dannevik, A. M. Dimits, D.
E. Eliason, K.-H. Winkler, and S. W. Hodson, 2001, “Very High
Resolution Simulations of Compressible, Turbulent Flows,” in
Computational Fluid Dynamics, Proc. of the 4th UNAM
Supercomputing Conference, Mexico City, June, 2000, edited by E.
Ramos, G. Cisneros, R. Fernández-Flores, A. Santillan-González,
World Scientific (2001); available at www.lcse.umn.edu/mexico.

35. Cohen, R. H., W. P. Dannevik, A. M. Dimits, D. E. Eliason, A. A.
Mirin, Y. Zhou, D. H. Porter, and P. R. Woodward, “Three-
Dimensional Simulation of a Richtmyer-Meshkov Instability with a
Two-Scale Initial Perturbation,” Physics of Fluids, 14, 3692-3709
(2002).

36. Woodward, P. R., Porter, D. H., and Jacobs, M., “3-D Simulations of
Turbulent, Compressible Stellar Convection,” in 3D Stellar
Evolution, S. Turcotte, S. C. Keller, and R. M. Cavallo, eds., ASP
Conf. Series, Vol. 293, 45-63 (2003); available at
www.lcse.umn.edu/3Dstars.

37. LCSE movie animations of the run reported here and similar SHMOD
computations can be viewed at www.lcse.umn.edu/AVIs.

38. Porter, D. H., Woodward, P. R., and Iyer, A. 2004. “Initial
Experiences with Grid-Based Volume Visualization of Fluid Flow
Simulations on PC Clusters,” submitted to IEEE VolVis 2004
conference; available at www.lcse.umn.edu/hvr.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 2400
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 2400
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

