¢. Numerical Examples

Traveling Waves

This first example is intended to familiarize the reader with the operation of the program. The pro-
gram’s setup options should be used to create a triangular displacement in y but with zero velocity, select-
ing method 3, as shown in figure 5.5. When the program is started, the displacement will
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Figure 5.5 This shows initial conditions consisting of a triangular transverse
displacement with no initial velocity. This is the first numerical example
described in section 5.c.

dissolve into two traveling waveforms; one traveling leftward, and one traveling rightward (figure 5.6).
This is a general result, as the eager reader can verify with differing initial conditions. The triangular
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Figure 5.6 This shows conditions shortly after starting the program. The initial
conditions which consisted of a triangular transverse displacement with no
initial velocity dissolves into two triangluar waveforms moving in opposite
directions.

waveform will be used here asit is particularly amenable to geometrical analysis.

Traveling waveform

A traveling waveform is a disturbance which changes position without changing shape. When
restricted to one dimension, as in this context of a string, the spatial displacement may be described at time
t = 0 asafunction of only one spatial variable. Using x asthat variable, thisimplies
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y = f(x). (5.23)
Then atraveling wave moving to the |eft (decreasing x) is written
y = f(x+VvAt). (5.24)

Here, the velocity of the wave form along the string is represented by v and is assumed constant. The
elapsed time, At, since the beginning, t°, is

A=t—1° (5.25)

Equation. (5.24) expresses that after a time interval At, the point on the waveform which was ini-
tially at x = 0isnow located at x = —v At, asillustrated in figure 5.7. It followsthat arightward (in the
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Figure5.7 At the initial time, t=0, the wave consists of a single pulse. At
a later time, t=At, the pulse has traveled to the right a distance vAt for a
rightward moving traveling wave (left column) or a distance vAt to the left
for a leftward moving traveling wave (right column). The velocity v is the
speed of sound in the string.

direction of increasing x) moving waveform iswritten
y=f(x—=vAt). (5.26)
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The reader may verify that the two wave pulses generated from the initial state discussed above are
in fact traveling waveforms with equal, but opposite, velocities. Thisisillustrated in figure 5.8.
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Figure 5.8 This shows the LCSE string program in multi—display mode. That
the velocities of the two waveforms are equal and oppostie may be verified by
measuring the distance traveled, Ax, by either wave for a specific time interval.
These distances will be equal and opposite.

The actual value of the velocity may be found using the definition of velocity from eqn. (2.6) repeated here:

_ A(position)
'S T Aime) (6)
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This velocity is often referred to as the sound speed of the medium, as sound is just another, but familiar,
wave phenomenon. For strings, the speed of sound is

T
=\l — 5.27

c=1 7 (5.27)

where T isthe tension in the string, with units of aforce, and 4 is the linear density, with units of mass per
length. It is possible to verify that egn. (5.27) is the proper formulation for the wave speed on a string by

using the program to measure the wave speeds for various tensions and densities.

Creating an isolated traveling waveform.

In order to determine the initial conditions for a traveling wave, study carefully the motion of the
wave traveling to the right under the conditions suggested at the beginning of this section. It is crucial to
realize that no portion of the string moves in the direction of wave motion, the longitudinal direction.
Rather, al string motion is perpendicular (transverse). Thisis obvious for the case of a string with its ends
fixed, as the reader may easily verify for him- or herself. It isalso true for wavesin other materials, such as
water.

Now, rather than concentrate on the wave, use the program to consider what happens to a specific ele-
ment of the string (as if a point on the string had been marked by paint). The element remains at rest (FIG-
URE 5.9a) until the moment the waveform reaches that point (FIGURE 5.9b) at which point it begins to
move upward, implying a positive y-velocity (FIGURE 5.9-¢). From the geometry of the waveform (FIG-
URE 5.10), it can be determined that the upward displacement of the string element (Ay ) can be related to
the distance by which the wave has overrun the element ( Ax ):

Ay = Ax tan(9), (5.28)

where tan(#) is a constant depending upon the exact shape of the waveform. For the symmetric waveform
used here,

H
tan(g) = T (5.29)
where H isthe amplitude of the wave and L is half of itswidth. But egn. (2.6) above implies
AX =C At. (5.30)
Thisleadsto
Ay = ¢ At tan(9). (5.31)
Thus the transverse vel ocity of the string element is
Ay cH
Vy = E =C tan(G) = T y (532)

until the apex of the waveform passes (fig 5.9d), at which point the string element reverses direction and
moves downward (fig 5.9¢). Similar geometrical arguments to the above can be used to show that the
velocity is now

cH

vy = o (5.33)

Those familiar with the calculus may begin with the definition of the transverse velocity, egn. (2.6):

Ay
vy = e (2.6)
Using eqn. (5.30) produces
Ay
vy=¢C Ax (5.34)
In the limit Ax — O, this becomes
vy=c¢ g% , (5.35)

which can be a useful result when initializing problems in general. For example, to create a traveling sine



Figure5.9 Thisschematic illustrates what happens to a specific element
of the string (indicated here by the dot) when a triangular waveform
passes. Depicted hare are five snapshots separated in time by a uniform
At. (Timeincreases downward.) The element remains at rest (a) until the
moment the waveform reaches that point (b), at which point it begins to
move upward, implying a positive y—velocity (c), until the apex of the
waveform passes (d). At that point the string element reverses direction
and moves downward (e).

wave with theinitial transverse displacement
y(x) = Asin(ax), (5.36)
requiresinitial velocities of
Vy(X) = Aca cos(arX). (5.37)

To summarize: aleftward triangular traveling wave form is defined by a spatial displacement



Figure5.10 This depicts the geometry of a symmetrical triangular
wave pulse. The maximum amplitude is H and the full width of the
pulseis2L. Thusfrom basic trigonometry tan(6) = HJ/L.

0, if |x|]<L,
y(x) = « (5.389)
H(1+ ), if 0<ix<L

and atransverse velocity distribution of

0, if |x|>L,
H
vy(X) = CT it 0<x<L, . (5.38b)

_CH if _L<x<o,
L,

It is left as an exercise to the reader to determine that a rightward traveling wave is defined by the spatial
displacement

0, if |x<L
y(X) = « (5.39)
H(1+f)’ if 0<|x|<L

and atransverse velocity distribution of

0, if x> L

H
vy(¥) = -CT, if 0<x<L . (5.390)

CH  jf_L<x<o0
L!

The reader is strongly encouraged to use the program to verify these equations do in fact describe traveling
waves. These equations also hold when the sign of H changes (that is, for a dip). Note that this also
changes the sign on the velocities.

wave superposition
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The program will now be used to examine the principle of superposition: which states that when two
or more waves are present, they act independently of one another and the resulting waveform is the sum of
the these individual components. Begin by using the setup options to create two traveling triangular
waveforms asin fig. 5.11.
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Figure5.11 Thisshowstheinitial conditionsto create two triangluar waveforms
travelling towards each other. Both waveforms have a positive amplitude.

The leftward moving waveform should be to the right of the rightward moving waveform so that they will
move toward one another when the program is started. Each should have the same geometrical shape with
their velocities differing only in sign, as necessary to determine their directions. Run the program and halt
it when the two waveforms overlap. Note that the amplitude of the resulting displacement is twice that of
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either of the two traveling waves and that the waveform is simply the sum of the two traveling waves. Also
note that if the two velocity distributions are added, they sum to zero when the overlap is exact. Thisisthe
condition described at the beginning of this section, showing that the results of that first example are a gen-
era result of wave superposition. Continuing the program from this point shows this single triangular dis-
placement dissolving back into the two component waveforms, another consequence of superposition.
Because the two waves act independently, they can pass through one another without changing their indi-
vidual characteristics.

The next example uses a similar pair of waves, but with amplitudes mirrored as shown in figure 5.12.
(Note that the velocities are also mirrored to again produce waves traveling towards one another.) Now
when the two waves to approach and pass through one another, their amplitudes will cancel. Note that
when their positions exactly overlap, no spatial disturbance is visible, but if the program is allowed to con-
tinue, each wave emerges unscathed traveling in its own initial direction. At that instant of exact overlap,
the spatial displacements of the two waves cancelled, but not their velocities. This can be verified by trying
the resultant velocity distribution without any initial transverse displacement, astheinitial conditions.

Energy of awave
This example uses wave superposition to provide a simple way of determining the total energy of the two
waves. Since there is no displacement during the moment of exact overlap, the energy of the waves must
consist entirely of kinetic energy. (Recall that while the transverse displacements summed to zero, the
transverse velocities did not.)

For a particle of mass m and velocity v itskinetic energy is

1
KE=3 mv2., (5.40)
Here, during the moment of exact overlap, there exist two uniform sections of string, each with mass AL

moving with velocities +cH/L, thus the kinetic energy and hence total energy is

AC?H?
. 541
- (5.41)
By symmetry, each individual waveform must have half of thisvalue or
AC?H?
E= . 5.42
oL (542)

Reflection and transmission at an interface

The program may be used to simulate awire formed by joining two lengths of differing linear densi-
ties. Consider the case when the linear density of the left half isfour times that of the right half. From egn.
(5.27), the sound speed in the right will be twice that in the left. A rightward traveling wave in the left half
of thewire asin figure 5.13 will divide into two pulses, one reflected and one transmitted, figure 5.14.

Note that the width of the transmitted pulse is twice that of theinitial pulse. This can be understood
geometrically by realizing that when the leading edge of the pulse enters the less dense material it must
immediately move at the faster wave speed, while the trailing edge, which is still in the less dense material,
must continue at the slower speed. This results in a stretching of the wave form. To get the exact ratios,
consider that awaveform traveling at a velocity ¢ requires atime At to travel adistance Ax of

_Ax

At 5.43
c (5.43)
Using the widths of the two waveforms as Ax produces
2L
Aty = =1, (5.44a)
C1
and
2L
At, = =2 (5.44b)
Co

where the subscripts identify the two differing densities. These two times must be equal, since the point
immediately to the left of the interface is contiguous with the point immediately to itsright,
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Figure5.12 Thisshowstheinitial conditionsto create two triangluar waveforms
travelling towards each other. One waveform hase a positive amplitude while the
other has a negative amplitude. Compare and contrast these initial conditions
with those of figure 5.11, in which both waveforms have positive amplitudes.

2k, _ 2L, (5.45a)
C1 c '
or
Ly=2L, 3 (5.45)
C2
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Figure5.13 These aretheinitial conditions for the example of wave reflection at
an interface as described in the text. Two lengths of differing linear densitiesare
joined at the center. The density of the left half is four timesthat of theright. A
rightward travelling wave is established in the left half of the string.

Of course, the reflected pulse has the same width because it remains in the same material.

In order to determine the amplitudes of the reflected H, and transmitted H; waves in terms of the
amplitude of the incident (original) wave, H;, two pieces of information will be required. (There are, after
all, two unknowns.) These will come from conservation of energy and the continuity of the string.
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Figure5.14 Two lengths of differing linear densities are joined at the center.
The density of the left half is four times that of the right. A rightward travelling
wave which was established in the left half of the string has struck the density
interface. At theinterface, thiswave split into two travelling waves. a reflected

wave travelling left, and a transmitted wave traveling right.

Conservation of energy requires that the energy of the sum of the reflected and transmitted waves
must equal the energy of the incident wave. Using egn (5.42) to equate the energies on either side of the
interface produces
A1C2HZ  A,C3H?2 _ A5C3H2 (5.462)

2L, 2L, 2L,
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A
HE = /; (Hiz_ Hf). (5.46b)
2

In order to prevent a discontinuity developing at the interface, the transverse velocity immediately to the
left must equal the velocity immediately to the right of the interface. The velocity on the left is the sum of
the incident and reflected waves (when they overlap) thus

or

ciHi ¢ H, _ CoH; 473)
Ly Ly L2

which simplifiesto
Hi=H; +H,. (5.47b)
Eqgns (5.46b and (5.47b) may be solved for H, and H;:

Hr = \/i_l_\/ﬂ: Hi (5.48)

and

_ 2V
A1+,
These eguations may be verified by the string program using various combinations of linear densities.

It should be noted from equation 67 that when a waveform reflects from an interface for which the string
beyond is denser, the amplitude of the reflected wave is reversed.

The energies of the reflected and transmitted waveforms may now be found. Using egn (5.48) and
simplifying gives

H, H;. (5.49)

4212
E=— 12 _F (5.50)

(]

for the transmitted wave and
E = E, (5.51)

for the reflected wave.

These lead to the coefficient of reflection, which is the ratio of reflected energy to incident energy,

)
Rs—5
()

(5.52)

and the coefficient of transmission,

4122
(]

When 1, = 4,, that is, when the string is continuous, these coefficients reduceto R—-0and T — 1 as
expected.

Now consider the effects of adding a short length of an intermediary density at the interface, forming
a wire made of three segments. Several things will be observable. First, when the pulse strikes the first
interface, the intensity of the reflected wave is reduced from the previous example because the difference in

T= (5.53)
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densities at the interface has also been reduced. The intensity of the transmitted wave is greater for the
same reason. The transmitted wave continues until it reaches the second interface, at which point it splits
again into a reflected and transmitted wave. The final transmitted wave is dightly stronger than in the pre-
vious example. If the second reflected wave is studied, it will be seen to bounce back and forth between the
two interfaces, splitting into a reflected and transmitted wave at each bounce, albeit with decreasing ampli-
tude. Thisisanalogousto reverberation in alarge auditorium, or the internal reflections often seen in thick
glass plates. The sign amplitude of the pulse trapped between the two interfaces reverses on every other
reflection, when it reflects from a boundary where the string beyond has a greater density.

This idea of increasing the transmission of awave at an interface by inserting an intermediate mate-
rial can be extended by adding more pieces of intermediate densities. The logical extension of this process
is to match the two densities with a short segment of linearly and continuously increasing density. Thisis
anal ogous to impedance matching in electronic circuits.

6. Numerical Artifacts

The most common numerical artifact encountered with the string program results from discontinu-
ities in the initial conditions. Figure 6.1 shows an initial displacement consisting of a discontinuity in the
transverse direction. When run with this initial condition, the program produces two traveling waves, as
expected, but the edges of the waves exhibit *‘ringing,” which was hot expected (figure 6.2). The overall
properties are correct (two oppositely traveling waves) but the small details are not (the ringing). This
should not be surprising, since the initial conditions violate the assumptions used in deriving the program,
particularly that the string was smooth and continuous inherent in applying egn. (2.12). What these initial
conditions represent - one element of the string displaced many times its diameter (recall that the y-axisis
magnified in the string display) - isin reality a broken string. Trying to create such conditions in a rea
string (without breaking it) would require the transverse displacement to occur across afew string elements.
As figure 6.3 shows, spreading the discontinuity over just a few elements (here six) dramatically reduces
the numerical artifacts.
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Figure 6.1 Thisshowsinitial conditions consisting of a discontinuity in the
transverse displacement. The displacement (which is large compared to the assumed
diameter of the string) occurs over only one string element. In reality, this would
correspond to a broken string.
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Figure6.2 The discontinuity of figure 6.1 produces two waves travelling in oposite
directions. The leading edge of each wave exhibits “‘ringing’” which is a numerical
artifact. This arises because the initial conditions for this problem violate the
assumptions used in deriving the program, particularly that the string was smooth
and continuous.
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Figure 6.3 When the discontinuity of figure 6.1 is spread over a few elements, the
numerical artifacts are greatly reduced. Asthe initial discontinuity is spread over
more and more elements, theinitial conditions match the assumptions used in
deriving the program more and more closely.



