17" |EEE Symposium on Mass Storage Systems / 8" NASA Goddard Conference on Mass Storage Systems and Technol ogies

Disk Subsystem Perfor mance Evaluation:
From Disk Drivesto Storage Area Networks
ThomasM. Ruwart
Universty of Minnesota
Laboratory for Computationa Science and Engineering
356 Physics
116 Church Street SE
Minneapolis, Minnesota 55455
tmr@tc.umn.edu
td +1 612 626-8091
fax +1 612 626-0030

Abstract

Disk subsysems span the range of configuration complexity from single disk drives to
large inddlations of disk arays. They can be directly attached to individud computer
sysems or configured as larger, shared access Storage Area Networks (SANS). It is a
ggnificant tak to evduate the peformance of these subsysems especidly when
conddering the range of performance requirements of any paticular ingdlaion and
application. Storage subsystems can be desgned to meet different performance criteria
such as bandwidth, transactions per second, latency, capacity, connectivity, ...etc. but the
question of how the subsystem will perform depends on the software and hardware
layering and the number of layers an 1/0O request must traverse in order to perform the
actual operation. As an /O request traverses more and more software and hardware
layers, dignment and request Sze fragmentation can result in performance anomdies thet
can degrade the overdl bandwidth and transaction rates. Layer traversa can have a
ggnificant negative impact on the observed peformance of even the fastest hardware
components. This paper waks through the Storage Subsystem Hierarchy, defining these
layers, presents a method for testing in sngle and multiple computer environments, and
demondrates the dgnificance of caeful, in-depth evaduation of Storage Subsystem
Performance.

1 Introduction

Dik subsysem manufacturers meke many cdams about the performance of ther
products. However, these performance clams cannot be taken out of context of the find
implementation. Rather, it is necessary to evaduate the performance of disk subsystems
within a configuration that is as close as possble to the actud configuration in which the
subsystem will ultimaidy be employed. Such an evaudion requires a benchmark
program that can closly mimic the access paterns of the intended applications and
provide results that are meaningful and reproducible.

This paper presents examples of disk 1/0 performance anomalies and describes the cause
of these problems as wdl as drategies to minimize their effects. The paper begins by
describing the hardware and software components that an 1/0 request must traverse in
order to move data between the computer sysem memory and the storage media. The
Testing Philosophy and Methodology is then presented that describes how and why the
individua components are evaduated as wel as basic assumptions and tradeoffs that must

©2000, Thomas M. Ruwart 1

17" |EEE Symposium on Mass Storage Systems / 8" NASA Goddard Conference on Mass Storage Systems and Technol ogies

be made in order to provide meaningful and reproducible results. The performance of the
entire Storage Subsystem Hierarchy is then be evaduated under ideal conditions. This sets
an upper bound for peformance of the sysem as a whole. Knowing this upper
performance limit, it is possble to address the Impedance Matching Problem which
examines various peformance anomdies and ther causes. Example test results are given
throughout the paper to illustrate relevant concepts.

2 The Storage Subsystem Hierarchy

The Storage Subsystem Hierarchy describes the levels of hardware and software that an
I/0 request must traverse in order to initiate and manage the movement of data between
the application memory space and a storage device. The /O request is initiated by the
goplication when data movement is required ether explicitly in the case of file operations
or implicitly in the case of memory-mapped files for example. The request is initidly
processed by severd layers of sysem software such as the file sysem manager, logica
device drivers, and the low-level hardware device drivers. During this processng the
goplication 1/0 request may be split into severd inter-related “physical” 1/0 requests that
are subsequently sent out to the gppropriate storage devices to satisfy these requests.
These physicd 1/0 requests must pass through the Physical Connection Layer that makes
the physica connection between the Host Bus Adapter on the computer system and the
dorage device. After ariving a the storage device, the I/O requests may be further
processed and split into severd more /O requests to the actud storage “units’ such as
disk drives. Each Storage Unit processes its request and data is eventudly trandferred
between the dorage unit and the application memory space. The following sections
present a more detaled description of each leved in the hierarchy with respect to its
function and performance implications.

2.1 Computer System

The Computer System is a criticd piece of the Storage Subsystem Hierarchy in that it
encgpsulates dl the software components and the necessary interface hardware to
communicate with the Physcd Connection layer (i.e. the Host Bus Adapter). The
components within the Computer System include the processors, memory, and internd
busses that connect the memory to the processors and to the Host Bus Adapters. The
performance characteristics of each of these mgor components (i.e. the clock-speed,
number of processors, processor architecture, memory bus bandwidth, ...etc) plays a
ggnificant role in the ovedl peformance of the Storage Subsysem as will be
demondrated in a later section. However, given the fastest hardware avalable, the
Storage Subsystemn will only perform as well as the underlying software, starting with the
Application Program

2.2 Application Program

The term “Application Program” as it is used here is any program running on the Host
Computer System that requires data movement between the memory in the host computer
and a Storage Unit. Application programs can be ether typica User programs or can be
parts of the Operating System on the host computer such as the paging subsystem. In any
case, these programs have the ability to make 1/0 requests to any of the lower-leved layers
in the hierarchy if the Operating System provides an gppropriate programming interface

©2000, Thomas M. Ruwart 2

17" |EEE Symposium on Mass Storage Systems / 8" NASA Goddard Conference on Mass Storage Systems and Technologies

to do s0. For example, the benchmark program used to gather datistical data for this
dudy can access a dorage unit through the file sysem manager, the logica volume
device driver(s), or through the disk device drivers. In genera, Applications that can
manage and access the lower levels of the hierarchy achieve better performance than
Applications tha must traverse through the higher level layers such as the Fle Sysem
Manager.

Computer System Hardware (Processors, Memory, Internal busses, ...etc)

User Application

File System Manager

Logical Volume Device Driver

SCSI Protocol Device Driver

Low Level Device Driver

Parallel SCSI/Fibre Channel/GSN/...etc Host Bus Adapter (HBA)

Physical Connection Layer

i 1 1

Disk Array (RAID) Controller Disk Subsystem Disk Subsystem

I |

Disk Subsystem

Figure 1. The Storage Subsystem Hierarchy

2.3 File System M anager

The File Sysem Manager is mentioned here for completeness but it is not used in any of
the testing performed for this pgper with one exception. The File Sysem Manager
provides a levd of abdraction for the Application Program in order to smplify the
process of accessing data for the gpplication programmer. Because of the amount of
“indirect” 1/0O processing that can accompany a single Application 1/0 request (such as
goace dlocation, inode lookups, ...etc.), 1/0O performance testing “through” the File
Sysem Manager can become enormoudy complex and produce mideading results.
Therefore, it is beyond the scope of this paper to include any testing through the File
System Manager or to report the performance idiosyncrases of the File Sysem Manager
itsdf. The 1/O benchmark program used in this study dways bypasses the File System
Manager for data movement operations. The one exception to this occurs in the testing
that was performed for multi-host access to a sat of shared disks in a Windows NT
environment. For these tesdts, a Shared File System was necessary in order to gan

©2000, Thomas M. Ruwart 3

17" |EEE Symposium on Mass Storage Systems / 8" NASA Goddard Conference on Mass Storage Systems and Technol ogies

“shared” access to the disks from dl the hods involved in the tests. Unfortunately, this
functiondity is not yet easlly available in the Device Drivers avallable under NT.

2.4 Logical Volume DeviceDrivers

The Logicd Volume Device Drivers provide a mechanism to easly group Sorage
devices into a sngle “logicd” device in order to increase storage capecity, performance,
andlor to amplify the managesbility of large numbers of Storage devices. The Logicd
Device Driver presents a sngle device object to the Application. The Logicd Device
Driver is then responsible for taking a single 1/0 request from the Application (or the File
Sysem Manager) and mapping this request onto the lower level storage devices, which
may be ether actua storage devices or other logical volumes.

There are many ways to configure a logicd volume that condsts of multiple underlying
dorage devices. One common configuration is to sripe across (also known as driping
wide) al the dtorage devices in an effort to increase available bandwidth or throughput
(operations per second). In a wide-driped logicd volume, data is lad out on the disk in
“dripe units’. A dripe unit is the amount of sequertid data that is transferred to/from a
sngle storage device within the logica volume before moving to the next storage device
in the volume. The dripe unit can be any number of bytes from a single 512-byte sector
to saveral megabytes but is generdly a congant within alogica volume (Figure 2).

Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7 Block 8

A sequence of 8 consecutive 16384 -byte blocks on a “logical” disk. Blocks distributed across the physical disks as shown.

“,...-‘-1-1--1-»-1--
« i .
Yeee, | = Disk 1 —
Loglcal E Block 1 Block 4 Block 7 Block 2 Block 5 Block 8 P —

Disk

/

A single 16384-byte “block” consists of 32 consecutive disk sectors, 512-bytes per sector.

Figure 2. The layout of aLogicd Volume.

2.51/0 Protocol Device Driver

The 1/0 Protocol Device Driver is responsble for trandating the 1/O request from the
upper level device drivers into a form that fits the I/O protocol used to communicate the
request to the underlying storage devices. In generd, an internd 1/0O request conssting of
a command (read or write), a data buffer address, and a data transfer length is converted
into a SCS command and will convey this information to the host bus adapter via the
low-leve device driver and the disk devices.

2.6 Low-L evel Device Driver

This device driver takes the high-leve information (i.e. the SCSI command) from the I/O
Protocol Device Driver and interfaces directly with the host-bus adapter that will perform
the actual data transfer between the storage device and application memory. For example,

©2000, Thomas M. Ruwart 4

17" |EEE Symposium on Mass Storage Systems / 8" NASA Goddard Conference on Mass Storage Systems and Technol ogies

given a PCI-to-Fibre Channd Host Bus Adapter, this device driver will set up the host
bus adapter with the address of the SCSI command buffer, the gpplication data buffer,
and the target device and then tell the host bus adapter to begin the operation. The host
bus adapter will trandfer the SCSI command buffer to the intended target device. The
target device a some later point will request a daa trander operation that will be
managed in part by the host bus adapter. At the end of the entire operation, an interrupt is
generated to notify the Low-Level Device Driver of the completion daus the 1/0
operation. Under normd circumstances, the Low-Level Device Driver then propagates
the completion dtatus to the upper-leve drivers, eventualy reaching the User Application
Program.

2.7 Physical Connection Layer

This layer defines the hardware that physcdly attaches the hodt-bus adapter to the
dorage device. These connections can be as smple as a sngle 3-foot cable or as
elaborate as a multi-gage communication fabric spanning many miles. In generd, there
are two types of physca connections. Pardle-busses or Channels and Serid Interfaces.
Padld busses incdude SCS and IDE, Channds include IBM 370-type Block-
Multiplexer Channels. Bus-type intefaces ae most commonly used insde persond
computers and other systems for system disks and other periphera devices that do not
require a great dea of performance (i.e. greater than 100 MB/sec). SCSI busses are also
used for larger dtorage configurations that extend outsde the physca boundaries of a
computer cabinet. However, due to the nature of the Pardle SCSl bus architecture, the
length of SCSI busses is severely restricted when compared to that of Serid Interfaces.

The most common Serid Interfaces include Fibre Channd, USB, and FiréWire, to name
just a few. For disk storage, Fibre Channe is currertly the most prominent Serid
Interface. Serid Interfaces have didinct advantages over the more traditiond Pardld Bus
achitectures in the number of different connection topologies that are possble. These
topologies include Point-to-Point, Loop, and Switched Network Eigure 3). Furthermore,
the digance limitations of Serid Interfaces tend to be dgnificantly longer than Pardld
Busses making it easier to implement in physicaly large or extended configurations.

Point-to-Point connections
dedicate a single host connection
to a sngle dorage device. This is

Dect not the most efficient use of a host
connection but does guarantee
Attach Switched g

access to the device via that
connection.

Figure 3. Storage Area Network Topologies.
The Loop topology, adso know as

an Arbitrated Loop in Fibre Channel terms, behaves more like a traditiond Parald Bus
However, a Fibre Channe Arbitrated Loop, for example, can more easly accommodate
multiple host computers as well as a larger number of dorage devices. There ae
precticad limitations on the number of devices and he overdl length of a Loop that can be
overcome using a Switched Network topology.

©2000, Thomas M. Ruwart 5

17" |EEE Symposium on Mass Storage Systems / 8" NASA Goddard Conference on Mass Storage Systems and Technol ogies

The Switched Network topology dlows for any number of options in physcaly
connecting the storage devices to the host computers. It is the mogt flexible in terms of
dlowing for multiple access paths to a single storage device, multiple host shared access,
fault tolerance, and peformance. However, this flexibility dso means increased
complexity in managing al the nodes connected to the SAN, whether they are host
computers or disk devices. These multi-hogt, multi-device configurations are commonly
referred to as Storage Area Networks or SANS.

2.8 Storage Device and Storage Units

The lagt two layers in the hierarchy are the Storage Devices and Storage Units. The
diginction is that a Storage Device is made up of one or more Storage Units but can
“appear” to be a sngle device. The example is that of a Disk Array which is a Storage
Device that contains severd individua Storage Units (disk drives) but can appear to the
sysem as a dngle, very large, disk drive. In the case of a disk array, the I/O request is
received from the host bus adapter and is divided up into one or more 1/O requedts to the
underlying disk drives. Storage Units are individudly addressable storage devices that
cannot be further subdivided into smdler physicd units The principle example of this is
aDisk Drive.

3 Performance Implications and the | mpedance Matching Problem

Each layer of software and/or hardware between the Application and the Sorage Device
adds overhead and other anomalies tha can result in highly irregular performance as
viewed by the Application. Overhead is essentidly the amount of time it takes for the 1/0
request to traverse the specific layer. The source of overhead in each layer is specific to a
layer and is not necessarily congtant within alayer.

An example of this is the overhead induced by the Physcd Connection layer. A physica
connection congging of a short cable introduces virtudly no overhead since the
propagation of a sgna at the speed of light over a 3foot disance is not sgnificant. On
the other hand, propagation of a smilar sgnd traversng a 20-mile storage area network
through multiple switching units will introduce noticegble overhead [2].

An intereging atifact resulting from the interaction of the components in the Storage
Subsysem Hierarchy is andogous to the Impedance Matching problem in eectricd
ggnd on wires. The term “Impedance Maiching” is used as an andogy to what happens
when there is a mismaich of operationd characteristics between two interacting objects.
In an dectrica circuit, an impedance mismaich has an effect on the “performance” of the
creuit in terms of its gan or amplitude a paticular frequencies In the Storage
Subsysem Hierarchy, an “impedance mismatch” has more to do with things like 1/0O
requet sze and dignment misnaches that have an effect on the peformance
(bandwidth or transaction rate) of the storage subsystem as viewed by the application.
The effects of these mismaiches can be viewed from severd different perspectives
including the Application perspective, the Disk Device perspective, and the System
perspective. The effects of this phenomenon are presented in the sections that follow.

©2000, Thomas M. Ruwart 6

17" |EEE Symposium on Mass Storage Systems / 8" NASA Goddard Conference on Mass Storage Systems and Technol ogies

However, it is fird necessary to describe exactly how these effects are identified and
andyzed.

4 Testing Philosophy and M ethods

When gpproaching the problem of evauating a storage subsystem it is important to know
and understand the operationd boundaries of the gpplications usng the dorage
subsystem. Performance tests are often run on equipment and results are generated or
provided that have no red connection to the actuad “gpplication” tha will be usng the
dorage subsystem. The evauation of a storage subsystem is intended to answer the basic
question of how wedl gpplications peform on a dorage subsysem in a given
configuration.

There are many approaches to answering this question. One way is to run the gpplication
on a specific configuration of the equipment under evauation. The configuration can be
“tuned” until the “performance’ is optimized for a specific goplication. However, this is
not aways easy to do nor is it an accurate method of testing performance if the behavior
of the gpplication is not well understood under dl circumstances. Furthermore, the results
obtained by testing a dngle gpplication or a smal st of goplications may not extend
beyond those gpplications to other applications or even to the same application as it (the
goplication) scalesin sze, complexity, ...€tc.

The evaduation method advocated by this paper is based on the idea of testing the
individual components of a Storage Subsystem followed by teding various
“configurations’ of these components. It is essentid to fird understand the performance
characterigtics of the individud hardware and software components of the entire storage
subsystem before the combined performance of the overal subsystem can be accuratdy
assessed. Successve layers‘components of the Storage Subsystem Hierarchy are then
added to the evaluation testing and the effects of each addition are recorded.

Each successve layer of the Storage Subsysem Hierarchy adds functiondity and/or
performance to the application. However, a sde effect of each successive layer is to add
overhead to each 1/0O request as wdl as a ggnificant amount of complexity to the
evauation process. The increase in complexity results from the fact that each successve
layer adds new independent varigbles to the performance tuning equation. As a redult,
this complexity grows exponentidly with each successve layer. Understanding the
effects on the performance of each of these variables as well as how the variables interact
is the god of the evduaion process. With this information, it becomes easer to identify
the cause of peformance problems and to compensate by adjusting these and other
related variables.

For example, the evauation process would sart by characterizing the performance of a
gngle disk drive. Multiple disk drives can then be added to the same I/O Channel in order
to test the peformance limits of the host adapter. Several host adapters can then be
added, each with a sufficient compliment of disk devices so as to saturate the system bus
that connects the host adapters to the memory subsystem of the computer or to saturate
the memory bus itsdf. In either case, the peformance of the computer system internd

©2000, Thomas M. Ruwart 7

17" |EEE Symposium on Mass Storage Systems / 8" NASA Goddard Conference on Mass Storage Systems and Technol ogies

data bus architecture is characterized. The disk drives can dso be integrated with a disk
aray (RAID) controller and the performance of the RAID controller can be characterized
aswdll.

5Thel/O Spectrum and Performance Metrics

There are several metrics used to gauge the performance of a disk subsysem. The 1/O
Spectrum is a concept that divides the performance metrics into two basic types. At one
end of the spectrum is bandwidth and the other end is transactions per second or 10Ps
(/O Operdtions per second). Bandwidth is smply the maximum number of bytes
transferred per second. This is generdly characterized by reaively few, very large data
transfer requests per second. IOPs is a measure of how many reaively smdl data
transfers can be processed by the disk subsystem per second. In generd, as the sze of the
requested data increases, the performance moves from 10Ps to Bandwidth aong the I/O

Spectrum (Figure 4.)

Transactions per second Bandwidth

Figure 4. The 1/0O Spectrum.

Rdated to the IOPs metric are two other metrics worth mentioning: Response Time and
Jitter. Response Time is smply the time it takes to get a piece of data once the request
has been issued. It is important to note that Response Time is not smply 1/(I0Ps). For
example, if a Storage Device has an |OP rating of 2,000 I/O operations per second, this
means that the storage controller can accept 2,000 1/0O requests every second and thet it
can smultaneoudy ddliver 2,000 responses per second. However, once an 1/O request is
received by the Storage Device the associated response may be the next response out, or
it may be the 100" response out, or it may be the 6,000" response out. The associated
Response Times for each of these possihilities is /2000 of a second, 100/2000? 1/20"
of asecond, or 6000/2000? 3 seconds.

Jtter is cdosdy rdated to the Response Time metric. It is a measure of how much the
Response Time changes over time. For example, given 1000 I/O requedts that each have
a required response time of 1/30" of a second, jitter measures how many of the 1000
requests faled to meet the response time criteria Jtter is important in red-time
goplications that require Response Times to be consistent. Such an gpplication is
dreaming video where the individua video frames must appear before or at the correct
time, every 1/30™ of a second for example, or the frame is dropped from being displayed.

6 The 1/O Benchmark Program

As previoudy mentioned there are many aspects of performance that are of interest and
there are many ways to gather peformance daa display the information in an easy to
understand format. Simply dating that a disk drive can ddiver 24MB/sec or 1500
transactions per second does not convey nearly enough information. Rather, the
performance of a disk drive as a function of some other variable such as request Sze or
media postion is more informative. Furthermore, being able to capture and display this
information in a time-corrdated manner is useful in understanding the interaction of
multiple components within a Storage Subssytem. This is especidly important in a

©2000, Thomas M. Ruwart 8

17" |EEE Symposium on Mass Storage Systems / 8" NASA Goddard Conference on Mass Storage Systems and Technol ogies

shared-access environment where a single computer system does not have the ability to
control access to a storage subsystem.

The 1/0 benchmark program used to gather this information must have severd qudlities:
- Highly configurable
Generate “reproducible’ results
Generate “reproducible’ usage scenarios
Very fine degree of tunability

There ae many 1/0 benchmarking programs readily avalable such as BONNIE,
IOZONE, DiskPerf, IOMeter, ...etc. These programs all address different aspects of 1/0
performance and were not sufficiently focused on the fine details of I/O behavior to be
used for this study. Therefore, the benchmark program used to generate the results n this
paper has been specificdly developed over the past severd years a the Universty of
Minnesota and contains features necessary to satisfy the criteria mentioned above. This
program is cdled xdd and is avalable from the web dte liged in the title of this paper.
Xdd is used to measure many of the disk device performance characterigics as well as
helping to identify many of the peformance anomdies that gppear in more complex
configurations.

7 Testing Framework
Teding in a multiple-host environment required the creation of a framework to
coordinate teting on multiple systems concurrently[4]. The two basc functions of this
framework are:

Accounting for the exigtence of multiple clocks

Coordinating the initiation of tests to run concurrently on multiple hosts
Xdd makes use of precise time stamps to quantify and report storage performance
characterigtics. Each hogt accessing the shared storage has its own internd sense of time,
and without a common reference clock it is impossble to interpret the reationship
between tests run on separate hosts. Thus a consistent time base is needed in order to
correlate test results generated by separate systems.

7.1 The Reference Clock

Each of the systems used for testing has a clock register that updates at a high frequency,
dlowing for very precise measurement of eapsed time. The resolution of this dock
varies for different systlems (ranging from 2 to 80 nanoseconds per tick or s0), so clock
vaues ae conveted to a common time unit (picoseconds) for the purpose of
synchronization.

A very smple clock mode to establish a common time base. It is assumed that al clocks
run a the same, congant rate. Therefore it can be assumed that converson from a given
machines "locd time' to the common "globd time' involves only the addition of a
condant to the loca clock's vdue. With this amplified modd it is only necessary to
determine the vaue of the congtant difference between pairs of clocks.

©2000, Thomas M. Ruwart 9

17" |EEE Symposium on Mass Storage Systems / 8" NASA Goddard Conference on Mass Storage Systems and Technol ogies

One machine is designated to keep the globd sense of time. That machine provides a
service with which others communicate to determine the offsets of their own clock from
the globa time. Each client initiates a request to the server to get the current globd time.
The difference between the time vaue returned and the client's loca time is recorded as
the basis for the offsat. This offset is further adjusted to compensate for the propagation
delay required to cary the time request and its response over the communication
medium. This propagetion delay bounds the error in the difference between the estimated
and the actua offset between the two clocks. This request/response protocol is repeated a
number of times, and use the offsst associated the minimum propagetion dday as the
find offset vaue.

7.2 Coordination of Concurrent Tests

With a common time base defined, it is possble to coordinate the initiation of tests on
different hogt sysems. Xdd is able to determine the time offsat for the machine under
tes. The program is provided an indication of a (globa) time a which dl tests are to
begin. This globa time is converted to a locdized gart time usng the offset vaue Xdd
then polls the high-resolution clock repeatedly until the dtart time has arrived. At that
point test execution begins. Test resuts generated by individud hogts are buffered during
test execution, and saved to disk for later analyss.

8 Disk Device Basics

In order to understand some of these
performance anomalies, a short course in disk
devices is necessary. It is assumed that the
reader has a basc understanding of how Disk
Drives are put together in the sense that they
contain platters, heads, cylinders, sectors, and
lots of 1I's and O's. However, it is worth
describing some of the more subtle desgn
concepts of a disk drive thet have an impact on
the peformance. These concepts include
Zoned Bit Recording, Caching, Rotationd
Latency, Seek Time, the Onboard Disk

Processor Overhead, Command Queues, and Figure 5. Zoned Bit Recording. Note how
Disk Arrays ’ the outer band has more sectors than the

inner bands.

8.1 Zoned Bit Recording

The data trandfer is the rate a which actud user data can be read from or written to the
media. This transfer rate can vary in such a way that depends on the physical location on
the disk media where the trandfer is to take place. This is due to a recording technique
cdled Zoned Bit Recording (ZBR) whereby more data is written on the outer tracks of a
disk plater than on the inner tracks This dlows for more efficient utilization of the
recording area and hence greater overdl capacity. ZBR is used on most current
generation disk drives. Given that a disk drive spins a a congant rate, 7200 RPM for
example, the outer zones that contain more data will trandfer data a a higher data rate
than the inner zones that contain less data.

©2000, Thomas M. Ruwart 10

17" |EEE Symposium on Mass Storage Systems / 8" NASA Goddard Conference on Mass Storage Systems and Technol ogies

This is clearly demondrated in Graphl where the Effective Data Trander Rate is plotted
agang the physica pogtion on the platter. Each increment dong the X-axis is a 500MB
segment of the disk. As data is read from segments successively further into the disk, the
data rate a which the data is transferred decreases. However, the decreases are not
gradua but are diginct “seps’ dong the performance curve. Each of the horizonta
plateaus is a physcad zone on the disk. This graph shows that there are 14 digtinct zones
on this disk which matches the manufacturer’s specification. It is interesting to note that
the width of outer zonesis larger than the width of the inner zones.

Zoned Bit Recording Bandwidth Performance Curve as a Function
of Position on Disk for a Baracuda 50 Disk Drive for
128K-byte Sequential Read Operations

24

22

20
18 m
16 l ‘W‘

KR

14

MB/sec

12

T
— 1 O ™ N~
—

TTTTT
(o]
N

- M N~ A3 0 o M K~ o 1 0O M N~ d 0N O M
N N M Mo 5 5 S 0 0 © © ©O© N~ N~ 0 0 o o o

Zones in 500MB Increments

Graph 1.

8.2 Caching

When data is read off the disk media it is stored temporarily in a buffer cache before it is
sent to the host bus adapter (controller). The data transfer rate from the cache onto the
bus is normdly done a the speed of the bus that is usudly much fagter than the transfer
rate off the media The cache can dso be used during write operations to accept
incoming data and “complete’ the write operation before the data is actudly written on
the media This can speed up the process of writing smal amounts of data to a disk
device by a factor of 10-100 since the requesting application does not need to incur the
additional overhead of the seek operation and rotationd delay associated with writing the
data to the disk media.

©2000, Thomas M. Ruwart 11

17" |EEE Symposium on Mass Storage Systems / 8" NASA Goddard Conference on Mass Storage Systems and Technol ogies

The sze of the buffer cache dso has an impact on the transfer rate performance of a disk
drive. Congder a disk with no buffer cache. The data would then proceed directly from
the bus to the media and would be limited to the data transfer rate to the media If the
buffer cache size was increased to one megabyte for example, then data transfers could
proceed between the cache and the bus a bus speeds while smultaneoudy transferring
data between the media and the cache at media speeds. Buffer caches can be very hdpful
when dreaming data sequentidly off the disk media After data from a single read
request is transferred into the buffer cache, the disk can perform a read-ahead operation
and continue to transfer subsequent data into the buffer cache in anticipation of the next
read request. Without a buffer cache and the read-ahead operation, the subsequent
request would arrive and the disk would have to wait for an entire rotation of the disk
before the data transfer could begin again.

Bandwidth Performance Curve of a Seagate Baracuda 50 Disk
Drive for Sequential Writes

25

20

Caches ON

—@— Sequential Writes
Caches OFF

15 jf —&— Sequential Writes

MB/sec

10

Request Size

Graph 2.

Gragphs 2 and 3 demondrate the effectiveness of a Write Cache for purely sequentia
write operations. The graph plots Bandwidth and Transaction performance as a function
of request sze. It is clear tha the write cache dgnificantly improves the performance of
the disk for any dze write operaion. For smdl operations in the 1024-byte per
transaction range, the transaction rate is gpproximatdy 14 times higher when usng the
cache for write operations than having the cache disabled.

Graphs 4 and 5 further demondrate the effects of caches on purdy random transactions:
reads and writes. These graphs show that random read operations do not benefit from the
cache and closdy track the performance of nonrcached random write operations.
However, the cache is 4ill effective in improving the performance of smdl random write
operations up to about 64Kbytes where the performance curve tracks the non-cached
performance of both reads and writes.

©2000, Thomas M. Ruwart 12

17" |EEE Symposium on Mass Storage Systems / 8" NASA Goddard Conference on Mass Storage Systems and Technol ogies

Transaction Performance Curve of a Seagate Baracuda 50 Disk
Drive for Sequential Writes

1600

1400 ¢
2
8 1200 x\
3]
(,/_’ 1000 X —&— Sequential Writes
8 v\ Caches ON
» 800) .
c —#— Sequential Writes
o
= 600 Caches OFF
I
2 400
o
= 200 >

LI
o o <
o

NARPARRARAAARAASALARS
o o N~ [ee] (o)) [o)] o — N
- - —
Request Size
Graph 3.

8.3 Rotational Latency and Seek Time

The Rotational Latency is the time that it takes for the disk platter to rotate such that the
requested sector is directly under the read/write head. The rotationd latency is smply 1
divided by the rotationd speed of the disk. Rotationd rates for the most common disk
drives are 5400, 7200, and 10,000 revolutions per minute. This trandates to rotation
timesof 11.1ms, 8.3ms, and 6ms respectively.

The seek time is the time it takes to pogtion the read/write head over the correct cylinder
on the platter. This time can vary by a factor of 10-20 from a single track-to-track seek to
a full drive seek (from cylinder O to the last cylinder on the disk). Typicdly seek times
range from dightly less than 1 millisecond to about 20 milliseconds for a full seek. Seek
operations for write operations take longer than those for read operations because write
operations need to seek to the required cylinder and be in perfect dignment before
garting the write operation. Read operations however, can dart reading before the head
completdy settles.

Graphs 4 and 5 show the effects of Rotationa Latency and Seek Time on read and write
performance when the 1/0O operations are randomly distributed over the disk. Graph 4
plots Bandwidth as a function of Request Size and dso shows the effectiveness of the
Write Cache on Random Write operations. Graph 5 plots IOPs as a function of request
sze for the same access pattern. It is clear that for this particular modd of disk drive, the
write cache does not have any impact on performance for request sizes beyond 64K bytes.

©2000, Thomas M. Ruwart 13

17" |EEE Symposium on Mass Storage Systems / 8" NASA Goddard Conference on Mass Storage Systems and Technol ogies

Bandwidth Performance Curve of a Baracuda 50 Disk Drive for
Random Reads vs Writes

—€—Random Reads
Caches ON

—®—Random Writes
Caches ON

Random Writes
Caches OFF

MB/sec

O(I'I‘II

N o [ee] © < N o [o¢] (=] < N o [ee) © < N
— — N ™ < Te] [Te] © N~ [o¢] [&] (o] a : ﬁ

Request Size

Graph 4.

Transaction Performance Curve of a Baracuda 50 Disk Drive for
Random Reads vs Writes

4 V‘Vv"vvvvvvvvvvvv‘yv‘,vvmﬁwﬂ

v ve

L4 4 4 4

400
< 350 &
c
o
$ 300
3 —<@—Random Reads
5 250 Caches ON
o 200 —®—Random Writes
S _— Caches ON
§ 1507 — Random Writes
@ Caches OFF
o
'_

Yvoop

0 LU LU LU LU L LU L L L L L O O |

N o [e¢] © < N o 0] (=] < N o [ce) © < N
— - N (e0] < n o] © ~ [e¢] [&] (] 8 : g

Request Size

Graph 5.

8.4 On-Board Disk Processor Overhead

The onrboard disk processor overhead is the amount of time it takes the disk drive to set
up a data transfer not including the seek time and data trandfer time. This becomes critical
for samdl data transfers. As the data tranfer size becomes smdler, the rétio of the actud
time to transfer the data to the time to st up the transfer command gets smaler. On disk
drives this is only a problem on for request szes less than 8192 bytes. On disk arrays
however, the processor overhead is significant for data transfers as high as 512K bytes.

©2000, Thomas M. Ruwart 14

17" |EEE Symposium on Mass Storage Systems / 8" NASA Goddard Conference on Mass Storage Systems and Technol ogies

8.5 Command Queues

Most dl SCSl disk devices have on-board Command Queues that dlow the disk device to
queue /O requests locdly to reduce the dead-time between requests. The disk device
controllers may aso have the option to re-order requests in the queue. An example of this
is seek re-ordering. As requests come into the disk device, the controller may choose to
execute those requests that have data physically located near on another and postpone the
execution of a request that requires a longer seek operation. This has two dde effects.
Firg, the number of transactions per second is maximized by this strategy. Secondly the
order of the reguests coming in is not necessarily the order in which the requests come
out of the disk device (i.e. it is not a FIFO). Thus, the response time of any particular
request is not guaranteed. It is possible, however, to disable command queues and/or ater
the caching and seek dgorithms on many disk devices in order to atan the desred
behavior but it is important to note that use of the command queues can result in these
performance anomalies.

8.6 Disk Arrays

Disk arrays dso know as a Redundant Array of Independent Disks (RAIDs) condst of a
Disk Array Controller and severa disk drives. There are severd RAID leves of which
two are of interest heret RAID level 3 and RAID levd 5. In each of these RAID levels
there are several data disks and a redundant or parity disk. RAID 3 uses a dedicated
parity disk whereas RAID 5 digtributes the parity data among dl the disksin the array.

Ancther distinguishing factor between RAID 3 and 5 is that for each request that comes
into a RAID 3, every disk in the array must accessed for each of these requests. This
amplifies the internd architecture the RAID 3 and dlows for maximum bandwidth. In a
RAID 5 dik aray however, the disk drives can be accessed individudly which
maximizes the 10Ps performance but sgnificantly complicates the interna architecture
and configuration options.

Other important factors in the bandwidth performance of a disk array are the internd
griping factor and the mode in which it is running and. The internd riping factor is the
number of bytes accessed on an individud disk within the array before proceeding to the
next disk in the dripe group. Typicaly, on RAID 3 disk arays this is 1 byte and is
generdly not configurable. On RAID 5 disk arays the driping factor can range from 512
bytes to 64 Kbytes or more. Small griping factors in RAID 5 disk arrays lead to good
Transaction performance but reatively poor Bandwidth performance. Conversdy, large
griping factors in RAID 5 disk arays lead to poor Transaction performance but good
Bandwidth performance.

8.7 Logical Volumes

Even though Logicd Volumes dlow for scdable performance, there are performance
anomdies that occur within a Logicd Volume tha ae not entirdy obvious These
anomdies manifet themsdves as dramatic shifts in peformance tha are triggered
samply by a change in the amount of requested data or from the dignment of the data on
the logicd volume The following graphs 6-10, show a variety of these performance
anomadlies that are a direct example of the Impedance Mismatch problem. Each of these

©2000, Thomas M. Ruwart 15

17" |EEE Symposium on Mass Storage Systems / 8" NASA Goddard Conference on Mass Storage Systems and Technol ogies

volumes was created usng the Silicon Graphics XLV Logicd Volume Manager and
measurements were taken from an SGI ONY X2 computer system with eight processors
and aDud Channd Prisa PCI64 Fibre Channel Host Bus Adapter.

Bandwidth Performance of an 8-wide Striped Logical Volume
Sequential Reads, 8K,16K,32K Stripe-widths
60
U - —=
i A
ég 30 —=—16K
= y ™
- S S O A LA | (32K
W w = \! r‘ L rl 7 [If. I_!l = - I ! ‘ r ‘_ ’_.I 5 - =
10 4 i‘ (% ‘ Qn‘ An‘ ‘x* ‘x* ‘x‘n‘x
0II
N o [ee] © < AN o (e} © < AN o (e} © < N
— —l N ™ < Lo Te} (] N~ [ee} (o] (e} o i N
i — i
Request Size in 1024-byte Blocks

Graph 6.

Sequential Reads

XLV Logical Volume Striped 8-wide using a 128KByte Stripe Width

MB/sec

,lll|||||||||||
L

< ©
[Te} ©
o

1010
1122
1178

2 1234
1290
1346
1402
1458
1514
1570
1626
1682
1738
1794

1850
1906
1962
2018

o
—
Request Size in 1024-byte bloc

Graph 7.

©2000, Thomas M. Ruwart 16

17" |EEE Symposium on Mass Storage Systems / 8" NASA Goddard Conference on Mass Storage Systems and Technol ogies

XLV Logical Volume Striped 8-wide using a 128KByte Stripe Width
Sequential Reads

70

60

50

40

MB/sec

30

it

20 1

N o
3 X

Q
@

©
@

N
[}

©
o

o
—
—

©
—
—

N
]
—

L 98 ¥ 8 I 3 8 YUY ©
N N ™ ™ n O © © g

g

Request Size in 1024-byte blocks

38 ¢ 8 B 3
T R

o
~
—

176
182
188
194
200

Graph 8.

140
120

100

80
I 60
40

20

XLV Logical Volume Striped 8-wide using a 128KByte Stripe Width
Sequential Reads

) NI SIS SN SRS SN SRS SN ¢

YVoveoeovVVeVIFIISSIVTVVVIVIVIVIVIVIVIVIIVIVIQISIIIE

POVIPPPIIIPIOVPOOY

0
BERNNRRNENENENNNNNENENERNRRRENNND

Request Size in 1024-byte blocks

©2000, Th

Graph 9.

omas M. Ruwart 17

17" |EEE Symposium on Mass Storage Systems / 8" NASA Goddard Conference on Mass Storage Systems and Technol ogies

Maximum Sequential Read Bandwidth of 8 Baracuda 50 Disk Drives on 2 Prisa PCl64
HBAs

180

160 1 —®—8-wide XLV Logical Volume y I
79

140 4— —™—8 Disks, Single Processor
—4&— 38 Disks, 8 Processors

120 /14.6&3//‘.19
100

80 / /%
60 /

/‘475 162
40
i

20 % 16.04

MB/sec

1 2 4 8 16 32 64 128
Request Size in 1024-byte blocks

Graph 10.

Graph 6 shows the performance of three 8-wide logicd volumes with difference driping
factors. This graph shows that the overdl sequentid read bandwidth increases as the
dripe unit Size increases but so does the variability in the bandwidth. For example, the
Logicd Volume usng a 16Kbyte dripe unit can have its peformance vay from
18MB/sec up to 44MBJ/sec smply by choosng a different request size (the number of
bytes requested by the application on each read operation).

Graph 7 is a more dramatic view of the same phenomenon but this time on a logica
volume using a 128Kbyte dtripe size. The subsequent two graphs, 8 and 9, zoom in on the
lower end and middle of the Request Size scde. Graph 8 shows a smooth ramp-up in
performance as more data is requested. Grgph 9 focuses on the dramatic performance
difference of the different request szes. The peaks in graph 9 occur at 16Kbyte intervas
and fdl on multiples of 16Kbytes. The valeys occur when the request sSze is not an even
multiple of 16Kbytes. The important point of each of these graphs is do demordtrate the
meagnitude of this problem.

Graph 10 demongtrates another aspect of the Impedance Matching problem that has to do
with processor dlocation. On this graph the pesk read bandwidth for an 8-wide logicd
volume is plotted againg the pesk performance of two groups of 8 xdd threads each
running to a single dik. One of the 8-disk xdd thread groups is assgned to a single
processor in the SGI ONYX2. The other thread group is didributed across dl 8
processors in the ONY X2, one thread to each processor. It is clear that the distributed
caxe peaforms dgnificantly better than the logicad volume and the sSingle-processor case.
The reason for this has to do with the fact that a lower request Szes more requests are
processed per second. It turns out thet a single processor gets overwhelmed with
processing requests with between 6-8 of these particular disks each running a full speed.
When the request processing is digtributed across multiple processors, a higher overal

©2000, Thomas M. Ruwart 18

17" |EEE Symposium on Mass Storage Systems / 8" NASA Goddard Conference on Mass Storage Systems and Technol ogies

performance rate is observed. Also, snce the single-processor case closdly follows the 8
wide XLV case, it can be concluded that the performance limitations of the XLV logicd
volume is due to a problem with having dl the XLV request processng funneing
through a single processor.

Not dl Logicad Volume software is crested equa though. Graphs 11 and 12 show the
performance curves for a 4-wide Windows NT Logica Volume driped set of disks. The
peformance of this logicd volume does exhibit some peformance variaion but not
nearly as dramétic as the variations seen in the XLV logica volume. Graph 12 focuses on
a smal part of Graph 11. This shows the variation to be about 4MB/sec as opposed to the
80MB/sec seenin Graph 9.

The concluson here is that the Logicd Volume performance variations shown in the past
svad grephs is a function of the Logicd Volume software and associated
implementation paraneters. A more detaled andyss of these Logicd Volume
performance anomdies is presented detall in [2]. The purpose of these grgphs is to
demondtrate that things can go wrong and how they go wrong.

NT Logical Volume Performance

4-wide Striped Barracuda 50 disks
SGI VizPC, NT4.0 SP4
Qlogic QLA2202F, Single Channel

100

90
80 1
70

60

50 1

MB/sec

40 -

30
20

10 3

0

T O © &N © ¥ o O
NN 4 © O 1 O T
M M <5 < 0u 0 O ©

48

94
140
186
232

[o0]
~
N

692
738
784
830
876
922
968

1014

Request Size in 1024-byte blocks

Graph 11.

©2000, Thomas M. Ruwart 19

17" |EEE Symposium on Mass Storage Systems / 8" NASA Goddard Conference on Mass Storage Systems and Technol ogies

NT Logical Volume Performance

4-wide Striped Barracuda 50 disks
SGI VizPC, NT4.0 SP4
Qlogic QLA2202F, Single Channel

89

88

87

83

MB/sec

82

81 IrTTTTTT

T
< N O o © ﬁ‘ (\I o o © < O o ©
© N~ 0 O O N N M < W o -
A S S S LD LD n 1 v w w LO n

Request Size in 1024-byte blocks

400
408
416
424
432
440

0 ©
< W
< <

Graph 12.

8.8 Storage Area Network Performance Results

At this point the testing and evauation process becomes more complex. When testing a
storage subsystem on a single, isolated computer system, it is possible to correlate events
(I/0 requedts, interrupts, data transfers, ...etc.) in time a a very high resolution. This is
possble because dl the performance benchmark application runs on a single computer
using a sngle “reference clock” where dl events are based on that single reference clock.
In a Storage Area Network however, it is necessary to run the benchmark application
from multiple computers Imultaneoudy, each accessing the same Storage Subsystem.
Each computer system has its own reference clock from which events local to a computer
system can be corrdlated. However, the notion of a “globa” reference clock must be
established in order to cross correlate events in time over dl the systems. In other words,
there must be a sngle reference clock on which to base dl the events that occur on the
Storage Area Network in order to understand the interactions between computer systems
accessing a sngle Storage Subsystem. The generation of this globa clock, discussed in
section 7, is therefore criticd to the evauation testing process of these SAN
configurations.

A smple test was run using two hosts accessng a sngle set of 16 disk drives configured
a a sngle logicad volume through a file system shared between two Windows NT PC
computers. Each PC computer had two Fibre Channd connections to the logica volume.
The firgt test conssted of sequentialy reading a 1.6GB file usng 2MB per request from 2
hogs reading the samefile. The file was read three times with results reported for each

©2000, Thomas M. Ruwart 20

17" |EEE Symposium on Mass Storage Systems / 8" NASA Goddard Conference on Mass Storage Systems and Technologies

Performance of Individual /O Operations for 2 Hosts Accessing a
Shared File System with 2MB Read Operations

180
160 —&—Host 1 =
—f®—Host 2

MB/sec

20
0
L T T o T e I e T e e SO e T e O e T e T e SO e N o e A e e S e N e R e T e T e B e A o
M © O N 1IN 0 «d I I~ O M O© O N D O 4 < K~ O M O O N W
T 4 4 N N N O 0O 00O O F F 8 0 0 Wm0 ©O© ©O© O N~ N~

Operation Number

Graph 13.

pass. The net result showed each host was able to read the entire file at an aggregate rate
of 73MB/sec. Graph 13 shows the ingtantaneous bandwidth performance of each 1/0
operation for both hosts. The graph is crowded but it does show that the performance
limits of each host remained in awdl-defined band from 50-90M B/sec/op.

Performance of Individual I/0 Operations of 2 Hosts Accessing a
Shared File System using 4MB Read Operations
180
—&—Host 1
160 —B— Host 2 ¥
140
120
[S]
g 100
o
= 80 ?
60
40
20
0
1 O d O d O d © «d © d © d ©W +H O 4 © «H © «H O +H O «d O
M T O~ O O N MW OW 0O d N < O~ 0 O d M < O N~
T " H e H " NN NN NN OO O MmO O om
1/0O Operation Number

Graph 14.

©2000, Thomas M. Ruwart 21

17" |EEE Symposium on Mass Storage Systems / 8" NASA Goddard Conference on Mass Storage Systems and Technol ogies

Graph 14 however shows the utility of displaying the time-stamped operation data. In this
test the same file was being read by the same two hogts but with 4AMB read requests. The
firs half of the 1/O operations look very consistent. (There is a smal “blip” a the 1/3°
and 2/3" points on this graph that indicate when the second and third read passes started.)
However, about haf way through the second pass of reading the file there was an unusud
drop in peformance that is very evident in the graph. Both host computers saw the same
performance decrease and at the same time. It is dso gpparent that neither host computer
recovered from this performance problem. It is dso not known what caused this anomay
but further anadlyss of the timestamp data may reved an access pattern issue reated to a
caching idiosyncrasy of the disks.

9 Concluding Remarks

This paper shows that there is a large variation in performance for logicd volumes caused
by the Impedance Matching problem. This is primarily a result of having the 1/0 request
traverang too many leves in the Storage Subsystem Hierarchy. The /O request a each
level can get reszed and/or re-aligned in space and time. By the time the 1/0 request gets
to the storage subsystem, it appears are many smdler requests distributed across many
devices. Futhermore, what the gpplication sent over as a “padld” request can be broken
up into a series of smdler, seridized requests to the storage subsystem. The results are
demonsgtrated in a series of graphs that show what happens to the performance as seen by
the application when a series of large requests are made to subsystems with different
configurations.

These are jus some of many examples of the manifestation of the Impedance Matching
problem within a Storage Subsystem. Other Impedance Matching-like problems occur in
the caches used on the disks arrays and disk drives with respect to their sze and caching
dgorithms, multi-host Storage Area Networks, and the ever-changing bandwidths and
latencies of the subsystem interfaces. These are dl areas that ae ripe for investigation
given an adequate test and evaluation framework.

It was ds0 demondrated to some extent the vaue of having a testing framework with a
highly resolved, globd dock for the purpose of evduding and andyzing the
performance of a Shared Storage Subsystem in a Storage Area Network environment.
This tegting framework will become more criticad as the sysems become more complex
and less predictable whereby more red-time empiricdly-based andysis will be required
to resolved problemsin large SAN configurations.

10 Future Work
Future and ongoing work includes but is not limited to:

Integrating these techniques and testing framework with File Sysem tedting

efforts

Deveoping ways to collect subsequently study “"red world' dorage system
activity data

Improving and expanding the capabilities of the testing software to other
operating environments

Incorporating other storage devices such as tape drives into this testing framework

©2000, Thomas M. Ruwart 22

17" |EEE Symposium on Mass Storage Systems / 8" NASA Goddard Conference on Mass Storage Systems and Technol ogies

References

[1] This work was supported in part by the National Science Foundation, under the NSF
Cooperative Agreement No. CI-9619019, and by the Department of Energy through
the ASCI Data Visualization Corridor Program under contract #\W-7405-ENG-48.

[2] Ruwart, Thomas M., “Peaformance Characteristics of Large and Long Fibre Channd
Arbitrated Loops’, Proceedings, 16" IEEE Symposium on Mass Storage Systems /
7" NASA Goddard Conference on Mass Storage Systems and Technologies, March
1999, |IEEE Computer Society Press

[3] Thomas M. Ruwart and Matthew T. OKeefe, "Performance Characteristics of a 100
MB/sec Disk Array", Storage and Interfaces '94, San Jose, CA

[4] Alex Elder et d., "The InTENSty PowerWdl: A Case Study for a Shared File
Sysem Tedi n% Framework”, Proceedings, 17" IEEE Symposium on Mass Storage
Systems / 8" NASA Goddard Conference on Mass Storage Systems and
Technologies, March 2000, IEEE Computer Society Press

©2000, Thomas M. Ruwart 23

