
17th IEEE Symposium on Mass Storage Systems / 8th NASA Goddard Conference on Mass Storage Systems and Technologies 

©2000, Thomas M. Ruwart  1 

Disk Subsystem Performance Evaluation: 
From Disk Drives to Storage Area Networks 

Thomas M. Ruwart 
University of Minnesota 

Laboratory for Computational Science and Engineering 
356 Physics 

116 Church Street SE 
Minneapolis, Minnesota 55455 

tmr@tc.umn.edu 
tel +1 612 626-8091  
fax +1 612 626-0030 

 
Abstract 
Disk subsystems span the range of configuration complexity from single disk drives to 
large installations of disk arrays. They can be directly attached to individual computer 
systems or configured as larger, shared access Storage Area Networks (SANs). It is a 
significant task to evaluate the performance of these subsystems especially when 
considering the range of performance requirements of any particular installation and 
application. Storage subsystems can be designed to meet different performance criteria 
such as bandwidth, transactions per second, latency, capacity, connectivity, …etc. but the 
question of how the subsystem will perform depends on the software and hardware 
layering and the number of layers an I/O request must traverse in order to perform the 
actual operation.  As an I/O request traverses more and more software and hardware 
layers, alignment and request size fragmentation can result in performance anomalies that 
can degrade the overall bandwidth and transaction rates. Layer traversal can have a 
significant negative impact on the observed performance of even the fastest hardware 
components. This paper walks through the Storage Subsystem Hierarchy, defining these 
layers, presents a method for testing in single and multiple computer environments, and 
demonstrates the significance of careful, in-depth evaluation of Storage Subsystem 
Performance. 
 
1 Introduction 
Disk subsystem manufacturers make many claims about the performance of their 
products. However, these performance claims cannot be taken out of context of the final 
implementation. Rather, it is necessary to evaluate the performance of disk subsystems 
within a configuration that is as close as possible to the actual configuration in which the 
subsystem will ultimately be employed. Such an evaluation requires a benchmark 
program that can closely mimic the access patterns of the intended applications and 
provide results that are meaningful and reproducible. 
 
This paper presents examples of disk I/O performance anomalies and describes the cause 
of these problems as well as strategies to minimize their effects. The paper begins by 
describing the hardware and software components that an I/O request must traverse in 
order to move data between the computer system memory and the storage media. The 
Testing Philosophy and Methodology is then presented that describes how and why the 
individual components are evaluated as well as basic assumptions and tradeoffs that must 



17th IEEE Symposium on Mass Storage Systems / 8th NASA Goddard Conference on Mass Storage Systems and Technologies 

©2000, Thomas M. Ruwart  2 

be made in order to provide meaningful and reproducible results. The performance of the 
entire Storage Subsystem Hierarchy is then be evaluated under ideal conditions. This sets 
an upper bound for performance of the system as a whole. Knowing this upper 
performance limit, it is possible to address the Impedance Matching Problem which 
examines various performance anomalies and their causes. Example test results are given 
throughout the paper to illustrate relevant concepts.  
 
2 The Storage Subsystem Hierarchy 
The Storage Subsystem Hierarchy describes the levels of hardware and software that an 
I/O request must traverse in order to initiate and manage the movement of data between 
the application memory space and a storage device. The I/O request is initiated by the 
application when data movement is required either explicitly in the case of file operations 
or implicitly in the case of memory-mapped files for example. The request is initially 
processed by several layers of system software such as the file system manager, logical 
device drivers, and the low-level hardware device drivers. During this processing the 
application I/O request may be split into several inter-related “physical” I/O requests that 
are subsequently sent out to the appropriate storage devices to satisfy these requests.  
These physical I/O requests must pass through the Physical Connection Layer that makes 
the physical connection between the Host Bus Adapter on the computer system and the 
storage device.  After arriving at the storage device, the I/O requests may be further 
processed and split into several more I/O requests to the actual storage “units” such as 
disk drives. Each Storage Unit processes its request and data is eventually transferred 
between the storage unit and the application memory space.  The following sections 
present a more detailed description of each level in the hierarchy with respect to its 
function and performance implications. 
 
2.1 Computer System 
The Computer System is a critical piece of the Storage Subsystem Hierarchy in that it 
encapsulates all the software components and the necessary interface hardware to 
communicate with the Physical Connection layer (i.e. the Host Bus Adapter). The 
components within the Computer System include the processors, memory, and internal 
busses that connect the memory to the processors and to the Host Bus Adapters. The 
performance characteristics of each of these major components (i.e. the clock-speed, 
number of processors, processor architecture, memory bus bandwidth, …etc.) plays a 
significant role in the overall performance of the Storage Subsystem as will be 
demonstrated in a later section.  However, given the fastest hardware available, the 
Storage Subsystem will only perform as well as the underlying software, starting with the 
Application Program 
 
2.2 Application Program 
The term “Application Program” as it is used here is any program running on the Host 
Computer System that requires data movement between the memory in the host computer 
and a Storage Unit. Application programs can be either typical User programs or can be 
parts of the Operating System on the host computer such as the paging subsystem. In any 
case, these programs have the ability to make I/O requests to any of the lower-level layers 
in the hierarchy if the Operating System provides an appropriate programming interface 



17th IEEE Symposium on Mass Storage Systems / 8th NASA Goddard Conference on Mass Storage Systems and Technologies 

©2000, Thomas M. Ruwart  3 

to do so. For example, the benchmark program used to gather statistical data for this 
study can access a storage unit through the file system manager, the logical volume 
device driver(s), or through the disk device drivers. In general, Applications that can 
manage and access the lower levels of the hierarchy achieve better performance than 
Applications that must traverse through the higher level layers such as the File System 
Manager. 

Computer System Hardware (Processors, Memory, Internal busses, …etc)

User Application

File System Manager

Parallel SCSI/Fibre Channel/GSN/…etc Host Bus Adapter (HBA)

Disk Array (RAID) Controller

Disk Subsystem

Low Level Device Driver

SCSI Protocol Device Driver

Logical Volume Device Driver

Disk Subsystem Disk Subsystem

Physical Connection Layer

 
Figure 1. The Storage Subsystem Hierarchy 

 
2.3 File System Manager 
The File System Manager is mentioned here for completeness but it is not used in any of 
the testing performed for this paper with one exception. The File System Manager 
provides a level of abstraction for the Application Program in order to simplify the 
process of accessing data for the application programmer.  Because of the amount of 
“indirect” I/O processing that can accompany a single Application I/O request (such as 
space allocation, inode lookups, …etc.), I/O performance testing “through” the File 
System Manager can become enormously complex and produce misleading results. 
Therefore, it is beyond the scope of this paper to include any testing through the File 
System Manager or to report the performance idiosyncrasies of the File System Manager 
itself. The I/O benchmark program used in this study always bypasses the File System 
Manager for data movement operations. The one exception to this occurs in the testing 
that was performed for multi-host access to a set of shared disks in a Windows NT 
environment. For these tests, a Shared File System was necessary in order to gain 



17th IEEE Symposium on Mass Storage Systems / 8th NASA Goddard Conference on Mass Storage Systems and Technologies 

©2000, Thomas M. Ruwart  4 

“shared” access to the disks from all the hosts involved in the tests. Unfortunately, this 
functionality is not yet easily available in the Device Drivers available under NT. 
 
2.4 Logical Volume Device Drivers  
The Logical Volume Device Drivers provide a mechanism to easily group storage 
devices into a single “logical” device in order to increase storage capacity, performance, 
and/or to simplify the manageability of large numbers of storage devices.  The Logical 
Device Driver presents a single device object to the Application. The Logical Device 
Driver is then responsible for taking a single I/O request from the Application (or the File 
System Manager) and mapping this request onto the lower level storage devices, which 
may be either actual storage devices or other logical volumes.   
 
There are many ways to configure a logical volume that consists of multiple underlying 
storage devices. One common configuration is to stripe across (also known as striping 
wide) all the storage devices in an effort to increase available bandwidth or throughput  
(operations per second). In a wide-striped logical volume, data is laid out on the disk in 
“stripe units”. A stripe unit is the amount of sequential data that is transferred to/from a 
single storage device within the logical volume before moving to the next storage device 
in the volume. The stripe unit can be any number of bytes from a single 512-byte sector 
to several megabytes but is generally a constant within a logical volume (Figure 2). 

Logical 
Disk

Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7 Block 8

Block 1 Block 4 Block 7 Block 2 Block 5 Block 8 Block 3 Block 6

A single 16384-byte “block” consists of 32 consecutive disk sectors, 512-bytes per sector.

Disk 1 Disk 2 Disk 3

A sequence of 8 consecutive 16384-byte blocks on a “logical” disk. Blocks distributed across the physical disks as shown.

 
Figure 2. The layout of a Logical Volume. 

 
2.5 I/O Protocol Device Driver 
The I/O Protocol Device Driver is responsible for translating the I/O request from the 
upper level device drivers into a form that fits the I/O protocol used to communicate the 
request to the underlying storage devices. In general, an internal I/O request consisting of 
a command (read or write), a data buffer address, and a data transfer length is converted 
into a SCSI command and will convey this information to the host bus adapter via the 
low-level device driver and the disk devices.  
 
2.6 Low-Level Device Driver 
This device driver takes the high-level information (i.e. the SCSI command) from the I/O 
Protocol Device Driver and interfaces directly with the host-bus adapter that will perform 
the actual data transfer between the storage device and application memory. For example, 



17th IEEE Symposium on Mass Storage Systems / 8th NASA Goddard Conference on Mass Storage Systems and Technologies 

©2000, Thomas M. Ruwart  5 

given a PCI-to-Fibre Channel Host Bus Adapter, this device driver will set up the host 
bus adapter with the address of the SCSI command buffer, the application data buffer, 
and the target device and then tell the host bus adapter to begin the operation. The host 
bus adapter will transfer the SCSI command buffer to the intended target device. The 
target device at some later point will request a data transfer operation that will be 
managed in part by the host bus adapter. At the end of the entire operation, an interrupt is 
generated to notify the Low-Level Device Driver of the completion status the I/O 
operation. Under normal circumstances, the Low-Level Device Driver then propagates 
the completion status to the upper-level drivers, eventually reaching the User Application 
Program. 
 
2.7 Physical Connection Layer 
This layer defines the hardware that physically attaches the host-bus adapter to the 
storage device. These connections can be as simple as a single 3-foot cable or as 
elaborate as a multi-stage communication fabric spanning many miles.  In general, there 
are two types of physical connections: Parallel-busses  or Channels and Serial Interfaces.  
Parallel busses include SCSI and IDE, Channels include IBM 370-type Block-
Multiplexer Channels. Bus-type interfaces are most commonly used inside personal 
computers and other systems for system disks and other peripheral devices that do not 
require a great deal of performance (i.e. greater than 100 MB/sec). SCSI busses are also 
used for larger storage configurations that extend outside the physical boundaries of a 
computer cabinet. However, due to the nature of the Parallel SCSI bus architecture, the 
length of SCSI busses is severely restricted when compared to that of Serial Interfaces.  
 
The most common Serial Interfaces include Fibre Channel, USB, and FireWire, to name 
just a few.  For disk storage, Fibre Channel is currently the most prominent Serial 
Interface. Serial Interfaces have distinct advantages over the more traditional Parallel Bus 
architectures in the number of different connection topologies that are possible. These 
topologies include Point-to-Point, Loop, and Switched Network (Figure 3). Furthermore, 
the distance limitations of Serial Interfaces tend to be significantly longer than Parallel 
Busses making it easier to implement in physically large or extended configurations. 

 
Point-to-Point connections 
dedicate a single host connection 
to a single storage device. This is 
not the most efficient use of a host 
connection but does guarantee 
access to the device via that 
connection.   
 
The Loop topology, also know as 

an Arbitrated Loop in Fibre Channel terms, behaves more like a traditional Parallel Bus. 
However, a Fibre Channel Arbitrated Loop, for example, can more easily accommodate 
multiple host computers as well as a larger number of storage devices.  There are 
practical limitations on the number of devices and the overall length of a Loop that can be 
overcome using a Switched Network topology.  

C
P
U

Parallel 
Bus

C
P
U

Direct
Attach

C
P
U

C
P
U

L
O
O
P

Loop

Switch

C
P
U

C
P
U

Switched 

Figure 3. Storage Area Network Topologies. 



17th IEEE Symposium on Mass Storage Systems / 8th NASA Goddard Conference on Mass Storage Systems and Technologies 

©2000, Thomas M. Ruwart  6 

 
The Switched Network topology allows for any number of options in physically 
connecting the storage devices to the host computers. It is the most flexible in terms of 
allowing for multiple access paths to a single storage device, multiple host shared access, 
fault tolerance, and performance. However, this flexibility also means increased 
complexity in managing all the nodes connected to the SAN, whether they are host 
computers or disk devices. These multi-host, multi-device configurations are commonly 
referred to as Storage Area Networks or SANs.  
  
2.8 Storage Device and Storage Units 
The last two layers in the hierarchy are the Storage Devices and Storage Units. The 
distinction is that a Storage Device is made up of one or more Storage Units but can 
“appear” to be a single device. The example is that of a Disk Array which is a Storage 
Device that contains several individual Storage Units (disk drives) but can appear to the 
system as a single, very large, disk drive. In the case of a disk array, the I/O request is 
received from the host bus adapter and is divided up into one or more I/O requests to the 
underlying disk drives. Storage Units are individually addressable storage devices that 
cannot be further subdivided into smaller physical units. The principle example of this is 
a Disk Drive.  
 
3 Performance Implications and the Impedance Matching Problem 
Each layer of software and/or hardware between the Application and the Storage Device 
adds overhead and other anomalies that can result in highly irregular performance as 
viewed by the Application. Overhead is essentially the amount of time it takes for the I/O 
request to traverse the specific layer. The source of overhead in each layer is specific to a 
layer and is not necessarily constant within a layer.  
 
An example of this is the overhead induced by the Physical Connection layer. A physical 
connection consisting of a short cable introduces virtually no overhead since the 
propagation of a signal at the speed of light over a 3-foot distance is not significant. On 
the other hand, propagation of a similar signal traversing a 20-mile storage area network 
through multiple switching units will introduce noticeable overhead [2].  
 
An interesting artifact resulting from the interaction of the components in the Storage 
Subsystem Hierarchy is analogous to the Impedance Matching problem in electrical 
signal on wires. The term “Impedance Matching” is used as an analogy to what happens 
when there is a mismatch of operational characteristics between two interacting objects. 
In an electrical circuit, an impedance mismatch has an effect on the “performance” of the 
circuit in terms of its gain or amplitude at particular frequencies. In the Storage 
Subsystem Hierarchy, an “impedance mismatch” has more to do with things like I/O 
request size and alignment mismatches that have an effect on the performance 
(bandwidth or transaction rate) of the storage subsystem as viewed by the application. 
The effects of these mismatches can be viewed from several different perspectives 
including the Application perspective, the Disk Device perspective, and the System 
perspective. The effects of this phenomenon are presented in the sections that follow. 



17th IEEE Symposium on Mass Storage Systems / 8th NASA Goddard Conference on Mass Storage Systems and Technologies 

©2000, Thomas M. Ruwart  7 

However, it is first necessary to describe exactly how these effects are identified and 
analyzed. 
 
4 Testing Philosophy and Methods  
When approaching the problem of evaluating a storage subsystem it is important to know 
and understand the operational boundaries of the applications using the storage 
subsystem. Performance tests are often run on equipment and results are generated or 
provided that have no real connection to the actual “application” that will be using the 
storage subsystem. The evaluation of a storage subsystem is intended to answer the basic 
question of how well applications perform on a storage subsystem in a given 
configuration.  
 
There are many approaches to answering this question. One way is to run the application 
on a specific configuration of the equipment under evaluation. The configuration can be 
“tuned” until the “performance” is optimized for a specific application. However, this is 
not always easy to do nor is it an accurate method of testing performance if the behavior 
of the application is not well understood under all circumstances. Furthermore, the results 
obtained by testing a single application or a small set of applications may not extend 
beyond those applications to other applications or even to the same application as it (the 
application) scales in size, complexity, …etc.  
 
The evaluation method advocated by this paper is based on the idea of testing the 
individual components of a Storage Subsystem followed by testing various 
“configurations” of these components. It is essential to first understand the performance 
characteristics of the individual hardware and software components of the entire storage 
subsystem before the combined performance of the overall subsystem can be accurately 
assessed. Successive layers/components of the Storage Subsystem Hierarchy are then 
added to the evaluation testing and the effects of each addition are recorded.  
 
Each successive layer of the Storage Subsystem Hierarchy adds functionality and/or 
performance to the application. However, a side effect of each successive layer is to add 
overhead to each I/O request as well as a significant amount of complexity to the 
evaluation process. The increase in complexity results from the fact that each successive 
layer adds new independent variables to the performance tuning equation. As a result, 
this complexity grows exponentially with each successive layer. Understanding the 
effects on the performance of each of these variables as well as how the variables interact 
is the goal of the evaluation process. With this information, it becomes easier to identify 
the cause of performance problems and to compensate by adjusting these and other 
related variables.  
 
For example, the evaluation process would start by characterizing the performance of a 
single disk drive. Multiple disk drives can then be added to the same I/O Channel in order 
to test the performance limits of the host adapter. Several host adapters can then be 
added, each with a sufficient compliment of disk devices so as to saturate the system bus 
that connects the host adapters to the memory subsystem of the computer or to saturate 
the memory bus itself. In either case, the performance of the computer system internal 



17th IEEE Symposium on Mass Storage Systems / 8th NASA Goddard Conference on Mass Storage Systems and Technologies 

©2000, Thomas M. Ruwart  8 

data bus architecture is characterized. The disk drives can also be integrated with a disk 
array (RAID) controller and the performance of the RAID controller can be characterized 
as well.  
 
5 The I/O Spectrum and Performance Metrics 
There are several metrics used to gauge the performance of a disk subsystem. The I/O 
Spectrum is a concept that divides the performance metrics into two basic types. At one 
end of the spectrum is bandwidth and the other end is transactions per second or IOPs 
(I/O Operations per second). Bandwidth is simply the maximum number of bytes 
transferred per second.  This is generally characterized by relatively few, very large data 
transfer requests per second. IOPs is a measure of how many relatively small data 
transfers can be processed by the disk subsystem per second. In general, as the size of the 
requested data increases, the performance moves from IOPs to Bandwidth along the I/O 
Spectrum (Figure 4.)   
 

Related to the IOPs metric are two other metrics worth mentioning: Response Time and 
Jitter. Response Time is simply the time it takes to get a piece of data once the request 
has been issued. It is important to note that Response Time is not simply 1/(IOPs). For 
example, if a Storage Device has an IOP rating of 2,000 I/O operations per second, this 
means that the storage controller can accept 2,000 I/O requests every second and that it 
can simultaneously deliver 2,000 responses per second. However, once an I/O request is 
received by the Storage Device the associated response may be the next response out, or 
it may be the 100th response out, or it may be the 6,000th response out. The associated 
Response Times for each of these possibilities is 1/2000th of a second, 100/2000? 1/20th 
of a second, or 6000/2000? 3 seconds.  
 
Jitter is closely related to the Response Time metric. It is a measure of how much the 
Response Time changes over time. For example, given 1000 I/O requests that each have 
a required response time of 1/30th of a second, jitter measures how many of the 1000 
requests failed to meet the response time criteria. Jitter is important in real-time 
applications that require Response Times to be consistent. Such an application is 
streaming video where the individual video frames must appear before or at the correct 
time, every 1/30th of a second for example, or the frame is dropped from being displayed.  
 
6 The I/O Benchmark Program 
As previously mentioned there are many aspects of performance that are of interest and 
there are many ways to gather performance data display the information in an easy to 
understand format.  Simply stating that a disk drive can deliver 24MB/sec or 1500 
transactions per second does not convey nearly enough information. Rather, the 
performance of a disk drive as a function of some other variable such as request size or 
media position is more informative. Furthermore, being able to capture and display this 
information in a time-correlated manner is useful in understanding the interaction of 
multiple components within a Storage Subssytem. This is especially important in a 

Figure 4. The I/O Spectrum. 

Bandwidth Transactions per second 



17th IEEE Symposium on Mass Storage Systems / 8th NASA Goddard Conference on Mass Storage Systems and Technologies 

©2000, Thomas M. Ruwart  9 

shared-access environment where a single computer system does not have the ability to 
control access to a storage subsystem.  
 
The I/O benchmark program used to gather this information must have several qualities: 

• Highly configurable 
• Generate “reproducible” results 
• Generate “reproducible” usage scenarios 
• Very fine degree of tunability 

 
There are many I/O benchmarking programs readily available such as BONNIE, 
IOZONE, DiskPerf, IOMeter, …etc. These programs all address different aspects of I/O 
performance and were not sufficiently focused on the fine details of I/O behavior to be 
used for this study. Therefore, the benchmark program used to generate the results in this 
paper has been specifically developed over the past several years at the University of 
Minnesota and contains features necessary to satisfy the criteria mentioned above. This 
program is called xdd and is available from the web site listed in the title of this paper.  
Xdd is used to measure many of the disk device performance characteristics as well as 
helping to identify many of the performance anomalies that appear in more complex 
configurations.  
 
7 Testing Framework 
Testing in a multiple-host environment required the creation of a framework to 
coordinate testing on multiple systems concurrently[4].  The two basic functions of this 
framework are: 

• Accounting for the existence of multiple clocks  
• Coordinating the initiation of tests to run concurrently on multiple hosts 

Xdd makes use of precise time stamps to quantify and report storage performance 
characteristics. Each host accessing the shared storage has its own internal sense of time, 
and without a common reference clock it is impossible to interpret the relationship 
between tests run on separate hosts. Thus a consistent time base is needed in order to 
correlate test results generated by separate systems.  
 
7.1 The Reference Clock 
Each of the systems used for testing has a clock register that updates at a high frequency, 
allowing for very precise measurement of elapsed time. The resolution of this clock 
varies for different systems (ranging from 2 to 80 nanoseconds per tick or so), so clock 
values are converted to a common time unit (picoseconds) for the purpose of 
synchronization.  
 
A very simple clock model to establish a common time base. It is assumed that all clocks 
run at the same, constant rate. Therefore it can be assumed that conversion from a given 
machine's "local time" to the common "global time" involves only the addition of a 
constant to the local clock's value. With this simplified model it is only necessary to 
determine the value of the constant difference between pairs of clocks. 
 



17th IEEE Symposium on Mass Storage Systems / 8th NASA Goddard Conference on Mass Storage Systems and Technologies 

©2000, Thomas M. Ruwart  10 

One machine is designated to keep the global sense of time. That machine provides a 
service with which others communicate to determine the offsets of their own clock from 
the global time. Each client initiates a request to the server to get the current global time. 
The difference between the time value returned and the client's local time is recorded as 
the basis for the offset. This offset is further adjusted to compensate for the propagation 
delay required to carry the time request and its response over the communication 
medium. This propagation delay bounds the error in the difference between the estimated 
and the actual offset between the two clocks. This request/response protocol is repeated a 
number of times, and use the offset associated the minimum propagation delay as the 
final offset value. 
 
7.2 Coordination of Concurrent Tests 
With a common time base defined, it is possible to coordinate the initiation of tests on 
different host systems. Xdd is able to determine the time offset for the machine under 
test.  The program is provided an indication of a (global) time at which all tests are to 
begin. This global time is converted to a localized start time using the offset value. Xdd 
then polls the high-resolution clock repeatedly until the start time has arrived. At that 
point test execution begins. Test results generated by individual hosts are buffered during 
test execution, and saved to disk for later analysis. 
 
8 Disk Device Basics 
In order to understand some of these 
performance anomalies, a short course in disk 
devices is necessary. It is assumed that the 
reader has a basic understanding of how Disk 
Drives are put together in the sense that they 
contain platters, heads, cylinders, sectors, and 
lots of 1’s and 0’s.  However, it is worth 
describing some of the more subtle design 
concepts of a disk drive that have an impact on 
the performance. These concepts include 
Zoned Bit Recording, Caching, Rotational 
Latency, Seek Time, the On-board Disk 
Processor Overhead, Command Queues, and 
Disk Arrays. 
 
8.1 Zoned Bit Recording 
The data transfer is the rate at which actual user data can be read from or written to the 
media. This transfer rate can vary in such a way that depends on the physical location on 
the disk media where the transfer is to take place. This is due to a recording technique 
called Zoned Bit Recording (ZBR) whereby more data is written on the outer tracks of a 
disk platter than on the inner tracks. This allows for more efficient utilization of the 
recording area and hence greater overall capacity. ZBR is used on most current 
generation disk drives.  Given that a disk drive spins at a constant rate, 7200 RPM for 
example, the outer zones that contain more data will transfer data at a higher data rate 
than the inner zones that contain less data.   

Figure 5. Zoned Bit Recording. Note how 
the outer band has more sectors than the 
inner bands.  



17th IEEE Symposium on Mass Storage Systems / 8th NASA Goddard Conference on Mass Storage Systems and Technologies 

©2000, Thomas M. Ruwart  11 

 
This is clearly demonstrated in Graph1 where the Effective Data Transfer Rate is plotted 
against the physical position on the platter. Each increment along the X-axis is a 500MB 
segment of the disk. As data is read from segments successively further into the disk, the 
data rate at which the data is transferred decreases. However, the decreases are not 
gradual but are distinct “steps” along the performance curve. Each of the horizontal 
plateaus is a physical zone on the disk. This graph shows that there are 14 distinct zones 
on this disk which matches the manufacturer’s specification. It is interesting to note that 
the width of outer zones is larger than the width of the inner zones. 
 

Zoned Bit Recording Bandwidth Performance Curve as a Function 
of Position on Disk for a Baracuda 50 Disk Drive for

128K-byte Sequential Read Operations

12

14

16

18

20

22

24

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Zones in 500MB Increments

M
B

/s
ec

 
Graph 1. 

 
8.2 Caching 
When data is read off the disk media it is stored temporarily in a buffer cache before it is 
sent to the host bus adapter (controller).  The data transfer rate from the cache onto the 
bus is normally done at the speed of the bus that is usually much faster than the transfer 
rate off the media.  The cache can also be used during write operations to accept 
incoming data and “complete” the write operation before the data is actually written on 
the media. This can speed up the process of writing small amounts of data to a disk 
device by a factor of 10-100 since the requesting application does not need to incur the 
additional overhead of the seek operation and rotational delay associated with writing the 
data to the disk media. 
 



17th IEEE Symposium on Mass Storage Systems / 8th NASA Goddard Conference on Mass Storage Systems and Technologies 

©2000, Thomas M. Ruwart  12 

The size of the buffer cache also has an impact on the transfer rate performance of a disk 
drive. Consider a disk with no buffer cache.  The data would then proceed directly from 
the bus to the media and would be limited to the data transfer rate to the media.  If the 
buffer cache size was increased to one megabyte for example, then data transfers could 
proceed between the cache and the bus at bus speeds while simultaneously transferring 
data between the media and the cache at media speeds.  Buffer caches can be very helpful 
when streaming data sequentially off the disk media.  After data from a single read 
request is transferred into the buffer cache, the disk can perform a read-ahead operation 
and continue to transfer subsequent data into the buffer cache in anticipation of the next 
read request.  Without a buffer cache and the read-ahead operation, the subsequent 
request would arrive and the disk would have to wait for an entire rotation of the disk 
before the data transfer could begin again.    
 

Bandwidth Performance Curve of a Seagate Baracuda 50 Disk 
Drive for Sequential Writes

0

5

10

15

20

25

2 10 18 26 34 42 50 58 66 74 82 90 98 10
6

11
4

12
2

Request Size

M
B

/s
ec

Sequential Writes
Caches ON

Sequential Writes
Caches OFF

Graph 2. 
 
Graphs 2 and 3 demonstrate the effectiveness of a Write Cache for purely sequential 
write operations. The graph plots Bandwidth and Transaction performance as a function 
of request size. It is clear that the write cache significantly improves the performance of 
the disk for any size write operation. For small operations, in the 1024-byte per 
transaction range, the transaction rate is approximately 14 times higher when using the 
cache for write operations than having the cache disabled.   
 
Graphs 4 and 5 further demonstrate the effects of caches on purely random transactions: 
reads and writes.  These graphs show that random read operations do not benefit from the 
cache and closely track the performance of non-cached random write operations. 
However, the cache is still effective in improving the performance of small random write 
operations up to about 64Kbytes where the performance curve tracks the non-cached 
performance of both reads and writes.  



17th IEEE Symposium on Mass Storage Systems / 8th NASA Goddard Conference on Mass Storage Systems and Technologies 

©2000, Thomas M. Ruwart  13 

Transaction Performance Curve of a Seagate Baracuda 50 Disk 
Drive for Sequential Writes

0

200

400

600

800

1000

1200

1400

1600
2 10 18 26 34 42 50 58 66 74 82 90 98 10
6

11
4

12
2

Request Size

T
ra

n
sa

ct
io

n
s 

p
er

 S
ec

o
n

d

Sequential Writes
Caches ON

Sequential Writes
Caches OFF

 
Graph 3. 

 
8.3 Rotational Latency and Seek Time 
The Rotational Latency is the time that it takes for the disk platter to rotate such that the 
requested sector is directly under the read/write head. The rotational latency is simply 1 
divided by the rotational speed of the disk. Rotational rates for the most common disk 
drives are 5400, 7200, and 10,000 revolutions per minute. This translates to rotation 
times of 11.1ms, 8.3ms, and 6ms respectively. 
 
The seek time is the time it takes to position the read/write head over the correct cylinder 
on the platter. This time can vary by a factor of 10-20 from a single track-to-track seek to 
a full drive seek (from cylinder 0 to the last cylinder on the disk). Typically seek times 
range from slightly less than 1 millisecond to about 20 milliseconds for a full seek.  Seek 
operations for write operations take longer than those for read operations because write 
operations need to seek to the required cylinder and be in perfect alignment before 
starting the write operation.  Read operations however, can start reading before the head 
completely settles.  
 
Graphs 4 and 5 show the effects of Rotational Latency and Seek Time on read and write 
performance when the I/O operations are randomly distributed over the disk. Graph 4 
plots Bandwidth as a function of Request Size and also shows the effectiveness of the 
Write Cache on Random Write operations. Graph 5 plots IOPs as a function of request 
size for the same access pattern.  It is clear that for this particular model of disk drive, the 
write cache does not have any impact on performance for request sizes beyond 64Kbytes. 
 



17th IEEE Symposium on Mass Storage Systems / 8th NASA Goddard Conference on Mass Storage Systems and Technologies 

©2000, Thomas M. Ruwart  14 

Bandwidth Performance Curve of a Baracuda 50 Disk Drive for 
Random Reads vs Writes

0

2

4

6

8

10

12
2 10 18 26 34 42 50 58 66 74 82 90 98 10
6

11
4

12
2

Request Size

M
B

/s
ec

Random Reads
Caches ON

Random Writes
Caches ON

Random Writes
Caches OFF

 
Graph 4. 

Transaction Performance Curve of a Baracuda 50 Disk Drive for 
Random Reads vs Writes

0

50

100

150

200

250

300

350

400

2 10 18 26 34 42 50 58 66 74 82 90 98 10
6

11
4

12
2

Request Size

T
ra

n
sa

ct
io

n
s 

p
er

 S
ec

o
n

d

Random Reads
Caches ON

Random Writes
Caches ON

Random Writes
Caches OFF

 
Graph 5. 

 
8.4 On-Board Disk Processor Overhead 
The on-board disk processor overhead is the amount of time it takes the disk drive to set 
up a data transfer not including the seek time and data transfer time. This becomes critical 
for small data transfers. As the data transfer size becomes smaller, the ratio of the actual 
time to transfer the data to the time to set up the transfer command gets smaller.  On disk 
drives this is only a problem on for request sizes less than 8192 bytes.  On disk arrays 
however, the processor overhead is significant for data transfers as high as 512Kbytes.   
 
 



17th IEEE Symposium on Mass Storage Systems / 8th NASA Goddard Conference on Mass Storage Systems and Technologies 

©2000, Thomas M. Ruwart  15 

8.5 Command Queues 
Most all SCSI disk devices have on-board Command Queues that allow the disk device to 
queue I/O requests locally to reduce the dead-time between requests. The disk device 
controllers may also have the option to re-order requests in the queue. An example of this 
is seek re-ordering. As requests come into the disk device, the controller may choose to 
execute those requests that have data physically located near on another and postpone the 
execution of a request that requires a longer seek operation. This has two side effects. 
First, the number of transactions per second is maximized by this strategy. Secondly the 
order of the requests coming in is not necessarily the order in which the requests come 
out of the disk device (i.e. it is not a FIFO). Thus, the response time of any particular 
request is not guaranteed. It is possible, however, to disable command queues and/or alter 
the caching and seek algorithms on many disk devices in order to attain the desired 
behavior but it is important to note that use of the command queues can result in these 
performance anomalies. 
 
8.6 Disk Arrays 
Disk arrays also know as a Redundant Array of Independent Disks (RAIDs) consist of a 
Disk Array Controller and several disk drives.  There are several RAID levels of which 
two are of interest here: RAID level 3 and RAID level 5.  In each of these RAID levels 
there are several data disks and a redundant or parity disk. RAID 3 uses a dedicated 
parity disk whereas RAID 5 distributes the parity data among all the disks in the array.  
 
Another distinguishing factor between RAID 3 and 5 is that for each request that comes 
into a RAID 3, every disk in the array must accessed for each of these requests.  This 
simplifies the internal architecture the RAID 3 and allows for maximum bandwidth.  In a 
RAID 5 disk array however, the disk drives can be accessed individually which 
maximizes the IOPs performance but significantly complicates the internal architecture 
and configuration options.  
 
Other important factors in the bandwidth performance of a disk array are the internal 
striping factor and the mode in which it is running and.  The internal striping factor is the 
number of bytes accessed on an individual disk within the array before proceeding to the 
next disk in the stripe group. Typically, on RAID 3 disk arrays this is 1 byte and is 
generally not configurable.  On RAID 5 disk arrays the striping factor can range from 512 
bytes to 64 Kbytes or more.  Small striping factors in RAID 5 disk arrays lead to good 
Transaction performance but relatively poor Bandwidth performance.  Conversely, large 
striping factors in RAID 5 disk arrays lead to poor Transaction performance but good 
Bandwidth performance.   
 
8.7 Logical Volumes 
Even though Logical Volumes allow for scalable performance, there are performance 
anomalies that occur within a Logical Volume that are not entirely obvious. These 
anomalies manifest themselves as dramatic shifts in performance that are triggered 
simply by a change in the amount of requested data or from the alignment of the data on 
the logical volume. The following graphs, 6-10, show a variety of these performance 
anomalies that are a direct example of the Impedance Mismatch problem. Each of these 



17th IEEE Symposium on Mass Storage Systems / 8th NASA Goddard Conference on Mass Storage Systems and Technologies 

©2000, Thomas M. Ruwart  16 

volumes was created using the Silicon Graphics XLV Logical Volume Manager and 
measurements were taken from an SGI ONYX2 computer system with eight processors 
and a Dual Channel Prisa PCI64 Fibre Channel Host Bus Adapter.  
 

Bandwidth Performance of an 8-wide Striped Logical Volume 
Sequential Reads, 8K,16K,32K Stripe-widths

0

10

20

30

40

50

60

2 10 18 26 34 42 50 58 66 74 82 90 98 10
6

11
4

12
2

Request Size in 1024-byte Blocks

M
B

/s
ec

8K
16K
32K

 
Graph 6.  

 
 

XLV Logical Volume Striped 8-wide using a 128KByte Stripe Width
Sequential Reads

0

20

40

60

80

100

120

140

2

58 11
4

17
0

22
6

28
2

33
8

39
4

45
0

50
6

56
2

61
8

67
4

73
0

78
6

84
2

89
8

95
4

10
10

10
66

11
22

11
78

12
34

12
90

13
46

14
02

14
58

15
14

15
70

16
26

16
82

17
38

17
94

18
50

19
06

19
62

20
18

Request Size in 1024-byte blocks

M
B

/s
ec

 
Graph 7. 



17th IEEE Symposium on Mass Storage Systems / 8th NASA Goddard Conference on Mass Storage Systems and Technologies 

©2000, Thomas M. Ruwart  17 

 

XLV Logical Volume Striped 8-wide using a 128KByte Stripe Width
Sequential Reads

0

10

20

30

40

50

60

70

2 8 14 20 26 32 38 44 50 56 62 68 74 80 86 92 98 10
4

11
0

11
6

12
2

12
8

13
4

14
0

14
6

15
2

15
8

16
4

17
0

17
6

18
2

18
8

19
4

20
0

Request Size in 1024-byte blocks

M
B

/s
ec

 
Graph 8. 

 
 
 

XLV Logical Volume Striped 8-wide using a 128KByte Stripe Width
Sequential Reads

0

20

40

60

80

100

120

140

Request Size in 1024-byte blocks

 
Graph 9. 



17th IEEE Symposium on Mass Storage Systems / 8th NASA Goddard Conference on Mass Storage Systems and Technologies 

©2000, Thomas M. Ruwart  18 

Maximum Sequential Read Bandwidth of 8 Baracuda 50 Disk Drives on 2 Prisa PCI64 
HBAs

2.01 4.1 8.07
16.04

51.62

85.14

117.59

8.22
15.96

29.64

51.75

79.47

114.68

148.79

138.39

159.45

0

20

40

60

80

100

120

140

160

180

1 2 4 8 16 32 64 128

Request Size in 1024-byte blocks

M
B

/s
ec

8-wide XLV Logical Volume

8 Disks, Single Processor

8 Disks, 8 Processors

 
Graph 10. 

 
Graph 6 shows the performance of three 8-wide logical volumes with difference striping 
factors. This graph shows that the overall sequential read bandwidth increases as the 
stripe unit size increases but so does the variability in the bandwidth. For example, the 
Logical Volume using a 16Kbyte stripe unit can have its performance vary from 
18MB/sec up to 44MB/sec simply by choosing a different request size (the number of 
bytes requested by the application on each read operation).   
 
Graph 7 is a more dramatic view of the same phenomenon but this time on a logical 
volume using a 128Kbyte stripe size. The subsequent two graphs, 8 and 9, zoom in on the 
lower end and middle of the Request Size scale. Graph 8 shows a smooth ramp-up in 
performance as more data is requested. Graph 9 focuses on the dramatic performance 
difference of the different request sizes. The peaks in graph 9 occur at 16Kbyte intervals 
and fall on multiples of 16Kbytes. The valleys occur when the request size is not an even 
multiple of 16Kbytes. The important point of each of these graphs is do demonstrate the 
magnitude of this problem.  
 
Graph 10 demonstrates another aspect of the Impedance Matching problem that has to do 
with processor allocation. On this graph the peak read bandwidth for an 8-wide logical 
volume is plotted against the peak performance of two groups of 8 xdd threads each 
running to a single disk. One of the 8-disk xdd thread groups is assigned to a single 
processor in the SGI ONYX2. The other thread group is distributed across all 8 
processors in the ONYX2, one thread to each processor.  It is clear that the distributed 
case performs significantly better than the logical volume and the single-processor case.  
The reason for this has to do with the fact that at lower request sizes more requests are 
processed per second. It turns out that a single processor gets overwhelmed with 
processing requests with between 6-8 of these particular disks each running at full speed. 
When the request processing is distributed across multiple processors, a higher overall 



17th IEEE Symposium on Mass Storage Systems / 8th NASA Goddard Conference on Mass Storage Systems and Technologies 

©2000, Thomas M. Ruwart  19 

performance rate is observed. Also, since the single-processor case closely follows the 8-
wide XLV case, it can be concluded that the performance limitations of the XLV logical 
volume is due to a problem with having all the XLV request processing funneling 
through a single processor. 
 
Not all Logical Volume software is created equal though. Graphs 11 and 12 show the 
performance curves for a 4-wide Windows NT Logical Volume striped set of disks. The 
performance of this logical volume does exhibit some performance variation but not 
nearly as dramatic as the variations seen in the XLV logical volume. Graph 12 focuses on 
a small part of Graph 11. This shows the variation to be about 4MB/sec as opposed to the 
80MB/sec seen in Graph 9.  
 
The conclusion here is that the Logical Volume performance variations shown in the past 
several graphs is a function of the Logical Volume software and associated 
implementation parameters. A more detailed analysis of these Logical Volume 
performance anomalies is presented detail in [2]. The purpose of these graphs is to 
demonstrate that things can go wrong and how they go wrong.  
  

NT Logical Volume Performance

0

10

20

30

40

50

60

70

80

90

100

2 48 94 14
0

18
6

23
2

27
8

32
4

37
0

41
6

46
2

50
8

55
4

60
0

64
6

69
2

73
8

78
4

83
0

87
6

92
2

96
8

10
14

Request Size in 1024-byte blocks

M
B

/s
ec

4-wide Striped Barracuda 50 disks
SGI VizPC, NT4.0 SP4 
Qlogic QLA2202F, Single Channel

 
Graph 11. 

 
 



17th IEEE Symposium on Mass Storage Systems / 8th NASA Goddard Conference on Mass Storage Systems and Technologies 

©2000, Thomas M. Ruwart  20 

NT Logical Volume Performance

81

82

83

84

85

86

87

88

89

40
0

40
8

41
6

42
4

43
2

44
0

44
8

45
6

46
4

47
2

48
0

48
8

49
6

50
4

51
2

52
0

52
8

53
6

54
4

55
2

56
0

56
8

57
6

58
4

59
2

60
0

Request Size in 1024-byte blocks

M
B

/s
ec

4-wide Striped Barracuda 50 disks
SGI VizPC, NT4.0 SP4 
Qlogic QLA2202F, Single Channel

 
Graph 12. 

 
8.8 Storage Area Network Performance Results 
At this point the testing and evaluation process becomes more complex.  When testing a 
storage subsystem on a single, isolated computer system, it is possible to correlate events 
(I/O requests, interrupts, data transfers, …etc.) in time at a very high resolution. This is 
possible because all the performance benchmark application runs on a single computer 
using a single “reference clock” where all events are based on that single reference clock. 
In a Storage Area Network however, it is necessary to run the benchmark application 
from multiple computers simultaneously, each accessing the same Storage Subsystem. 
Each computer system has its own reference clock from which events local to a computer 
system can be correlated. However, the notion of a “global” reference clock must be 
established in order to cross correlate events in time over all the systems. In other words, 
there must be a single reference clock on which to base all the events that occur on the 
Storage Area Network in order to understand the interactions between computer systems 
accessing a single Storage Subsystem. The generation of this global clock, discussed in 
section 7, is therefore critical to the evaluation testing process of these SAN 
configurations. 
 
A simple test was run using two hosts accessing a single set of 16 disk drives configured 
as a single logical volume through a file system shared between two Windows NT PC 
computers. Each PC computer had two Fibre Channel connections to the logical volume.  
The first test consisted of sequentially reading a 1.6GB file using 2MB per request from 2 
hosts reading the same file.  The file was read three times with results reported for each 



17th IEEE Symposium on Mass Storage Systems / 8th NASA Goddard Conference on Mass Storage Systems and Technologies 

©2000, Thomas M. Ruwart  21 

Performance of Individual I/O Operations for 2 Hosts Accessing a 
Shared File System with 2MB Read Operations

0

20

40

60

80

100

120

140

160

180
1 31 61 91 12
1

15
1

18
1

21
1

24
1

27
1

30
1

33
1

36
1

39
1

42
1

45
1

48
1

51
1

54
1

57
1

60
1

63
1

66
1

69
1

72
1

75
1

Operation Number

M
B

/s
ec

Host 1

Host 2

 
Graph 13. 

 
pass.  The net result showed each host was able to read the entire file at an aggregate rate 
of 73MB/sec. Graph 13 shows the instantaneous bandwidth performance of each I/O 
operation for both hosts. The graph is crowded but it does show that the performance 
limits of each host remained in a well-defined band from 50-90MB/sec/op.   
 

Performance of Individual I/O Operations of 2 Hosts Accessing a 
Shared File System  using 4MB Read Operations

0

20

40

60

80

100

120

140

160

180

1 16 31 46 61 76 91 10
6

12
1

13
6

15
1

16
6

18
1

19
6

21
1

22
6

24
1

25
6

27
1

28
6

30
1

31
6

33
1

34
6

36
1

37
6

I/O Operation Number

M
B

/s
ec

Host 1

Host 2

 
Graph 14. 

 



17th IEEE Symposium on Mass Storage Systems / 8th NASA Goddard Conference on Mass Storage Systems and Technologies 

©2000, Thomas M. Ruwart  22 

Graph 14 however shows the utility of displaying the time-stamped operation data. In this 
test the same file was being read by the same two hosts but with 4MB read requests. The 
first half of the I/O operations look very consistent. (There is a small “blip” at the 1/3rd 
and 2/3rd points on this graph that indicate when the second and third read passes started.) 
However, about half way through the second pass of reading the file there was an unusual 
drop in performance that is very evident in the graph. Both host computers saw the same 
performance decrease and at the same time. It is also apparent that neither host computer 
recovered from this performance problem. It is also not known what caused this anomaly 
but further analysis of the timestamp data may reveal an access pattern issue related to a 
caching idiosyncrasy of the disks.  
 
9 Concluding Remarks 
This paper shows that there is a large variation in performance for logical volumes caused 
by the Impedance Matching problem. This is primarily a result of having the I/O request 
traversing too many levels in the Storage Subsystem Hierarchy. The I/O request at each 
level can get resized and/or re-aligned in space and time. By the time the I/O request gets 
to the storage subsystem, it appears are many smaller requests distributed across many 
devices. Furthermore, what the application sent over as a “parallel” request can be broken 
up into a series of smaller, serialized requests to the storage subsystem. The results are 
demonstrated in a series of graphs that show what happens to the performance as seen by 
the application when a series of large requests are made to subsystems with different 
configurations.   
 
These are just some of many examples of the manifestation of the Impedance Matching 
problem within a Storage Subsystem. Other Impedance Matching-like problems occur in 
the caches used on the disks arrays and disk drives with respect to their size and caching 
algorithms, multi-host Storage Area Networks, and the ever-changing bandwidths and 
latencies of the subsystem interfaces. These are all areas that are ripe for investigation 
given an adequate test and evaluation framework. 
 
It was also demonstrated to some extent the value of having a testing framework with a 
highly resolved, global clock for the purpose of evaluating and analyzing the 
performance of a Shared Storage Subsystem in a Storage Area Network environment. 
This testing framework will become more critical as the systems become more complex 
and less predictable whereby more real-time empirically-based analysis will be required 
to resolved problems in large SAN configurations. 
 
10 Future Work 
Future and ongoing work includes but is not limited to: 

• Integrating these techniques and testing framework with File System testing 
efforts 

• Developing ways to collect subsequently study "real world" storage system 
activity data 

• Improving and expanding the capabilities of the testing software to other 
operating environments 

• Incorporating other storage devices such as tape drives into this testing framework 



17th IEEE Symposium on Mass Storage Systems / 8th NASA Goddard Conference on Mass Storage Systems and Technologies 

©2000, Thomas M. Ruwart  23 

 
References 
[1] This work was supported in part by the National Science Foundation, under the NSF 

Cooperative Agreement  No. CI-9619019, and by the Department of Energy through 
the ASCI Data Visualization Corridor Program under contract #W-7405-ENG-48. 

[2] Ruwart, Thomas M., “Performance Characteristics of Large and Long Fibre Channel 
Arbitrated Loops”, Proceedings, 16th IEEE Symposium on Mass Storage Systems / 
7th NASA Goddard Conference on Mass Storage Systems and Technologies, March 
1999, IEEE Computer Society Press 

[3] Thomas M. Ruwart and Matthew T. O'Keefe, "Performance Characteristics of a 100 
MB/sec Disk Array", Storage and Interfaces '94, San Jose, CA 

[4] Alex Elder et al., "The InTENsity PowerWall: A Case Study for a Shared File 
System Testing Framework", Proceedings, 17th IEEE Symposium on Mass Storage 
Systems / 8th NASA Goddard Conference on Mass Storage Systems and 
Technologies, March 2000, IEEE Computer Society Press 

 


