
7. Two Dimensions
a Theory I - Isolated mass between four springs

Figure 7.1  This 
shows a mass 
suspended by two 
pairs of identical 
springs  within a 
rectangular frame.  
One spring pair 
lies along the 
x−axis and the 
other along the 
y−axis.  They exert 
sufficient force on 
the central mass so 
that gravity may be 
neglected.
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The one-dimensional discussion above is easily extended to two dimensions. Consider the configura-
tion shown in figure 7.1. Tw o pairs of identical springs suspend a single mass within a rectangular frame.
One spring pair lies along the x-axis and the other along the y-axis. They exert sufficient force on the cen-
tral mass so that gravity may be neglected. Now displace the mass along the z-axis and examine the result-
ing force on the mass (figure 7.2). As with the one-dimensional example, the x-components of the force
cancel, as do the y-components, leaving only a vertical component:

Fz = −2Fx sinθ − 2Fy sin φ (7.1)

where z is the distance from equilibrium at z = 0, θ is the angle the springs parallel to the x-axis makes
with the horizontal, and φ is the angle the springs parallel to the y-axis makes with the horizontal. It is
assumed that the displacement is small compared to the lengths of the strings, that is,

|z| << ∆x

and

|z| << ∆y.

(7.2)

Then eqn (7.1) becomes

Fz ≈ −2(Fx + Fy)z. (7.3)

Thus the mass undergoes simple harmonic motion along the z-axis as if attached to a single spring with an
effective spring constant of

k′ = 2(Fx + Fy) (7.4)

b Theory II - An Array of Masses

Now consider a two-dimensional array of masses and springs, as in figure 7.3. All springs parallel to
the x-axis are identical to one another, and all springs parallel to the y-axis are identical to one another. It
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Figure 7.2  The 
mass 
suspended by 
two pairs of 
identical 
springs  within 
a rectangular 
frame from 
figure 7.1 is 
displaced a 
short distance 
along the 
z−axis from the 
equilibrium 
position.

S
y

S
x

S
y

S
x

z-axis

θ

ϕ

is assumed that the spacings, ∆x and ∆y, are equal and any vertical displacements will be small relative to
this spacing.

In order to study the forces on the (i,j)th mass, first examine figure 7.4a which shows the jth row
from fig. 7.3 with a small z displacement. The horizontal force components will cancel for small displace-
ments, leaving only a vertical component

fi, j = Fx


sin(θ l) − sin(θ r )


, (7.5)

where Fx is the magnitude of the force the each of the two springs parallel to the x-axis exerts on the indi-
vidual masses, θ l is the angle the spring to the left of the mass makes with respect to the horizontal, and θ r

is the angle the spring to the right of the mass makes with respect to the horizontal. From the figure it is
clear that

sin(θ l) =
zi, j − zi−1, j

√ (∆x)2 + (zi, j − zi−1, j)2
≈

zi, j − zi−1, j

∆x
(7.6)

and

sin(θ r ) =
zi+1, j − zi, j

√ ∆x2 + (zi+1, j − zi, j)2
≈

zi+1, j − zi, j

∆x
. (7.8)

Thus the contribution to the force acting on mi, j due to the springs parallel to the x-axis is

fi, j = Fx



zi+1, j − zi, j

∆x
−

zi, j − zi−1, j

∆x



. (7.9)

Now inspect figure 7.4b which shows the ith column from fig. 7.3 with a small z displacement. Again, the
horizontal force components cancel, leaving only a vertical component

gi, j = Fy


sin(φ l) − sin(φ r )


, (7.10)

where Fy is the magnitude of the force the each of the two springs parallel to the y-axis exerts on the
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Figure 7.3  This shows a two  dimensional array of masses and springs in a rectangular frame.  
The springs exert enough force so that  no significant sagging exists at equilibrium.

individual masses, φ l is the angle the spring to the left of the mass makes with respect to the horizontal, and
φ r is the angle the spring to the right of the mass makes with respect to the horizontal. It is clear that

sin(φ l) =
zi, j − zi, j−1

√ (∆y)2 + (zi, j − zi, j−1)2
≈

zi, j − zi, j−1

(∆y)
(7.11)

and

sin(φ r ) =
zi, j+1 − zi, j

√ (∆y)2 + (zi, j+1 − zi, j)2
≈

zi, j+1 − zi, j

(∆y)
. (7.12)

The contribution to the force acting on mi, j due to the springs parallel to the y-axis is then

gi, j = Fy





zi, j+1 − zi, j

∆y
−

zi, j − zi, j−1

∆y





. (7.13)
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Figure 7.4a  This shows the jth 
row from figure 7.3 in which the 
mass−spring array has 
undergone a small transverse 
displacement.

Thus the acceleration on the i,jth mass becomes

ai, j =




fi, j + gi, j



mi, j
=

Fx

mi, j




zi+1, j − zi, j

∆x
−

zi, j − zi−1, j

∆x



+
Fy

mi, j





zi, j+1 − zi, j

∆y
−

zi, j − zi, j−1

∆y





, (7.14)

The remainder of this discussion will make use of the simplifying assumptions that all springs are identical,

Fx = Fy = F , (7.15)

and that the spacings in x and y are equal,

∆y = ∆x. (7.16)

Constructing an algorithm for the non-isotropic case is straightforward, and is left as an exercise for the
interested reader. Using the above assumptions, eqn. (7.14) becomes

Fy

mi, j





zi+1, j + zi, j+1 − 4 zi, j + zi−1, j + zi, j−1

∆x





, (7.17)

and a numerical solution can be constructed using eqns (2.12):

vn+ /1
2

i, j = vn− /1
2

i, j +
F

mi, j ∆x
(zn

i−1, j + zn
i, j−1 − 4 zn

i, j + (zn
i+1, j + zn

i, j+1) ∆ t (7.18a)

and

zn+1
i, j = zn

i, j + vn+ /1
2

i, j ∆t. (7.18b)

Obviously, the initial conditions must specify the starting displacements and velocities for each mass. To
complete one timestep, eqns (7.18) must be computed Nx * Ny times. That is, once for each mass.
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Figure 7.4b  This shows the  jth 
column from figure 7.3 in which the 
mass−spring array has undergone a 
small transverse displacement. This 
displacement is greatly magnified 
here.  In reality it is much smaller 
that the lengths of the springs.

c Theory III - A Stretched Membrane

Now consider a membrane stretched on a rectangular frame. Here, a ‘‘membrane’’ will be consid-
ered to be any flexible length of material whose area is large enough so that its thickness is insignificant
when compared to its length or width. Its only defining parameter is its surface density, σ . It will be
assumed to be clamped at its ends and ‘‘stretched’’ by forces pulling on the each of its ends. It will be fur-
ther assumed that these edge forces pull perpendicular to the edges, so no shear forces are introduced. This
creates tension in the membrane.

In a membrane, tension has units of force per unit length, as opposed to string tension which has units of
force. To understand the source of the difference, consider figure 7.5 which depicts one method for creat-
ing a specific tension in a string. A string is attached to a rigid wall. A weight of mass m is attached to the
other end, with the string passing over a pulley. The mass of the string is much less than the weight. The
tension in the string is equal to the downward force produced by the weight,

F = m g, (7.19)

where g is the gravitational acceleration. In figure 7.6a, the string has been replaced by two identical
strings. The total force pulling on the strings remains the same, F , but this is now distributed over two
strings, so the tension in each is half of that force or F /2. If, as in figure 7.6b, there are four strings, the
tension per string is only F /4. This can be extended to N strings, for which the tension at any point in any
string would be

T =
F

N
. (7.20)

Now if a membrane of width W , figure 7.6c, was considered to be constructed of N strings (as if a
woven fabric), the number of strings per unit length would be N /W , and the tension at a point in the mem-
brane could be expressed as

T =
F

W
. (7.21)
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T =  mg

Figure 7.5  This is one method for creating a specific tension 
in a string.  A string is attached to a rigid wall.  A weight of 
mass m is attached to the other end, with the string passing 
over a pulley.  The mass of the string is much less than the 
weight.  The tension, T, in the string is equal to the downward 
force produced by the weight,   mg, where g is the 
gravitational acceleration.

mg

 mg

 mg

Figure 7.6a  The string in figure 7.5 has been replaced by 
two identical strings.  The total force pulling on the strings 
remains the same, mg, but this is now distributed over two 
strings, so the tension  in each is half of that force or mg/2.

In general, the tensions in the two different directions may differ, but it will be assumed here that they are
the same. Extending the following discussion for the case of differing tensions is straightforward, if
tedious. It is assumed that enough tension is applied to prevent any significant sagging, so that gravity may
be neglected.

Figure 7.7 depicts a rectangular stretched membrane with dimensions Lx and LY , divided into many
small surface elements, each with area ∆x ∆y. These are assumed small compared to the overall
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Figure 7.6b  The string in figure 7.5 has been replaced by 
four identical strings.  The total force pulling on the strings 
remains the same, mg, but this is now distributed over four 
strings, so the tension  in each is half of that force or mg/4.
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Figure 7.6c  The string in figure 7.5 has now been replaced 
by a membrane of width W.  If the membrane is considered 
to be constructed of N strings (as if a woven fabric, for 
example), the number of strings per unit length would be 
N/W, and the tension at any point in the membrane would be 
mg/w.    

W

dimensions of the membrane. That is

∆x << Lx

and

∆y << Ly.

(7.22)

Figure 7.8 shows one of the surface elements with four of its neighbors from a stretched membrane which
has undergone a small displacement in the z-direction. Also shown are the four forces pulling on this ele-
ment. (It is assumed that any tension along the diagonal is negligible.) When the displacements are small,
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Figure 7.7   
This depicts a 
rectangular 
stretched 
membrane with 
dimensions Lx 
and Ly, divided 
into many small 
surface 
elements, each 
with area ∆x.∆y.  
These elements 
are assumed 
small compared 
to the overall 
dimensions of 
the membrane.

all horizontal forces cancel, leaving only a vertical component. Furthermore, if the displacement is smooth,
that is, it is not discontinuous, the directions of the four forces acting on the membrane may be approxi-
mated by the directions of the lines joining the center of element (i,j) and the centers of the four adjoining
elements. The net contribution of the force pulling to the left is

FL sin ξ L = T ∆y sin ξ L. (7.23)

The factor of ∆y is required because the tension acts along a distance ∆y (the left edge of the zone). Here,
ξ L is the angle between the line joining the centers of element (i,j) and element (i-1,j) with the horizontal,
or

sin ξ L =
zi−1, j − zi, j

√ ∆x2 + (zi−1, j − zi, j)2
. (7.24)

The assumption of small vertical displacements implies

|zi−1, j − zi, j | << ∆x, (7.25)

so that

sin ξ L ≈
zi−1, j − zi, j

∆x
. (7.26)

Likewise, the net contribution of the force pulling to the right is

FR sin ξ R = T ∆y sin ξ R. (7.27)

Now, ξ R is the angle between the line joining the centers of element (i,j) and element (i+1,j) and the hori-
zontal, or

sin ξ R =
zi+1, j − zi, j

√ ∆x2 + (zi+1, j − zi, j)2
≈

zi+1, j − zi, j

∆x
. (7.28)
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Figure 7.8  This shows one of the surface elements from a stretched membrane (figure 7.7) 
which has undergone a small displacement in the z−direction.  This surface element is tilted 
by an angle θi,j  with respect to the x−axis and φi,j  with respect to the y−axis.  Both of these 
angles are small.

The force pulling on the top edge of the zone contributes a net force of

FT sin ξT = T ∆x sin ξT . (7.29)

Now the factor of ∆x is required because the tension acts along the width of the top edge (∆x) .  The
angleξT is the angle formed by the line joining the centers of elements (i,j+1) and element (i,j) with the hor-
izontal, thus

sin ξT =
zi, j+1 − zi, j

√ ∆y2 + (zi, j+1 − zi, j)2
≈

zi, j+1 − zi, j

∆y
. (7.30)

Similarly, the net contribution from the force pulling on the bottom edge of the zone is

FB sin ξ B = T ∆x sin ξ B, (7.31)

where ξ B is the angle between the line joining the centers of elements (i,j) and element (i,j-1) with the hori-
zontal, giving

sin ξ B =
zi, j−1 − zi, j

√ ∆y2 + (zi, j−1 − zi, j)2
≈

zi, j−1 − zi, j

∆y
. (7.32)

These four contributions may be summed to produce

Fz = T ∆y


zi+1, j − zi, j

∆x
−

zi−1, j − zi, j

∆x



+ T ∆x




zi, j+1 − zi, j

∆y
−

zi, j−1 − zi, j

∆y




. (7.33)

Newton’s second law implies
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az =
Fz

mi, j
, (7.34)

where az is the acceleration in the z-direction, and mi, j is the mass of zone i, j. Thus

az =
T

mi, j
∆y


zi+1, j − zi, j

∆x
−

zi−1, j − zi, j

∆x



+
T

mi, j
∆x





zi, j+1 − zi, j

∆y
−

zi, j−1 − zi, j

∆y




. (7.35)

comparing this equation with eqn (7.14) implies that the same numerical algorithm designed to simulate the
two dimensional array of springs described above will also model a membrane when the point masses are
equated with the individual element masses and the forces acting on them in the x- and y-directions are
equated with T ∆y and T ∆x, resp.

The mass of an element is

mi, j = σ ∆x ∆y (7.36)

Substituting eqn (7.36) into eqn (7.35) produces

az =
T

σ





1

∆x



zi+1, j − zi, j

∆x
−

zi−1, j − zi, j

∆x



+
1

∆y





zi, j+1 − zi, j

∆y
−

zi, j−1 − zi, j

∆y









. (7.37)

Those familiar with the Calculus, will recognize this as the two dimensional wav e equation

∂2z

∂2t
=

T

σ





∂2z

∂2 x
+

∂2z

∂2 y




, (7.38)

cf. equations (7.37) and (25). Thus any program simulating vibrating membranes in this manner also simu-
lates light wav es in two dimensions if it is assumed that

c

η
= √ T

σ
, (7.39)

where c is the speed of light in vacuum, and η is the index of refraction of the material through which the
light wav e is traveling.


