
SHMOD: Shared Memory Object Data
A Template for Cluster Programming
Sarah Anderson sea@lcse.umn.edu

February, 2003

Laboratory for Computational Science & Engineering
University of Minnesota

--- d r a f t ------------------------------------
This document describes a usage of the SHMOD library for cluster computing using
“Shared Memory Object Data”. It uses high bandwidth network transfers between
nodes in a cluster to remotely read or write data objects. By implementing these
objects as local file system files, we provide the application a persistent shared
memory. Independant update by participating nodes provides us with a fault-tolerant
way to use an arbitrary number of computing nodes to advance the global solution to a
domain-decomposed problem.

Required Software

The required database software is currently “mySQL”, available in many versions and
documented in http://www.mysql.com. The communication and I/O library is written in
C. Most array data operations are written in Fortran-77, which typically provides
superior performance for these.

SHMOD

The SHMOD library itself in its first versions required Myrinet (www.myri.com)
hardware. The “GM” message passing library support is available, but it is also
possible to use SHMOD with TCP/IP. In particular, Gigabit ethernet has been found to
provide in excess of 90 Mbytes/second network bandwidth (ia32 Linux) and more than
60 Mbytes/second with Windows 32. The sample “Makefile” in the shmod3 release
directory is easily modifiable for any Linux version; there will soon be a Microsoft
Visual C++ “project” file supplied to simplify construction of the shmod library. See the
README file in the shmod release directory for a short description of the routines
available in the shmod library.

The example code is found in the “shppm” release directory. It is not simple in the
sense of being extremely short - it is, in fact, a fully functional implementation of an
efficient 3D explicit mesh hydrodynamics solver. It has the following properties:

• It is based on Shmod, which requires a mySQL database server on a machine
accessible to all participating nodes.

• It assumes sufficient interconnection bandwidth between nodes. Here, sufficient
means as much or more bandwidth as one has to local disk. Typical local disks
read or write at 50-100 MByte/second, so sufficiently well interconnected
Gigabit ethernet will work, as will Myrinet. The application “kernel”, here a
simplified version of PPM (Piecewise Parabolic Method) hydrodynamics, must
be able to update a sub domain on a node in the time it takes to read and write
a context. By overlapping the computation with the pre-fetch and write-back of
two other domains, the I/O time can be completely hidden.

The Template Code

1. sweeps.m4
Perhaps the best way to explain the example code is “bottom up”, starting from the
computational kernel. The example code uses a directionally split PPM, “sPPM”, to
update a 3-D sub domain of the global problem. The update for a single time-step
then uses an “X-sweep”, “Y-sweep” and “Z-sweep” in succession. In order to proceed
without requiring boundary communication, a diminishing series of redundant
computation is performed (as is done in the PPM kernel itself) in these sweeps. To
stave off communication even farther, two time steps are computed; this requires six 1-
D sweeps on a sub domain. All this is done in the routines defined in sweeps.m4,
called to perform six 1-D sweeps within newtwosteps.f.

The header file included in most of the template is “iq.h”, which defines crucial sub
domain definitions (sizes), and various limiting constants. In particular, “NX”, “NY”, and
“NZ” are the fixed size of all sub domains. These are constants for simplicity, as are the
number of sub domains, “NTX”, “NTY” and “NTZ”. sPPM requires NBDY boundary
zones on each end of a 1-D strip to be updated, and NBDY2 boundary zones in
dimensions transverse to the 1-D sweep direction. One can see, then that the number
of “fake” zones needed for two full time step updates is NBDYF. The result of a sub
domain update is then a core array of “real” zones, and a copied set of redundant
“fake”, boundary zones.

sweeps embodies the most efficient methods we have found to use cache-based
microprocessors. It interleaves the physical quantities needed for PPM as NVAR
consecutive fast-running array indices in the arrays ddd0 and ddd1. It uses an update
pattern per CPU of pencils of zones in each 1-D sweep direction to block memory
references so as to make better use of memory cache. The pencils also are
conveniently sized chunks of work to assign to CPUs within a node. This is done with
OpenMP paralellization directives placed in the sweep logic, as well as in boundary
extraction and copying routines. It is perhaps more complicated that one could
imagine for a non-directionally split code, but any truly memory efficient 3-D array
referencing program should reflect the reality of the microprocessor architecture.

2. Data Structures

The convention throughout is that related data are grouped in common blocks
(Fortran), or structs (C), and that these are identically referenced by these include files:

 iq.h Constants which are used by both the C and Fortran
preprocessor

dynglobal.h dynglobal.f Dynamic data refreshed for each sub domain update
 stglobals.h stglobals.f Static data refreshed when starting a node program

bdrysin.f The ‘unpacked’ input data for a context update
bdrysout.f The ‘unpacked’ output data from an update
context.f The ‘packed’ input and output to an update

statistics.h statistics.f Descriptive statistics computed as a byproduct to
updating a context

taskorder.h taskorder.f Data describing the order in which to update
contexts, used when deciding which task to update.

3. Context level data structures

The sweeps routines are given data in a “packed” array ddd0 which contains the
required fake zones. The sweeps copy back and forth from ddd0 to ddd1, eventually
resulting (for the even number of sweeps, 6) back in ddd0. The writeback.f routines
“unpack” the core zones to the array ccc1 and associated boundary arrays xl, xr, yb, yt,
xlyb, xryb, xlyt, xryt. Because the global domain is decomposed in two dimensions,
(NTX and NTY) there are only 9 components to the unpacked context. This is a minor
simplification of boundary handling code and a reasonable data decomposition. Note
that task decomposition is still in (NTX, NTY, NTZ), that is, 3-D. Once the data is
unpacked, it can be written-back with individual Shmod writes. Of course, these are
non-blocking writes, and related functions which wait for write-back completion and so
on are found in contextio.c. Routines which start context pre-fetch, wait for said
prefetchs to complete, and pack contexts to ddd0 are found in copyer.f.

Contexts, expressed as unpacked boundary arrays and problem zone arrays, are
Shmod objects which are read and written from storage hosts. These hosts have
sufficient disk and network bandwidth to serve as many concurrent updating nodes as
are contemplated. Each such storage server runs a Shmod process (sriod for Myrinet,
and/or ipriod for TCP/IP networks) which responds to computation node requests for
data storage or retrieval. In the extreme cases, a storage server process can be
present at every computational node, or at none, running instead on a separate set of
storage server nodes. In this template code, the hostname and root directory of each
object is specified at the time of creation of the object. (See create_thing in Shmod.)
This is done by a round-robin assignment of contexts to the pool of storage hosts.
Subsequent reads and writes do not specify the location of objects, this information is
looked up in a data base query.

Periodic output is done with the LCSE’s “compressed dump” utilities expressed in the
tile_cdump.f routine. Tile_cdump is called as needed as part of a data context write-
back. The cdump routine uses a simple set of routines from Shmod which accomplish
non-local blocking writes, found in the nio.c package. It can target any sriod or ipriod
remote I/O server, so that output can be collected on a convenient host or hosts. The
location and host of each output file is also entered in a data base table, for use by
data tracking and migration utilities.

4. Initialization parameters and the main program

The main program is found in driver.c, which handles command-line parameters and
the parse of a keyword-value text file, inputdeck, used to initially define run
parameters. The interpretation of keywords should be obvious given the above
discussion of storage hosts, output host and so on, but as always, the final authority is
the well commented code itself.

Here is a sample input file, supplied in the template directory:

runname slip
all cdumps go here
dumphost user02
dumpdir /scr/sanderso/cdumps
contexts on each storage host
rootdir /scr/sanderso/context
storagehost clustor01
storagehost clustor02

storagehost clustor03
storagehost clustor04

mesh expansion over zones at each end
zexpand 10 1.10

dt [safety dtmin dtmax] defaults: 0.8 0.0 1000
dtime 0.005
steps time
stop 20000 2.0
interval [dtnext]
dtdump 0.02
#
-------------- shear turbulence setup, gamma=5/3
gamma 1.66666666666666
c=1, rho=1, gamma=5/3 p=sqrt(c*c*rho/gamma)
#shear dens prs vx vy zpos noise
shear 1.0 .77459666924148337703 0.5 0.01 0.5 0.01

Lines beginning with “#” are comments.

 5. Task assignment and control flow

The heart of the template is in driver.c and lookforwork.f. Overall control flow and the
3-stage prefetch, update and writeback pipeline is in C. Routines are called from with
the driver main program to initialize, update, read and write contexts, and those
routines are written in Fortran.

The lookforwork routine is responsible for interacting with the coordinating database. It
is called from driver with the index of the sub-domain (if any) completed in a cycle. The
control data in the data base table is just a “glob” of bytes comprising the dynglobal
common block/structure. It contains various data needed for task state tracking, time-
out handling, task ordering, and so on. Its basic function is to lock the global dynglobal
data base, read it into the common block, decide what to do next, write the common
block to the database and release the lock. Since this is a time-critical operation no
lengthy computation is done here. This allows hundreds of nodes to cooperate in
lookforwork, as each node performs this transaction relatively infrequently, typically
less often than once each 10 seconds.

Future Plans

The techniques described here perform well on large problems computed on a single
well connected cluster. Considering very large clusters, which allow us to store the
entire problem domain in node memory, or clusters of clusters interconnected less well
by WANs, leads us to modifying this scheme. We could provide the adaptation and
fault-tolerance features on longer time-scales, by using redundant persistent store less
often. Data replication (mirroring) and automatic context migration across cluster
boundaries must also be considered. Finally, the performance of the unifying data
base probably will have to be increased by coordinating multiple instances of data
base servers.

