

Cluster Programming with Shared Memory on
Disk

Sarah E. Anderson, B. Kevin Edgar, David H. Porter & P. R. Woodward
Laboratory for Computational Science & Engineering (LCS&E),
University of Minnesota

Abstract

The advent of high-performance workstation clusters with matching high-
performance network interconnects offers the opportunity to compute in new
ways. Cluster implementations of our hydrodynamics code typically have left
domain decomposed independent data contexts in each cluster member’s
memory, sending only an updated “halo” of domain boundary information to
neighboring nodes. On these new network & processor balanced clusters, we
have enough separation between data production and reuse to completely overlap
the read or write of two complete contexts to remote node disk with the update
of a third context. Any node may update any context, resulting in a simple
coarse-grained load balancing capability. In addition to essentially continuous
check pointing on local node disk, we may stop and restart a computation on any
subset of the cluster, or run “out of core”, solving problems larger than would fit
in even the whole cluster’s memory. Our hydrodynamics application is based on
a small Fortran or C callable library implementing asynchronous remote I/O,
transparently reading and writing named data objects residing anywhere on the
cluster. In addition, library routines are supplied to simplify master/worker task
queue management. To the application programmer, the library offers the basic
interlock-free read/write capabilities of a shared file system without giving up
the performance provided by a high-speed network interconnect.

1 Introduction

1.1 Background & Motivation

Our group performs simulations of hydrodynamic flow for

astrophysical problems, and more abstractly, for the study of fluid turbulence
[16], [17], [24]. The CFD solver we use is called PPM (the Piecewise-Parabolic
Method), created by Woodward & Collella. The numerical method is a finite-
difference explicit scheme, and features a high degree of data re-use, employing
a series of small difference stencils. The data use pattern, good for efficient
cache memory use, is also the key to the method’s advantages in parallel
computing. By performing redundant computation at the ends of a node’s
domain one can stave off the need for communication for multiple directionally
split sweeps or even multiple time-steps (sets of sweeps advancing the solution
in time.) This is efficient on reasonably sized meshes due to the surface
(communication) to volume (computational load) ratio. The advantages of high
data re-use and cache-friendly coding have become well known, and similar
organizations are used in many other numerical codes. Therefore, the method
described here applies generally to numeric algorithms other than our own PPM
scheme.

Earlier SMP clusters we have used have had as many as 128 processors
per communication node (SGI/Cray Origin 2000 systems) and were connected
with moderate to low performance networks. Our first task was to efficiently use
the CPUs within a node. We found that by considering a nodes domain as a
collection of independent tasks, and by CPUs selecting and solving each task in a
self scheduled first-come first-served way, we could well use both CPUs and the
cached distributed shared memory within the node. For details, see the
description of the sPPM benchmark code [22]. Of course, we wanted to extend
this load-balancing technique across more than one node. To do this in the same
way as within a node requires high-speed communication between nodes, which
was not available. However, as an experiment & demonstration, we did create
such a well-connected system. In late 1998, we connected a dual-ported fibre-
channel disk array to two 128-processor Origin 2000 systems at NCSA. The
hardware permitted each system to read or write to this shared disk device in
excess of 250 Mbytes/second, well faster than any extant network. At the time,
no high performance global file system existed for these systems; therefore, we
used “raw” I/O, that is, no file system at all. We arbitrated I/O operations in the
application, keeping reads and writes disjoint and properly ordered. This worked
well, and proved we could operate efficiently using any combination of active
computational threads on each machine, up to and including all 256 processors.
Since the data contexts were resident on disk we enjoyed the considerable side
effect of having a non-volatile shared memory. This experiment and some
computational aspects of PPM are described further in [23].

1.2 Where we are now

Of course we next wanted to extend the preliminary Origin 2000 results
to other clusters and programmers. The systems we wanted to address were
larger clusters of nodes with fewer processors - as few as 2 processors. Happily,
the networks are now much faster, with low cost yet high performance options
such as Myrinet or Giganet giving nearly the performance between nodes the
large SMP systems had within a node’s distributed shared memory. The
movement away from TCP/IP [6] based protocols for intra-cluster
communications towards small, fast protocols such as Fast Messages [4] was
also a promising step. Measured performance delivered to applications, even
with an additional software layer implementing MPI messaging exceeds 80% of
the bandwidths inherent in the hardware –or at least, the lowest available level of
software running on the communication hardware. [12].

Unfortunately, the convenience of high performance shared-memory

programming is missing on these clusters, so lacking some sort of meta-language
preprocessed to a standard language, all communication must be explicitly
coded. The communication code need not be message passing (we have explored
various single-sided communication possibilities similar to Cray’s shmem
library, or the remote memory access get/put libraries within HPVM), but the
communication event must be actually coded by the application writer.

We have adopted an abstraction for the cluster communication problem

that uses the very familiar single-ended communication concept of the file, a
named collection of bytes. These ‘files’ need not be actually disk resident; we
intend to permit memory resident objects, application specific virtual file
systems, using the idea of the file read or write only to express the needed
communication. This abstraction has the right semantic hint for application
programmers, in that the granularity for efficiency is implied to be large. The
library implementing these operations would have value in portably packaging
these I/O operations, even if they only mapped to an actual global shared file
system. Practically speaking, such a globally shared file system is unlikely to be
currently available in large computational clusters because such high
performance is expensive, implying SAN “fabrics” (switches and host adapters)
prohibitively expensive to install on all nodes of a cluster.

1.3 Related Work in Communications and I/O

 The Linda project had the idea of named, persistent data objects, in their
case also including the program (or reference to a program), which was to
operate on the data. [3]. Linda did not, however, include concepts of disk
residence, virtual or otherwise, or of asynchronous operation. The Linda
“Piranha” scheduler is also similar to the master/worker-pool task assignment
logic at which we arrived. The master/worker structure for dynamic process

management and task assignment is a natural fit for others as well as us, and has
been previously suggested and supported [8].

We are beginning to consider addressing remote memory to be too low
a level of abstraction for scientific application programming. It is, however, a
wonderful basis for implementing a library such as the one this paper describes,
the “Shared Memory on Disk”, or SHMOD library. (A close relative might be
SHMON, “On Network”, or, perhaps, SHMOE “On Everything”.) Cray
Research offered a simple remote memory put & get library, “shmem” for the
T3D/T3E systems. An IBM offering is the LAPI [9] library for single-sided
communication and active messaging for SP systems. Single-sided
communication operations are present in the MPI-2 [11] standard.
Unfortunately, MPI-2 is unavailable on the systems we contemplated using.

A few groups, most notably at PNL [13], provide libraries for remote

memory access across networks but have not as yet released versions for the
high-speed cluster network we need. The ARMCI (Aggregate Remote Memory
Copy Interface) library [15] is the basis for the Global Arrays library. This
library is aimed toward linear algebra problems, and so simplifies access to
distributed global n-dimensional arrays or array sections. While some features of
this library would be convenient to our application directly, we wanted a
minimal set of simple high-performance functions and felt the packaging of data
for communication was not an undue burden for the application programmer.
Our approach also applies to irregular data distributions, i.e., not arrays. There
was specific attention given to disk resident global arrays in a related project
[14]. What most distinguishes that work from ours is the view of I/O operations
as collective, rather than independent. This supposes an algorithmic structure
that is more fine-grained and synchronous, less truly MIMD than we prefer. This
bias to parallel I/O as a collective act is especially prominent in MPI-2 or MPI-
IO [5], [19] inspired efforts such as ROMIO [18] and RIO [7]. It is possible to
conceive of programming our application using the collective style for cluster
I/O, but we would lose flexibility for no performance gain and some loss in
simplicity, clarity, and future portability.

 Many groups have addressed the more general remote I/O problem.
GASS [2] is oriented to wide-area networks, and uses the Globus toolkit to solve
the thorny problems of access to non-local and non-heterogeneous systems.
Some, such as Condor [10] and UFO [1] viewed the solution on local system
networks more as a convenience, giving transparent remote access to typically
small control or output files. As with GASS, asynchrony was not supported, with
referenced data files being automatically staged to the local file system.
However, some scheduling features of Condor are intriguing. Condor began as
an idle workstation scavenging scheduler. Condor’s features for dynamic process
addition and deletion may provide a solution to the problem of dynamic process
scheduling, which we do not currently address.

 The Legion project [21] has, among other things, an extensive remote
I/O suite, incorporating the idea of a virtual, rooted file system (based on host
system file systems) implementing a globally shared file system. The wide-area
network emphasis, and the complexity and scope of the Legion system did not
match our requirement for a minimal easily ported small set of functions
delivering a high fraction of the cluster network bandwidth. Another project
based on Legion is “Smart File Objects“ [20], which describes object-oriented
application specific remote file access methods. These “smart objects” are
application defined class methods, such as “get_next_row” (intended for matrix
operations) that provide access to remote server functions for data transfer,
including adaptively optimized data pre-fetch. We opted instead to identify and
supply to Fortran and C the minimum possible set of generic byte transfer
operations: “read” and “write”. We then concentrated on optimizing bulk I/O
across the cluster local area network.

2 Using SHMOD

2.1 The Application and Target System

 We wanted to re-visit a study of 3-D homogenous compressible
turbulence [24]. This new study will involve a relatively short simulation time
run with large to record setting mesh resolutions of 5123, 10243 and 20483.

 The system we wanted to use was a cluster of IBM Itanium
workstations at NCSA. This cluster consists of 32 Myrinet-connected nodes,
each node containing dual 733 Mhz processors and a 1 Gbyte of memory. For
the problems we had in mind, running “out of core” was a necessity, as we
wanted to be able to run less than the full cluster. Even the mid-sized 10243 -zone
problem requires a minimum of 24 Gbytes to store one copy of the fluid state
quantities.

 Our group has managed a clean separation between the computational
physics code and the parallel structure code. This is helpful, because different
people, who apply their own specialties, physics or computer science, write these
two components. This paper will describe the parallelism and data movement
aspects of the code, which we generically call the driver. This code is
responsible for presenting fluid state variables to the computational kernel, and
performs all necessary data marshalling, storage, and task assignment.

2.2 Domain Decomposition into named objects: things

 For a cluster, we must split the global problem into at least as many
domains as we expect to have nodes; more are better, so we may have the
opportunity to load balance between nodes. We must compromise, however,
because as the domains shrink, the ratio of redundant computation on domain
edges to domain volume increases. We split our 3-D global domain in two

dimensions, creating ‘pillars’ of the problem which are assigned to nodes for
update. For example, in the 10243 –zone problem, we split the domain into 32
pillars each 256x128 zones, resulting in 8 256x128x128 computational sub-
domains within each pillar. That size is close to the largest we can fit in 1 Gbyte
of memory, as at least 4 (we currently use 5) copies of this sub-domain (together
with a halo of boundary zones) must exist concurrently in a node’s memory to
allow a pipeline of pre-fetch, update and write-back to exist.

 The pillar of zones assigned to a node for update defines the named
objects (hereinafter referred to as things) we use our library to share. Each pillar
with its halo of boundary zones around it comprises a complete, independent
work context for the node. We have, then, 4 slabs for each border face of the
pillar, 4 slabs on each border corner, and the interior itself, the largest piece. The
entire ensemble must be double-buffered, as we want to have a set being read
(pre-fetched and updated), and a set being written. This lead us to a simple
naming convention for the things of the form “S-xy-[ddd, bxl, bxr, byb, byt,
bxlyb, bxlyt, bxryt, bxryb]” where “ddd” refers to the pillar interior, and the
others to the boundary regions just described. “S” is either “0” or “1”, the double
buffer set numbering, and “xy” is the pillar position in the 2-D domain
decomposition. A node update proceeds then by pre-fetching the next portion of
this context, while updating a fetched portion, and writing back an updated
portion. This process repeats in a pipelined fashion to overlap all the
communication (I/O) and calculation.

2.3 Cluster Processes – the Task Decomposition

 Each “thing” must have a home, a node whose memory and/or disk
serves as the things normal repository. In our out-of-core application, this means
the node has a disk file with the same name as the thing. All processes globally
know the home node of each thing, so when a read or write request is issued it
may be relayed by the library as a remote I/O operation to the home node. In this
way, the computational nodes double as memory servers, reading and writing
their local disk on behalf of non-local requests. This function could be split off
into a separate process entirely, but for reasons to be described later, this was a
convenient implementation initially.

 When cluster processes start, they examine the contents of a specified
local disk directory for things. They then share the fact they “own” them with all
other cluster processes. When a thing is created or destroyed by a process, that
fact is similarly shared. These thing names must be unique across all processes,
so that subsequent read or write operations on any node need only name the
thing. At present, no facility is provided to relocate things, as that was not
needed by our first application.

The nodes expected to update data
contexts need some global
coordination. We have chosen to
do this with a “master/worker”
scheme which concentrates all
global task assignment logic into a
“master” we call the task manager.
The n computational nodes and the
manager communicate with a set
of task communication routines
provided by our library. (The
dashed lines in the figure to the left
diagram possible task assignment
or request channels.)

3 Application Programmer Interface Summary

3.1 Input/Output

The essential idea is to support a uniform, global name space of objects (things)
across participating user programs. This is done with simple calls to read or
write, which are provided in non-blocking form.

integer start_thing(rootDirectory, sharedFileSystem)

rootDirectory: The disk objects on this node will be ‘rooted’ at this
location on the local file system. If !sharedFileSystem, the names of
files (objects) in this directory will be communicated to other routines
so they may be used in read or write calls.
sharedFileSystem: If a shared file system is used, non-zero, otherwise 0
indicates the supporting file system is local to each node only.

This call is necessary for each participating process to make once, at
start-up. The process is assigned an identifying integer (node number),
which is 0.., returned by the routine.

integer create_thing(name, attributes, initialSize)

attributes: DISK, MEMORY, etc.
 initialSize: Size in bytes of the object initially. This may be zero.

Context space

1 2 n

Task
manager

This routine instantiates an object. The name must not previously exist
(globally), and the created object name will be passed to other nodes
before this routine returns.
Note in the case of a non-shared file system that the node, which calls
create_thing ‘owns’ it in the sense that the bytes will physically reside
on the owning node.

integer read_thing(name, offset, address, nbytes, status)

 offset: byte offset at which to begin reading

address: local address (array) at which bytes are deposited
 nbytes: total number of bytes to transfer

status: status array, dimensioned locally to pass to wait_thing.

integer write_thing(name, offset, address, nbytes, status)

 Same arguments as read_thing().

integer wait_thing(status, waitflag)

status: array previously passed to read_thing or write_thing.
waitflag: -1 (FOREVER), or the number of milliseconds to wait for a
completion.

GetIOstatistics(status, bytesPerSecond, nbytes)

status: result returned from a completed I/O operation, as tested by
wait_thing.
bytesPerSecond: (real) I/O speed from the start of the operation to its
completion.
nbytes: Number of bytes transferred.

3.2 Task Assignment and Reporting

 Task management routines have a common interpretation for
parameters. The ‘task’ identifier is handed back and forth from requester,
assigner or reporter. The content and length of this is user and application
defined.

task: user defined array (address) providing a way for the worker to
specify details about what kind of work it wants.

 nbytes: number of bytes
timeout: FOREVER, or the number of milliseconds to wait.

integer waitForWorkRequest_thing(task, nbytes, timeout)

The return value is –1 (no worker requesting), or the node number of
the worker making a request.

integer waitForWorkDone_thing(task, nbytes, timeout)

The return value is –1 if no worker has a completion message.

integer assignWork_thing(node, task, nbytes)

This is typically called by node 0, the task manager, to assign a unit of
work to a worker.

integer getwork_thing(node, task, nbytes)

A worker, to receive assigned work descriptors, calls this.

integer workDone_thing(node, task, nbytes)

This is called by a worker to notify the task manager an assigned piece
of work is completed. There is no requirement to call this, but if used,
it will be returned as an item for waitForWorkDone_thing().

4 Implementation: Performance and Results

 We have implemented the SHMOD library using subsidiary threads
within each node, one for I/O and one for an MPI thread to handle all inter-node
communication. The choice of MPI was an expedient one, as a high-performance
version exists in the cluster environment. The peak measured point-to-point
performance using Myrinet’s proprietary “GM” library was 144 Mbytes/second.
MPI gave us 142 Mbyte/second peak, both with large message sizes, which we
always use for bulk data transfer.

We are in the process of running our simulations on the NCSA Itanium
cluster using this described library in its out-of-core, that is, disk oriented flavor.
The 5123 simulation is complete, having produced 250 1.5 Gbyte time snapshots.
This run was a warm-up, produced on 8 nodes augmented by NCSA with an
extra 36 GB SCSI disk apiece for context and output storage. We had planned to
be running on disks with performance as poor as 15 Mbyte/second; these
additional disks more typically give us 30 Mbyte/second. We were able to begin
the 10243 simulation, using these 8 nodes and an additional 8 with only the “as
delivered” 8GByte system disk; these additional nodes retrieved context
elements remotely from the more disk-gifted nodes. NCSA will soon augment
enough nodes so we may compute the highest resolution run we have ever done
on any hardware, the 20483-zone simulation.

At this writing, we are counting floating-point operations (by hand) in

the new version of PPM we are using for these simulations. This PPM kernel is
not purely vectorizable, performing different numbers of operations depending
on the features of the fluid flow. We estimate we are within a factor of two

(downward, unfortunately) from the speed given by the purely vectorizable
sPPM benchmark, which was 672 Mflops/processor. With more effort expended
on kernel tuning, and as the Fortran compiler matures, we hope to better the
simplified PPM time to solution with the new high-accuracy PPM kernel.
Nevertheless, we are pleased to be producing the results we are on such early
hardware & software.

5 Future Work

 The first extension to pursue is application of the named object read or
write to cluster communication rather than remote I/O, which we’ve previously
referred to as “SHMON”, “Shared Memory On the Network”. This extension is
actually a small one, which would rely on the host OS memory allocation and
de-allocation routines in much the same way SHMOD relies on the hosts local
file system. We would also add features for object migration, and for easily
writing these objects to backing store (disk) on demand as a periodic check
pointing operation. Another improvement to pursue would probably be
replacement of the underlying MPI communication substrate with one that would
permit freely dynamic process creation and destruction and fault detection.

6 References

[1] Alexandrov, A. D., Ibel, M. I., Schauser K. E., and Scheiman C. J. “Ufo: A

Personal Global File System Based on User-Level Extensions to the
Operating System”. ACM Transactions on Computer Systems, Vol. 16, No. 3,
August 1998, pages 207-233.

[2] Bester, J., Foster, I., Kesselman, C., Tedesco, J., and Tuecke, S. “GASS: A
data movement and access service for wide area computing systems”. In
Proceedings of the Sixth Workshop on Input/Output in Parallel and
Distributed Systems, pp 78-88, Atlanta, GA May 1999, ACM Press.

[3] Carriero, N and Gelernter, D. “Linda and Message Passing: What Have We
Learned?” Technical Report 984, Yale University Department of Computer
Science, Sept. 1993.

[4] Chien, A., Lauria, M., Pennington, R., Showerman, M., Iannello, G., M.
Buchanan, M., Connelly, K., Giannini, L., Koenig, G., Krishnamurthy, S.,
Liu, S., Pakin S. & Sampemane, G. “Design and Evaluation of an HPVM-
based Windows NT Supercomputer”. The International Journal of High-
Performance Computing Applications, Vol. 13, No. 3, Fall 1999, pp. 201-
219.

[5] Corbett, P., Feitelson, D., Fineberg, S., Hsu, Y., Nitzberg, W., Prost, J.-P.,
Snir, M., Traversat, B., and Wong, P. “Overview of the MPI-IO parallel I/O
interface” In IPPS ’95 Workshop on Input/Output in Parallel and Distributed
Systems, pages 1-15, April 1995.

[6] Feng, W., and Tinnakornsrisuphap, P. “The Failure of TCP in High-
Performance Computational Grids”. Supercomputing 2000, IEEE Press.

[7] Foster, I., Kohr, D., Krishnaiyer, R. and Mogill, J. “Remote I/O: Fast Access
to Distant Storage” In Proceedings IOPADS ’97, pages 14-25. ACM Press,
1997.

[8] Goux, J.P., Kulkarni S, Linderoth J., and Yoder, M, “An Enabling
Framework for Master-Worker Applications on the Computational Grid”, In
Proc. 9th IEEE Symp. On High Performance Distributed Computing, 2000
IEEE Press.

[9] IBM Corporation, LAPI documentation:
http://www.research.ibm.com/actc/Opt_Lib/LAPI_Using.htm

[10] Livny, M. “High-Throughput Resource Management”, In Foster &
Kesselman Eds. The Grid: Blueprint for a New Computing Infrastructure,
Morgan Kaufmann, 1999 pages 311-337.

[11] Message Passing Interface Forum. MPI-2: Extensions to the Message-
Passing Interface, July 1997. http://www.mpi-forum.org/docs/docs.html

 [12] Myrinet Inc., http://www.myri.com
[13] J. Nieplocha, J., Harrison R. J., and Littlefield.R. J. “Global Arrays: A Non-

Uniform-Memory-Access Programming Model For High-Performance
Computers”. The Journal of Supercomputing, 10:169-189, 1996.

[14] Nieplocha, J., and Foster, I. “Disk Resident Arrays: An Array-Oriented I/O
Library for Out-of-Core Computations”. Proceedings of the Frontiers of
Massively Parallel Computing Symposium, 1996.

[15] Nieplocha, J., and Carpenter, B., "ARMCI: A Portable Remote Memory
Copy Library for Distributed Array Libraries and Compiler Run-time
Systems", Proc. of 3rd Workshop on Runtime Systems for Parallel
Programming of the International Parallel Processing Symposium IPPS'99.

[16] Porter, D. H., Woodward, P., R., and Pouquet, A. “Inertial Range Structures
in Compressible Turbulent Flows”. Physics of Fluids, Vol. 10, Issue 1, pp.
237-245, January 1998.

[17] Sytine, I. V., Porter, D. H., Woodward, P. R., Hodson, S. H., and Karl-
Heinz Winkler. ”Convergence Tests for Piecewise Parabolic Method and
Navier-Stokes Solutions for Homogeneous Compressible Turbulence”. J.
Computational Physics, 2000,Vol. 158, pp. 225-238.

[18] Thakur, R., Lusk, E., and Gropp, W. “Users Guide for ROMIO: A High-
Performance Portable MPI-IO Implementation”, Argonne National
Laboratory, Mathematics and Computer Science Division, Technical
Memorandum No. 234, September 2000.

[19] Thakur, R., Gropp, W., and Lusk, E. “On Implementing MPI-IO Portably
and with High Performance”. Proceedings of the workshop on Input/Output
in Parallel and Distributed Systems, 1999, Atlanta GA.

[20] Weissman, J. B, “Smart File Objects: A Remote File Access Paradigm”. 6th
ACM Workshop on I/O in Parallel & Distributed Systems, May 1999.

[21] White, B. S., Grimshaw, A. S., and Anh Nguyen-Tuong, “Grid-Based File
Access: The Legion I/O Mode”, 9th IEEE Int’l Symposium on High
Performance and Distributed Computing, Pittsburgh Penn., August 1-4,
2000.

http://www.research.ibm.com/actc/Opt_Lib/LAPI_Using.htm
http://www.mpi-forum.org/docs/docs.html
http://www.myri.com/

[22] Woodward, P. R., and Anderson, S. E. The sPPM Benchmark, 1995.
http://www.lcse.umn.edu/research/sppm/README.html

[23] Woodward, P. R., and Anderson, S. E. “Portable Petaflop/s Programming:
Applying Distributed Computing Methodology to the Grid Within a Single
Machine Room”. Proceedings of the 8th International Symposium on High
Performance and Distributed Computing, Pittsburgh, PA, 1999.

[24] Woodward, P. R., Porter, D. H., Sytine, I., Anderson, S. E., Mirin, A. A.,
Curtis, B. C., Cohen, R. H., Dannevik, W. P., Dimits, A. M., Eliason, D. E.,
Winkler, K.-H., Hodson, S. W., “Very High Resolution Simulations of
Compressible, Turbulent Flows”.World Scientific, 2000.

	Cluster Programming with Shared Memory on Disk
	Laboratory for Computational Science & Engineering (LCS&E), University of Minnesota
	Abstract
	1 Introduction
	1.1 Background & Motivation

	2 Using SHMOD
	2.1 The Application and Target System
	2.2 Domain Decomposition into named objects: things
	2.3 Cluster Processes – the Task Decomposition

	3 Application Programmer Interface Summary
	3.1 Input/Output
	3.2 Task Assignment and Reporting

	4 Implementation: Performance and Results
	5 Future Work
	6 References

