
c. Numerical Examples

Trav eling Wav es

This first example is intended to familiarize the reader with the operation of the program. The pro-
gram’s setup options should be used to create a triangular displacement in y but with zero velocity, select-
ing method 3, as shown in figure 5.5. When the program is started, the displacement will

Figure 5.5  This shows initial conditions consisting of a triangular transverse 
displacement with no initial velocity.  This is the first numerical example 
described in section 5.c.

dissolve into two traveling wav eforms; one traveling leftward, and one traveling rightward (figure 5.6).
This is a general result, as the eager reader can verify with differing initial conditions. The triangular
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Figure 5.6  This shows conditions shortly after starting the program.  The initial 
conditions which  consisted of a triangular transverse displacement with no 
initial velocity dissolves into two triangluar waveforms moving in opposite 
directions.  

waveform will be used here as it is particularly amenable to geometrical analysis.

Trav eling wav eform

A traveling wav eform is a disturbance which changes position without changing shape. When
restricted to one dimension, as in this context of a string, the spatial displacement may be described at time
t = 0 as a function of only one spatial variable. Using x as that variable, this implies
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y = f (x). (5.23)

Then a traveling wav e moving to the left (decreasing x) is written

y = f (x + v ∆ t). (5.24)

Here, the velocity of the wav e form along the string is represented by v and is assumed constant. The
elapsed time, ∆t, since the beginning, t0, is

∆ = t − t0. (5.25)

Equation. (5.24) expresses that after a time interval ∆t, the point on the wav eform which was ini-
tially at x = 0 is now located at x = −v ∆ t, as illustrated in figure 5.7. It follows that a rightward (in the
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Figure 5.7  At the initial time, t=0, the wave consists of a single pulse.  At 
a later time, t=∆t, the pulse has traveled to the right a distance v∆t for a 
rightward moving traveling wave (left column) or a distance v∆t to the left 
for a leftward moving traveling wave (right column).  The velocity v is the 
speed of sound in the string.

t=0

t=∆t

direction of increasing x) moving wav eform is written

y = f (x − v ∆ t). (5.26)
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The reader may verify that the two wav e pulses generated from the initial state discussed above are
in fact traveling wav eforms with equal, but opposite, velocities. This is illustrated in figure 5.8.

Figure 5.8  This shows the LCSE string program in multi−display mode.  That 
the velocities of the two waveforms are equal and oppostie may be verified by 
measuring the distance traveled, ∆x, by either wave for a specific time interval.   
These distances will be equal and opposite.

∆x ∆x

The actual value of the velocity may be found using the definition of velocity from eqn. (2.6) repeated here:

v =
∆(position)

∆(time)
. (2.6)
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This velocity is often referred to as the sound speed of the medium, as sound is just another, but familiar,
wave phenomenon. For strings, the speed of sound is

c = √ T

λ
(5.27)

where T is the tension in the string, with units of a force, and λ is the linear density, with units of mass per
length. It is possible to verify that eqn. (5.27) is the proper formulation for the wav e speed on a string by
using the program to measure the wav e speeds for various tensions and densities.

Creating an isolated traveling wav eform.

In order to determine the initial conditions for a traveling wav e, study carefully the motion of the
wave traveling to the right under the conditions suggested at the beginning of this section. It is crucial to
realize that no portion of the string moves in the direction of wav e motion, the longitudinal direction.
Rather, all string motion is perpendicular (transverse). This is obvious for the case of a string with its ends
fixed, as the reader may easily verify for him- or herself. It is also true for wav es in other materials, such as
water.

Now, rather than concentrate on the wav e, use the program to consider what happens to a specific ele-
ment of the string (as if a point on the string had been marked by paint). The element remains at rest (FIG-
URE 5.9a) until the moment the wav eform reaches that point (FIGURE 5.9b) at which point it begins to
move upward, implying a positive y-velocity (FIGURE 5.9-c). From the geometry of the wav eform (FIG-
URE 5.10), it can be determined that the upward displacement of the string element (∆y ) can be related to
the distance by which the wav e has overrun the element ( ∆x ):

∆y = ∆x tan(θ ), (5.28)

where tan(θ ) is a constant depending upon the exact shape of the wav eform. For the symmetric wav eform
used here,

tan(θ ) =
H

L
, (5.29)

where H is the amplitude of the wav e and L is half of its width. But eqn. (2.6) above implies

∆x = c ∆t. (5.30)

This leads to

∆y = c ∆t tan(θ ). (5.31)

Thus the transverse velocity of the string element is

vy =
∆y

∆t
= c tan(θ ) =

cH

L
, (5.32)

until the apex of the wav eform passes (fig 5.9d), at which point the string element reverses direction and
moves downward (fig 5.9e). Similar geometrical arguments to the above can be used to show that the
velocity is now

vy = −
cH

L
. (5.33)

Those familiar with the calculus may begin with the definition of the transverse velocity, eqn. (2.6):

vy =
∆y

∆t
. (2.6)

Using eqn. (5.30) produces

vy = c
∆y

∆x
. (5.34)

In the limit ∆x → 0, this becomes

vy = c
∂y

∂x
, (5.35)

which can be a useful result when initializing problems in general. For example, to create a traveling sine
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Figure 5.9   This schematic illustrates what happens to a specific element 
of the string (indicated here by the dot) when a triangular waveform 
passes.  Depicted hare are five snapshots separated in time by a uniform 
∆t.  (Time increases downward.)  The element remains at rest (a) until the 
moment the waveform reaches that point (b), at which point it begins to 
move upward, implying a positive y−velocity (c), until the apex of the 
waveform passes (d).  At that  point the string element reverses direction 
and moves downward (e).
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wave with the initial transverse displacement

y(x) = A sin(α x), (5.36)

requires initial velocities of

vy(x) = A c α cos(α x). (5.37)

To summarize: a leftward triangular traveling wav e form is defined by a spatial displacement
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Figure 5.10  This depicts the geometry of a symmetrical triangular 
wave pulse.  The maximum amplitude is H and the full width of the 
pulse is 2L.  Thus from basic trigonometry  tan(θ) =  H/L.

y(x) =







0,

H(1 +
x

L
),

if |x| ≤ L,

if 0 ≤ |x| ≤ L

(5.38a)

and a transverse velocity distribution of

vy(x) =











0,

cH

L
,

−
cH

L
,

if |x| > L,

if 0 ≤ x ≤ L,

if − L ≤ x ≤ 0,

. (5.38b)

It is left as an exercise to the reader to determine that a rightward traveling wav e is defined by the spatial
displacement

y(x) =







0,

H(1 +
x

L
),

if |x| ≤ L

if 0 ≤ |x| ≤ L

(5.39a)

and a transverse velocity distribution of

vy(x) =











0,

−
cH

L
,

cH

L
,

if |x| > L

if 0 ≤ x ≤ L

if − L ≤ x ≤ 0

. (5.39b)

The reader is strongly encouraged to use the program to verify these equations do in fact describe traveling
waves. These equations also hold when the sign of H changes (that is, for a dip). Note that this also
changes the sign on the velocities.

wave superposition
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The program will now be used to examine the principle of superposition: which states that when two
or more wav es are present, they act independently of one another and the resulting wav eform is the sum of
the these individual components. Begin by using the setup options to create two traveling triangular
waveforms as in fig. 5.11.

Figure 5.11  This shows the initial conditions to create two triangluar waveforms 
travelling towards each other.  Both waveforms have a positive amplitude.

The leftward moving wav eform should be to the right of the rightward moving wav eform so that they will
move tow ard one another when the program is started. Each should have the same geometrical shape with
their velocities differing only in sign, as necessary to determine their directions. Run the program and halt
it when the two wav eforms overlap. Note that the amplitude of the resulting displacement is twice that of
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either of the two traveling wav es and that the wav eform is simply the sum of the two traveling wav es. Also
note that if the two velocity distributions are added, they sum to zero when the overlap is exact. This is the
condition described at the beginning of this section, showing that the results of that first example are a gen-
eral result of wav e superposition. Continuing the program from this point shows this single triangular dis-
placement dissolving back into the two component wav eforms, another consequence of superposition.
Because the two wav es act independently, they can pass through one another without changing their indi-
vidual characteristics.

The next example uses a similar pair of wav es, but with amplitudes mirrored as shown in figure 5.12.
(Note that the velocities are also mirrored to again produce wav es traveling towards one another.) Now
when the two wav es to approach and pass through one another, their amplitudes will cancel. Note that
when their positions exactly overlap, no spatial disturbance is visible, but if the program is allowed to con-
tinue, each wav e emerges unscathed traveling in its own initial direction. At that instant of exact overlap,
the spatial displacements of the two wav es cancelled, but not their velocities. This can be verified by trying
the resultant velocity distribution without any initial transverse displacement, as the initial conditions.

Energy of a wav e
This example uses wav e superposition to provide a simple way of determining the total energy of the two
waves. Since there is no displacement during the moment of exact overlap, the energy of the wav es must
consist entirely of kinetic energy. (Recall that while the transverse displacements summed to zero, the
transverse velocities did not.)

For a particle of mass m and velocity v its kinetic energy is

K.E. =
1

2
mv2. (5.40)

Here, during the moment of exact overlap, there exist two uniform sections of string, each with mass λ L
moving with velocities ±cH /L, thus the kinetic energy and hence total energy is

λc2 H2

L
. (5.41)

By symmetry, each individual wav eform must have half of this value or

E =
λc2 H2

2L
. (5.42)

Reflection and transmission at an interface

The program may be used to simulate a wire formed by joining two lengths of differing linear densi-
ties. Consider the case when the linear density of the left half is four times that of the right half. From eqn.
(5.27), the sound speed in the right will be twice that in the left. A rightward traveling wav e in the left half
of the wire as in figure 5.13 will divide into two pulses, one reflected and one transmitted, figure 5.14.

Note that the width of the transmitted pulse is twice that of the initial pulse. This can be understood
geometrically by realizing that when the leading edge of the pulse enters the less dense material it must
immediately move at the faster wav e speed, while the trailing edge, which is still in the less dense material,
must continue at the slower speed. This results in a stretching of the wave form. To get the exact ratios,
consider that a wav eform traveling at a velocity c requires a time ∆t to travel a distance ∆x of

∆t =
∆x

c
. (5.43)

Using the widths of the two wav eforms as ∆x produces

∆t1 =
2L1

c1
, (5.44a)

and

∆t2 =
2L2

c2
, (5.44b)

where the subscripts identify the two differing densities. These two times must be equal, since the point
immediately to the left of the interface is contiguous with the point immediately to its right,
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Figure 5.12  This shows the initial conditions to create two triangluar waveforms 
travelling towards each other.  One waveform hase a positive amplitude while the 
other has a negative amplitude.  Compare and contrast these initial conditions 
with those of figure 5.11, in which both waveforms have  positive amplitudes.

2L1

c1
=

2L2

c2
, (5.45a)

or

L1 = 2L2
c1

c2
. (5.45b)
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Figure 5.13  These are the initial conditions for the example of wave reflection at 
an interface as described in the text.  Two lengths of differing linear densities are 
joined at the center.  The density of the left half is four times that of the right.  A 
rightward travelling wave is established in the  left half of the string.  

Of course, the reflected pulse has the same width because it remains in the same material.

In order to determine the amplitudes of the reflected Hr and transmitted Ht waves in terms of the
amplitude of the incident (original) wav e, Hi , two pieces of information will be required. (There are, after
all, two unknowns.) These will come from conservation of energy and the continuity of the string.
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Figure 5.14    Two lengths of differing linear densities are joined at the center.  
The density of the left half is four times that of the right.  A rightward travelling 
wave which was  established in the  left half of the string has struck the density 
interface.  At the interface, this wave split  into two travelling waves: a reflected 
wave travelling left, and a transmitted wave traveling right.

Conservation of energy requires that the energy of the sum of the reflected and transmitted wav es
must equal the energy of the incident wav e. Using eqn (5.42) to equate the energies on either side of the
interface produces

λ1c2
1 H2

i

2L1
+

λ1c2
1 H2

r

2L1
=

λ2c2
2 H2

t

2L2
(5.46a)
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or

H2
t = √ λ1

λ2



H2

i − H2
r


. (5.46b)

In order to prevent a discontinuity developing at the interface, the transverse velocity immediately to the
left must equal the velocity immediately to the right of the interface. The velocity on the left is the sum of
the incident and reflected wav es (when they overlap) thus

c1 Hi

L1
+

c1 Hr

L1
=

c2 Ht

L2
47a)

which simplifies to

Ht = Hi + Hr . (5.47b)

Eqns (5.46b and (5.47b) may be solved for Hr and Ht :

Hr = √ λ1 − √ λ2

√ λ1 + √ λ2

Hi (5.48)

and

Ht =
2 √ λ1

√ λ1 + √ λ2

Hi . (5.49)

These equations may be verified by the string program using various combinations of linear densities.
It should be noted from equation 67 that when a wav eform reflects from an interface for which the string
beyond is denser, the amplitude of the reflected wav e is reversed.

The energies of the reflected and transmitted wav eforms may now be found. Using eqn (5.48) and
simplifying gives

Et =
4 √ λ1λ2


√ λ1 + √ λ1




2 Ei (5.50)

for the transmitted wav e and

Er =


√ λ1 − √ λ1




2


√ λ1 + √ λ1




2 Ei (5.51)

for the reflected wav e.

These lead to the coefficient of reflection, which is the ratio of reflected energy to incident energy,

R =


√ λ1 − √ λ1




2


√ λ1 + √ λ1




2 (5.52)

and the coefficient of transmission,

T =
4 √ λ1λ2


√ λ1 + √ λ1




2 (5.53)

When λ1 = λ2, that is, when the string is continuous, these coefficients reduce to R → 0 and T → 1 as
expected.

Now consider the effects of adding a short length of an intermediary density at the interface, forming
a wire made of three segments. Several things will be observable. First, when the pulse strikes the first
interface, the intensity of the reflected wav e is reduced from the previous example because the difference in



-14-

densities at the interface has also been reduced. The intensity of the transmitted wav e is greater for the
same reason. The transmitted wav e continues until it reaches the second interface, at which point it splits
again into a reflected and transmitted wav e. The final transmitted wav e is slightly stronger than in the pre-
vious example. If the second reflected wav e is studied, it will be seen to bounce back and forth between the
two interfaces, splitting into a reflected and transmitted wav e at each bounce, albeit with decreasing ampli-
tude. This is analogous to reverberation in a large auditorium, or the internal reflections often seen in thick
glass plates. The sign amplitude of the pulse trapped between the two interfaces reverses on every other
reflection, when it reflects from a boundary where the string beyond has a greater density.

This idea of increasing the transmission of a wav e at an interface by inserting an intermediate mate-
rial can be extended by adding more pieces of intermediate densities. The logical extension of this process
is to match the two densities with a short segment of linearly and continuously increasing density. This is
analogous to impedance matching in electronic circuits.

6. Numerical Artifacts

The most common numerical artifact encountered with the string program results from discontinu-
ities in the initial conditions. Figure 6.1 shows an initial displacement consisting of a discontinuity in the
transverse direction. When run with this initial condition, the program produces two traveling wav es, as
expected, but the edges of the wav es exhibit ‘‘ringing,’’ which was hot expected (figure 6.2). The overall
properties are correct (two oppositely traveling wav es) but the small details are not (the ringing). This
should not be surprising, since the initial conditions violate the assumptions used in deriving the program,
particularly that the string was smooth and continuous inherent in applying eqn. (2.12). What these initial
conditions represent - one element of the string displaced many times its diameter (recall that the y-axis is
magnified in the string display) - is in reality a broken string. Trying to create such conditions in a real
string (without breaking it) would require the transverse displacement to occur across a few string elements.
As figure 6.3 shows, spreading the discontinuity over just a few elements (here six) dramatically reduces
the numerical artifacts.
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Figure 6.1  This shows initial conditions consisting of a discontinuity in the 
transverse displacement.  The displacement (which is large compared to the assumed 
diameter of the string) occurs over only one string element.  In reality, this would 
correspond to a broken string.
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Figure 6.2   The discontinuity of figure 6.1 produces two waves travelling in oposite 
directions.  The leading edge of each wave exhibits ‘‘ringing’’ which is a numerical 
artifact.  This arises because the initial conditions for this problem violate the 
assumptions used in deriving the program, particularly that the string was smooth 
and continuous.
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Figure 6.3   When the discontinuity of figure 6.1 is spread over a few elements,  the 
numerical artifacts are greatly reduced. As the initial discontinuity is spread over 
more and more elements,  the initial conditions match the assumptions used in 
deriving the program more and more closely.


