
d. Numerical Examples

This two-dimensional algorithm is available as an educational module from the LCSE. This module,
the Wav e Table, (figure 7.9) is divided into three windows, a control window, a viewing window, and a
graphical window allowing the student to examine the wav e amplitudes along a horizontal slice. The sim-
ulations which follow were performed using this module.

Reflection and Refraction

The laws of reflection and refraction are easily demonstrated. First create a long narrow ‘‘wall’’ with
a fairly high index of refraction of 1.60. Rotate the wall by 45o, placing it in the middle of the work areas
as shown in figure 7.10. The program has only one mode: ‘‘plane wav e,’’ which is an endless series of sine
waves travelling from left to right. When a wav e reaches the surface, it is split into a reflected wav e and a
transmitted wav e, as expected from the one-dimensional string program described earlier. Howev er, the
additional degrees of freedom allowed in multi-dimensions requires that the vector direction of the wav e be
followed. The law of reflection is

θ ′ = θ , (7.40)

that is, the angle of reflection equals the angle of incidence. Here, the the 45o surface causes waves which
were initially travelling left to right to travel from bottom to top after reflection.

The transmitted wav e enters a medium in which the speed of light is slower than in the external
medium (here assume vacuum). That portion of the wav e falls behind the rest of the wav e. It must con-
tinue at this slower speed until it reaches the far edge of the wall, where it is split into a reflected and trans-
mitted wav e. The transmitted wav e resumes the previous wav e speed, but is now trailing the position it
would otherwise have. It is this difference in wav e speeds which leads directly to the law of refraction:

n1 sinθ1 = n2 sinθ2, (7.41)

where n is the index of refraction, and θ is the angle the direction of wav e motion makes with the surface
normal, resp. The subscripts refer to the two different media.

It should be noted that wave fronts are shown rather than the rays commonly encountered in text-
books. The rays are constructed from joining the instantaneous direction vectors along the wav e fronts as
shown in figure 7.11. This leads to the common optical design technique of ray tracing, but tends to some-
what obscure the underlying physical nature of refraction, which is due to the differing wav e speeds in the
two media. The many internal reflections and transmissions can often create a confusing picture, in reality
as well as in this simulation. The ping mode may be used to follow the progress of a single wav e.

Lenses

This difference in wav e speeds handily explains how lenses affect light. Construct a thick convex
(converging) lens as shown in figure 7.12 and start a wav e train. The center of the wav e front enters the
lens first and slows. Additional portions of the wav e form enter the lens at progressively later times, figure
7.13a. This results in a curved wav e front (figure 7.13b) which converges to a point. The opposite happens
with a concave (diverging) lens shown in figure 7.14. The outer portions of the wav e front enter the lens
before the central portions (figure 7.15a), resulting in a divering wav e front (figure 7.15b).

Diffraction
Diffraction is a wav e phenomenon in which wav es passing through small holes, around sharp corners
spread out. Words such as ‘‘small’’ and ‘‘sharp’’ are relative to the wav elength of the light wav e. Scales
very much larger have little effect. The barn door casts a sharp shadow, and the light passing through the
open barn doorway is unaffected. Scales very much smaller than the wav elength also have little effect. A
mirror ground to with an eighth of a wav elength of light is generally considered high optical quality. Radio
waves, whose wav elengths are much larger than light, are affected by the open iron superstructure of
bridges.

The effect of diffraction can be easily shown by creating a reflecting wall with a small opening as
shown in figure 7.16. As the wav e fronts reach the wall, only a tiny portion may pass through the opening.
Once through, the wav e front then begins to spread, or diverge, as if the opening were itself a point source
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Figure 7.9  These are the three windows created by the Wave Table program.  
The viewing window, in which a 2D image of the waves will be displayed is in 
the top−left.  The control panel is in the bottom−left, and in the middle−right is 
a graphical window in which the amplitudes along a horizontal slice will be 
displayed.

of light, figure 7.17. This is an illustration of Huygens’s Principle that each portion of a wav e front acts as
a source of wav es.
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Figure 7.11  This is an image from the wave table simulation with an intial  
configuration consisting of a high index of refraction slab that is positioned at 45o 
near the center of the table.  Sinusoidal plane waves enter from the left edge of the 
table travelling to the right.When waves reach the surface of the slab, they are 
split into  reflected waves (travelling upwards) and  transmitted waves. As each 
wavefront  enters the slab  in which the speed of light is slower than in the 
external medium (here assumed vacuum), it must  itself slow. Thus that portion of 
the wavefront falls behind the  the wavefront in vacuum.  The  waves in the slab 
must continue at this slower speed until reaching the far edge of the slab, where 
waves are again split into  reflected and transmitted waves.  The transmitted 
waves resume the previous wave speed, but  now trailing the positions they would 
otherwise have had.  It should be noted that wave fronts are shown rather than the 
rays commonly encountered in textbooks.   The rays are constructed from joining 
the instantaneous direction vectors along the wave fronts These instantaneous 
direction vectors  are depicted as short white arrows for one of the wavefronts.  A 
ray is constructed by joining adjacent  vectors into one continuous ray, an 
example of which is shown  by the white dashed line.

Young’s double slit experiment can be performed using the configuration shown in figure 7.18. Now
each opening will act as a separate light source, but in phase with one another because they are initiated by
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Figure 7.12  This 
is the 2D viewing 
window showing 
the initial 
configuration for a 
wave table 
simulation 
demonstrating the 
properties of a 
converging lens.  A 
high index of 
refraction 
converging lens is 
situated at the 
center of the table.  
Sinusoidal plane 
waves will enter 
from the left edge 
of the table 
travelling to the 
right.

the same wav e front. The resulting wav e pattern is the result of the alternating interference between the two
wave sources. It is analogous to the pattern observed when two pebbles are plunked into water, figure 7.19.
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Figure 7.13   These 
figures show the 
progress of a train 
of wavefronts 
through a 
converging lens.  A 
(top): The center of 
the wave front  
enters the lens first 
and slows.  
Additional portions 
of the wave front 
enters the lens at 
progressively later 
times.  B (bottom): 
he resulting curved 
wave front 
converges to a 
point.
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Figure 7.14  This 
is the 2D viewing 
window showing 
the initial 
configuration for a 
wave table 
simulation 
demonstrating the 
properties of a 
diverging lens.  A 
high index of 
refraction 
diverging lens is 
situated at the 
center of the table.  
Sinusoidal plane 
waves will enter 
from the left edge 
of the table 
travelling to the 
right.
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Figure 7.15  These 
figures show the 
progress of a train 
of wavefronts 
through a 
diverging lens.  A 
(top): The waves 
enter the top and 
bottom of the lens 
before entering the 
lens center.  The 
wave speed is 
slower in the lens, 
therefore those 
portions of the 
wave front entering 
first must slow first.  
Additional portions 
of the wave front 
enter  the lens at 
progressively later 
times.  B (bottom): 
This results in a 
curved, diverging  
wave front .
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Figure 7.16   This 
is the 2D viewing 
window showing 
the initial 
configuration for a 
wave table 
simulation for 
demonstrating 
single slit 
diffraction.  Two 
opaque walls are 
placed in the left 
portion of the 
wave table with a 
small space 
between them 
which will form 
the slit.  
Sinusoidal plane 
waves will enter 
from the left edge 
of the table 
travelling to the 
right.
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Figure 7.17  As  wave fronts reach the wall, only a tiny portion of each 
may pass through the opening.  Once, through, the wave fronts  then 
begin to spread, or diverge, as if the opening was itself a point source of 
light. This is an illustration  of  Huygens’s Principle that each portion of 
a wave front acts as a source of waves.  In the reqion between the left 
edge of the wave table and each wall exist standing waves where the 
leftward moving reflected plane waves interfere with waves travelling to 
the right producing a spatially stable pattern.
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Figure 7.18   This 
is the 2D viewing 
window showing 
the initial 
configuration for a 
wave table 
simulation for 
demonstrating  
Young’s double 
slit experiment.  
Three opaque 
walls are used to 
create two slits in 
the left portion of 
the wave table.  
Sinusoidal plane 
waves will enter 
from the left edge 
of the table 
travelling to the 
right.
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Figure 7.19    In 
Young’s double 
slit experiment, 
two openings exist, 
each of which  will 
act as a separate 
light source, but in 
phase with one 
another, because 
they are initiated 
by the same wave 
front.  The 
resulting wave 
pattern is the 
result of the 
alternating 
interference 
between the two 
wave sources.  It is 
analogous to the 
pattern observed 
when two pebbles 
are plunked into 
water.
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Tables

Table 1

Iteration time yn vn

0 0.00000 1.00000 0.00000

1 0.50000 0.87500 -0.50000

2 1.00000 0.51563 -0.93750

3 1.50000 -0.01758 -1.19531

4 2.00000 -0.61304 -1.18652

5 2.50000 -1.12967 -0.88000

6 3.00000 -1.42846 -0.31517

7 3.50000 -1.40749 0.39906

8 4.00000 -1.03202 1.10281

9 4.50000 -0.35162 1.61882

10 5.00000 0.50174 1.79463

11 5.50000 1.33634 1.54375

12 6.00000 1.94117 0.87559

13 6.50000 2.13632 -0.09500

14 7.00000 1.82178 -1.16316

15 7.50000 1.01248 -2.07405

16 8.00000 -0.15111 -2.58029

17 8.50000 -1.42237 -2.50473

18 9.00000 -2.49694 -1.79355

19 9.50000 -3.08160 -0.54508

20 10.00000 -2.96894 0.99571

21 10.50000 -2.09996 2.48018

22 11.00000 -0.59738 3.53017

23 11.50000 1.24238 3.82885

24 12.00000 3.00151 3.20766

25 12.50000 4.23015 1.70691

TABLE 1: This shows results of using the unstable procedure given by eqns 2.11:

vn+1 = vn −
k

m
(xn − x0)∆t 2.11a

and

xn+1 = xn +
(vn + vn+1)

2
∆t 2.11b

described in the text. The initial conditions are: x0 = 0, x0 = 1, and v0 = 0. The timestep is ∆t = 0. 5. Note
that the amplitude increases with each oscillation, betraying the instability (figure 2a).
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Table 2

Iteration time yn vn

0 0.00000 1.00000 0.00000

1 0.25000 0.96875 -0.25000

2 0.50000 0.87598 -0.49219

3 0.75000 0.72556 -0.71118

4 1.00000 0.52509 -0.89257

5 1.25000 0.28553 -1.02384

6 1.50000 0.02065 -1.09523

7 1.75000 -0.25380 -1.10039

8 2.00000 -0.52097 -1.03694

9 2.25000 -0.76392 -0.90670

10 2.50000 -0.96672 -0.71572

11 2.75000 -1.11544 -0.47404

12 3.00000 -1.19909 -0.19518

13 3.25000 -1.21042 0.10460

14 3.50000 -1.14644 0.40720

15 3.75000 -1.00881 0.69381

16 4.00000 -0.80384 0.94601

17 4.25000 -0.54221 1.14697

18 4.50000 -0.23852 1.28253

19 4.75000 0.08956 1.34216

20 5.00000 0.42230 1.31977

21 5.25000 0.73905 1.21419

22 5.50000 1.01950 1.02943

23 5.75000 1.24500 0.77456

24 6.00000 1.39973 0.46331

25 6.25000 1.47182 0.11337

26 6.50000 1.45416 -0.25458

27 6.75000 1.34508 -0.61812

28 7.00000 1.14851 -0.95439

29 7.25000 0.87402 -1.24152

30 7.50000 0.53633 -1.46003

31 7.75000 0.15456 -1.59411

32 8.00000 -0.24879 -1.63275

33 8.25000 -0.64921 -1.57055

34 8.50000 -1.02156 -1.40825

35 8.75000 -1.34169 -1.15286

36 9.00000 -1.58798 -0.81744

37 9.25000 -1.74272 -0.42044

38 9.50000 -1.79337 0.01524

39 9.75000 -1.73351 0.46358

40 10.00000 -1.56345 0.89696

41 10.25000 -1.29035 1.28782

42 10.50000 -0.92807 1.61041

43 10.75000 -0.49647 1.84242

44 11.00000 -0.02035 1.96654

45 11.25000 0.47192 1.97163

46 11.50000 0.95008 1.85365

47 11.75000 1.38381 1.61613

48 12.00000 1.74459 1.27018

49 12.25000 2.00762 0.83403

50 12.50000 2.15339 0.33212

TABLE 2: This shows results of using the unstable procedure given by eqns 2.11:
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vn+1 = vn −
k

m
(xn − x0)∆t 2.11a

and

xn+1 = xn +
(vn + vn+1)

2
∆t 2.11b

described in the text. This is the same procedure used for the results shown in table 1, as are the initial con-
ditions: x0 = 0, x0 = 1, and v0 = 0. However, the timestep is ∆t = 0. 25, half that used for the results in
Table 1. Note that the amplitude still increases with each oscillation, although at a slower rate (figure 2).
This shows that using eqns 2.11 produces an unstable result, regardless of how small the timestep is made.



-15-

Table 3

Iteration time yn vn

0 0.00000 1.00000 0.00000

1 0.25000 0.96875 -0.25000

2 0.50000 0.87598 -0.49219

3 0.75000 0.72556 -0.71118

4 1.00000 0.52509 -0.89257

5 1.25000 0.28553 -1.02384

6 1.50000 0.02065 -1.09523

7 1.75000 -0.25380 -1.10039

8 2.00000 -0.52097 -1.03694

9 2.25000 -0.76392 -0.90670

10 2.50000 -0.96672 -0.71572

11 2.75000 -1.11544 -0.47404

12 3.00000 -1.19909 -0.19518

13 3.25000 -1.21042 0.10460

14 3.50000 -1.14644 0.40720

15 3.75000 -1.00881 0.69381

16 4.00000 -0.80384 0.94601

17 4.25000 -0.54221 1.14697

18 4.50000 -0.23852 1.28253

19 4.75000 0.08956 1.34216

20 5.00000 0.42230 1.31977

21 5.25000 0.73905 1.21419

22 5.50000 1.01950 1.02943

23 5.75000 1.24500 0.77456

24 6.00000 1.39973 0.46331

25 6.25000 1.47182 0.11337

26 6.50000 1.45416 -0.25458

27 6.75000 1.34508 -0.61812

28 7.00000 1.14851 -0.95439

29 7.25000 0.87402 -1.24152

30 7.50000 0.53633 -1.46003

31 7.75000 0.15456 -1.59411

32 8.00000 -0.24879 -1.63275

33 8.25000 -0.64921 -1.57055

34 8.50000 -1.02156 -1.40825

35 8.75000 -1.34169 -1.15286

36 9.00000 -1.58798 -0.81744

37 9.25000 -1.74272 -0.42044

38 9.50000 -1.79337 0.01524

39 9.75000 -1.73351 0.46358

40 10.00000 -1.56345 0.89696

41 10.25000 -1.29035 1.28782

42 10.50000 -0.92807 1.61041

43 10.75000 -0.49647 1.84242

44 11.00000 -0.02035 1.96654

45 11.25000 0.47192 1.97163

46 11.50000 0.95008 1.85365

47 11.75000 1.38381 1.61613

48 12.00000 1.74459 1.27018

49 12.25000 2.00762 0.83403

50 12.50000 2.15339 0.33212

TABLE 3: This shows results of using the stable leapfrog procedure given by eqns 2.12:
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vn+ /1
2 = vn− /1

2 +
k

m
(xn − x0) ∆ t (2.12a)

and

xn+1 = xn + vn+ /1
2 ∆t, (2.12b)

as described in the text. The initial conditions are: x0 = 1 and v− /1
2 = 0. The timestep is ∆t = 0. 5. Note

that the error introduced by using v− /1
2 = 0 for the velocity tv− /1

2 causes the magnitude of the amplitude to
be about 1.03 rather than the expected 1. (figure 2) This starting error does not grow.


