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Abstract 
 
The advent of high-performance workstation clusters with matching high-
performance network interconnects offers the opportunity to compute in new 
ways.   Cluster implementations of our hydrodynamics code typically have left 
domain decomposed independent data contexts in each cluster member’s 
memory, sending only an updated “halo” of domain boundary information to 
neighboring nodes.  On these new network & processor balanced clusters, we 
have enough separation between data production and reuse to completely overlap 
the read or write of two complete contexts to remote node disk with the update 
of a third context.  Any node may update any context, resulting in a simple 
coarse-grained load balancing capability. In addition to essentially continuous 
check pointing on local node disk, we may stop and restart a computation on any 
subset of the cluster, or run “out of core”, solving problems larger than would fit 
in even the whole cluster’s memory. Our hydrodynamics application is based on 
a small Fortran or C callable library implementing asynchronous remote I/O, 
transparently reading and writing named data objects residing anywhere on the 
cluster.  In addition, library routines are supplied to simplify master/worker task 
queue management.  To the application programmer, the library offers the basic 
interlock-free read/write capabilities of a shared file system without giving up 
the performance provided by a high-speed network interconnect. 
 



1 Introduction 
 
1.1 Background & Motivation 

 
Our group performs simulations of hydrodynamic flow for 

astrophysical problems, and more abstractly, for the study of fluid turbulence 
[16], [17], [24]. The CFD solver we use is called PPM (the Piecewise-Parabolic 
Method), created by Woodward & Collella.  The numerical method is a finite-
difference explicit scheme, and features a high degree of data re-use, employing 
a series of small difference stencils. The data use pattern, good for efficient 
cache memory use, is also the key to the method’s advantages in parallel 
computing.  By performing redundant computation at the ends of a node’s 
domain one can stave off the need for communication for multiple directionally 
split sweeps or even multiple time-steps (sets of sweeps advancing the solution 
in time.)  This is efficient on reasonably sized meshes due to the surface 
(communication) to volume (computational load) ratio.  The advantages of high 
data re-use and cache-friendly coding have become well known, and similar 
organizations are used in many other numerical codes. Therefore, the method 
described here applies generally to numeric algorithms other than our own PPM 
scheme. 
 

Earlier SMP clusters we have used have had as many as 128 processors 
per communication node (SGI/Cray Origin 2000 systems) and were connected 
with moderate to low performance networks. Our first task was to efficiently use 
the CPUs within a node.  We found that by considering a nodes domain as a 
collection of independent tasks, and by CPUs selecting and solving each task in a 
self scheduled first-come first-served way, we could well use both CPUs and the 
cached distributed shared memory within the node.  For details, see the 
description of the sPPM benchmark code [22]. Of course, we wanted to extend 
this load-balancing technique across more than one node. To do this in the same 
way as within a node requires high-speed communication between nodes, which 
was not available.  However, as an experiment & demonstration, we did create 
such a well-connected system.  In late 1998, we connected a dual-ported fibre-
channel disk array to two 128-processor Origin 2000 systems at NCSA.  The 
hardware permitted each system to read or write to this shared disk device in 
excess of 250 Mbytes/second, well faster than any extant network.  At the time, 
no high performance global file system existed for these systems; therefore, we 
used “raw” I/O, that is, no file system at all. We arbitrated I/O operations in the 
application, keeping reads and writes disjoint and properly ordered. This worked 
well, and proved we could operate efficiently using any combination of active 
computational threads on each machine, up to and including all 256 processors. 
Since the data contexts were resident on disk we enjoyed the considerable side 
effect of having a non-volatile shared memory. This experiment and some 
computational aspects of PPM are described further in [23]. 
 



1.2 Where we are now 
 

Of course we next wanted to extend the preliminary Origin 2000 results 
to other clusters and programmers.  The systems we wanted to address were 
larger clusters of nodes with fewer processors - as few as 2 processors.  Happily, 
the networks are now much faster, with low cost yet high performance options 
such as Myrinet or Giganet giving nearly the performance between nodes the 
large SMP systems had within a node’s distributed shared memory. The 
movement away from TCP/IP [6] based protocols for intra-cluster 
communications towards small, fast protocols such as Fast Messages [4] was 
also a promising step. Measured performance delivered to applications, even 
with an additional software layer implementing MPI messaging exceeds 80% of 
the bandwidths inherent in the hardware –or at least, the lowest available level of 
software running on the communication hardware. [12]. 

 
Unfortunately, the convenience of high performance shared-memory 

programming is missing on these clusters, so lacking some sort of meta-language 
preprocessed to a standard language, all communication must be explicitly 
coded. The communication code need not be message passing (we have explored 
various single-sided communication possibilities similar to Cray’s shmem 
library, or the remote memory access get/put libraries within HPVM), but the 
communication event must be actually coded by the application writer. 

 
We have adopted an abstraction for the cluster communication problem 

that uses the very familiar single-ended communication concept of the file, a 
named collection of bytes. These ‘files’ need not be actually disk resident; we 
intend to permit memory resident objects, application specific virtual file 
systems, using the idea of the file read or write only to express the needed 
communication. This abstraction has the right semantic hint for application 
programmers, in that the granularity for efficiency is implied to be large. The 
library implementing these operations would have value in portably packaging 
these I/O operations, even if they only mapped to an actual global shared file 
system.  Practically speaking, such a globally shared file system is unlikely to be 
currently available in large computational clusters because such high 
performance is expensive, implying SAN “fabrics” (switches and host adapters) 
prohibitively expensive to install on all nodes of a cluster. 
 
1.3 Related Work in Communications and I/O 
 
 The Linda project had the idea of named, persistent data objects, in their 
case also including the program (or reference to a program), which was to 
operate on the data. [3].   Linda did not, however, include concepts of disk 
residence, virtual or otherwise, or of asynchronous operation. The Linda 
“Piranha” scheduler is also similar to the master/worker-pool task assignment 
logic at which we arrived. The master/worker structure for dynamic process 



management and task assignment is a natural fit for others as well as us, and has 
been previously suggested and supported [8]. 
 

We are beginning to consider addressing remote memory to be too low 
a level of abstraction for scientific application programming. It is, however, a 
wonderful basis for implementing a library such as the one this paper describes, 
the “Shared Memory on Disk”, or SHMOD library. (A close relative might be 
SHMON, “On Network”, or, perhaps, SHMOE “On Everything”.) Cray 
Research offered a simple remote memory put & get library, “shmem” for the 
T3D/T3E systems. An IBM offering is the LAPI [9] library for single-sided 
communication and active messaging for SP systems. Single-sided 
communication operations are present in the MPI-2 [11] standard.  
Unfortunately, MPI-2 is unavailable on the systems we contemplated using.  

 
A few groups, most notably at PNL [13], provide libraries for remote 

memory access across networks but have not as yet released versions for the 
high-speed cluster network we need.  The ARMCI (Aggregate Remote Memory 
Copy Interface) library [15] is the basis for the Global Arrays library. This 
library is aimed toward linear algebra problems, and so simplifies access to 
distributed global n-dimensional arrays or array sections. While some features of 
this library would be convenient to our application directly, we wanted a 
minimal set of simple high-performance functions and felt the packaging of data 
for communication was not an undue burden for the application programmer. 
Our approach also applies to irregular data distributions, i.e., not arrays. There 
was specific attention given to disk resident global arrays in a related project 
[14]. What most distinguishes that work from ours is the view of I/O operations 
as collective, rather than independent. This supposes an algorithmic structure 
that is more fine-grained and synchronous, less truly MIMD than we prefer. This 
bias to parallel I/O as a collective act is especially prominent in MPI-2 or MPI-
IO [5], [19] inspired efforts such as ROMIO [18] and RIO [7]. It is possible to 
conceive of programming our application using the collective style for cluster 
I/O, but we would lose flexibility for no performance gain and some loss in 
simplicity, clarity, and future portability.   
 
 Many groups have addressed the more general remote I/O problem.   
GASS [2] is oriented to wide-area networks, and uses the Globus toolkit to solve 
the thorny problems of access to non-local and non-heterogeneous systems.  
Some, such as Condor [10] and UFO [1] viewed the solution on local system 
networks more as a convenience, giving transparent remote access to typically 
small control or output files. As with GASS, asynchrony was not supported, with 
referenced data files being automatically staged to the local file system. 
However, some scheduling features of Condor are intriguing.  Condor began as 
an idle workstation scavenging scheduler. Condor’s features for dynamic process 
addition and deletion may provide a solution to the problem of dynamic process 
scheduling, which we do not currently address. 
 



 The Legion project [21] has, among other things, an extensive remote 
I/O suite, incorporating the idea of a virtual, rooted file system (based on host 
system file systems) implementing a globally shared file system. The wide-area 
network emphasis, and the complexity and scope of the Legion system did not 
match our requirement for a minimal easily ported small set of functions 
delivering a high fraction of the cluster network bandwidth. Another project 
based on Legion is “Smart File Objects“ [20], which describes object-oriented 
application specific remote file access methods. These “smart objects” are 
application defined class methods, such as “get_next_row” (intended for matrix 
operations) that provide access to remote server functions for data transfer, 
including adaptively optimized data pre-fetch.  We opted instead to identify and 
supply to Fortran and C the minimum possible set of generic byte transfer 
operations: “read” and “write”. We then concentrated on optimizing bulk I/O 
across the cluster local area network. 
 
2 Using SHMOD 
 
2.1 The Application and Target System 
 
 We wanted to re-visit a study of 3-D homogenous compressible 
turbulence [24].  This new study will involve a relatively short simulation time 
run with large to record setting mesh resolutions of 5123, 10243 and 20483. 
 
 The system we wanted to use was a cluster of IBM Itanium 
workstations at NCSA. This cluster consists of 32 Myrinet-connected nodes, 
each node containing dual 733 Mhz processors and a 1 Gbyte of memory. For 
the problems we had in mind, running “out of core” was a necessity, as we 
wanted to be able to run less than the full cluster. Even the mid-sized 10243 -zone 
problem requires a minimum of 24 Gbytes to store one copy of the fluid state 
quantities. 
 
 Our group has managed a clean separation between the computational 
physics code and the parallel structure code. This is helpful, because different 
people, who apply their own specialties, physics or computer science, write these 
two components. This paper will describe the parallelism and data movement 
aspects of the code, which we generically call the driver. This code is 
responsible for presenting fluid state variables to the computational kernel, and 
performs all necessary data marshalling, storage, and task assignment.  
 
2.2 Domain Decomposition into named objects: things 
 
 For a cluster, we must split the global problem into at least as many 
domains as we expect to have nodes; more are better, so we may have the 
opportunity to load balance between nodes. We must compromise, however, 
because as the domains shrink, the ratio of redundant computation on domain 
edges to domain volume increases. We split our 3-D global domain in two 



dimensions, creating ‘pillars’ of the problem which are assigned to nodes for 
update. For example, in the 10243 –zone problem, we split the domain into 32  
pillars each 256x128 zones, resulting in 8 256x128x128 computational sub- 
domains within each pillar. That size is close to the largest we can fit in 1 Gbyte 
of memory, as at least 4 (we currently use 5) copies of this sub-domain (together 
with a halo of boundary zones) must exist concurrently in a node’s memory to 
allow a pipeline of pre-fetch, update and write-back to exist.  
 
 The pillar of zones assigned to a node for update defines the named 
objects (hereinafter referred to as things) we use our library to share. Each pillar 
with its halo of boundary zones around it comprises a complete, independent 
work context for the node. We have, then, 4 slabs for each border face of the 
pillar, 4 slabs on each border corner, and the interior itself, the largest piece. The 
entire ensemble must be double-buffered, as we want to have a set being read 
(pre-fetched and updated), and a set being written. This lead us to a simple 
naming convention for the things of the form “S-xy-[ddd, bxl, bxr, byb, byt, 
bxlyb, bxlyt, bxryt, bxryb]” where “ddd” refers to the pillar interior, and the 
others to the boundary regions just described. “S” is either “0” or “1”, the double 
buffer set numbering, and “xy” is the pillar position in the 2-D domain 
decomposition. A node update proceeds then by pre-fetching the next portion of 
this context, while updating a fetched portion, and writing back an updated 
portion. This process repeats in a pipelined fashion to overlap all the 
communication (I/O) and calculation. 
 
2.3 Cluster Processes – the Task Decomposition 
 
 Each “thing” must have a home, a node whose memory and/or disk 
serves as the things normal repository. In our out-of-core application, this means 
the node has a disk file with the same name as the thing. All processes globally 
know the home node of each thing, so when a read or write request is issued it 
may be relayed by the library as a remote I/O operation to the home node. In this 
way, the computational nodes double as memory servers, reading and writing 
their local disk on behalf of non-local requests. This function could be split off 
into a separate process entirely, but for reasons to be described later, this was a 
convenient implementation initially. 
 
 When cluster processes start, they examine the contents of a specified 
local disk directory for things. They then share the fact they “own” them with all 
other cluster processes. When a thing is created or destroyed by a process, that 
fact is similarly shared. These thing names must be unique across all processes, 
so that subsequent read or write operations on any node need only name the 
thing. At present, no facility is provided to relocate things, as that was not 
needed by our first application. 
 
 
 



 
 
The nodes expected to update data 
contexts need some global 
coordination. We have chosen to 
do this with a “master/worker” 
scheme which concentrates all 
global task assignment logic into a 
“master” we call the task manager.  
The n computational nodes and the 
manager communicate with a set 
of task communication routines 
provided by our library. (The 
dashed lines in the figure to the left 
diagram possible task assignment 
or request channels.) 
 
 

3 Application Programmer Interface Summary 
 
3.1 Input/Output  
 
The essential idea is to support a uniform, global name space of objects (things) 
across participating user programs.  This is done with simple calls to read or 
write, which are provided in non-blocking form. 
 
integer start_thing( rootDirectory, sharedFileSystem )

rootDirectory: The disk objects on this node will be ‘rooted’ at this 
location on the local file system.  If !sharedFileSystem, the names of 
files (objects) in this directory will be communicated to other routines 
so they may be used in read or write calls. 
sharedFileSystem: If a shared file system is used, non-zero, otherwise 0 
indicates the supporting file system is local to each node only. 

This call is necessary for each participating process to make once, at 
start-up. The process is assigned an identifying integer (node number), 
which is 0.., returned by the routine. 

integer create_thing( name, attributes, initialSize )

attributes:  DISK, MEMORY, etc. 
 initialSize: Size in bytes of the object initially.  This may be zero. 

Context space

1 2 n

Task
manager



This routine instantiates an object.  The name must not previously exist 
(globally), and the created object name will be passed to other nodes 
before this routine returns. 
Note in the case of a non-shared file system that the node, which calls 
create_thing ‘owns’ it in the sense that the bytes will physically reside 
on the owning node. 

 
integer read_thing( name, offset, address, nbytes, status )
 
 offset: byte offset at which to begin reading 

address: local address (array) at which bytes are deposited 
 nbytes: total number of bytes to transfer 

status: status array, dimensioned locally to pass to wait_thing. 

integer write_thing( name, offset, address, nbytes, status )

 Same arguments as read_thing(). 

integer wait_thing( status, waitflag )

status: array previously passed to read_thing or write_thing.  
waitflag: -1 (FOREVER), or the number of milliseconds to wait for a 
completion. 

GetIOstatistics( status, bytesPerSecond, nbytes )

status: result returned from a completed I/O operation, as tested by 
wait_thing. 
bytesPerSecond: (real) I/O speed from the start of the operation to its 
completion. 
nbytes: Number of bytes transferred. 
 

3.2 Task Assignment and Reporting 
 
 Task management routines have a common interpretation for 
parameters.  The ‘task’ identifier is handed back and forth from requester, 
assigner or reporter.  The content and length of this is user and application 
defined. 

task: user defined array (address) providing a way for the worker to 
specify details about what kind of work it wants. 

 nbytes: number of bytes  
timeout: FOREVER, or the number of milliseconds to wait. 

integer waitForWorkRequest_thing( task, nbytes, timeout )

The return value is –1 (no worker requesting), or the node number of 
the worker making a request. 



integer waitForWorkDone_thing( task, nbytes, timeout )

The return value is –1 if no worker has a completion message. 

integer assignWork_thing( node, task, nbytes )

This is typically called by node 0, the task manager, to assign a unit of 
work to a worker.   

integer getwork_thing( node, task, nbytes )

A worker, to receive assigned work descriptors, calls this. 

integer workDone_thing( node, task, nbytes )

This is called by a worker to notify the task manager an assigned piece 
of work is completed.  There is no requirement to call this, but if used, 
it will be returned as an item for waitForWorkDone_thing(). 
 

4 Implementation: Performance and Results 
 
 We have implemented the SHMOD library using subsidiary threads 
within each node, one for I/O and one for an MPI thread to handle all inter-node 
communication. The choice of MPI was an expedient one, as a high-performance 
version exists in the cluster environment. The peak measured point-to-point 
performance using Myrinet’s proprietary “GM” library was 144 Mbytes/second. 
MPI gave us 142 Mbyte/second peak, both with large message sizes, which we 
always use for bulk data transfer. 
 

We are in the process of running our simulations on the NCSA Itanium 
cluster using this described library in its out-of-core, that is, disk oriented flavor.  
The 5123 simulation is complete, having produced 250 1.5 Gbyte time snapshots.  
This run was a warm-up, produced on 8 nodes augmented by NCSA with an 
extra 36 GB SCSI disk apiece for context and output storage. We had planned to 
be running on disks with performance as poor as 15 Mbyte/second; these 
additional disks more typically give us 30 Mbyte/second. We were able to begin 
the 10243 simulation, using these 8 nodes and an additional 8 with only the “as 
delivered” 8GByte system disk; these additional nodes retrieved context 
elements remotely from the more disk-gifted nodes. NCSA will soon augment 
enough nodes so we may compute the highest resolution run we have ever done 
on any hardware, the 20483-zone simulation. 

 
At this writing, we are counting floating-point operations (by hand) in 

the new version of PPM we are using for these simulations. This PPM kernel is 
not purely vectorizable, performing different numbers of operations depending 
on the features of the fluid flow. We estimate we are within a factor of two 



(downward, unfortunately) from the speed given by the purely vectorizable 
sPPM benchmark, which was 672 Mflops/processor. With more effort expended 
on kernel tuning, and as the Fortran compiler matures, we hope to better the 
simplified PPM time to solution with the new high-accuracy PPM kernel. 
Nevertheless, we are pleased to be producing the results we are on such early 
hardware & software. 
 
5 Future Work 
 
 The first extension to pursue is application of the named object read or 
write to cluster communication rather than remote I/O, which we’ve previously 
referred to as “SHMON”, “Shared Memory On the Network”. This extension is 
actually a small one, which would rely on the host OS memory allocation and 
de-allocation routines in much the same way SHMOD relies on the hosts local 
file system. We would also add features for object migration, and for easily 
writing these objects to backing store (disk) on demand as a periodic check 
pointing operation. Another improvement to pursue would probably be 
replacement of the underlying MPI communication substrate with one that would 
permit freely dynamic process creation and destruction and fault detection. 
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