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Abstract

Three-dimensional high-resolution simulations (up to 8 billion zones) have

been performed for a Richtmyer-Meshkov instability produced by passing a

shock through a contact discontinuity with a two-scale initial perturbation.

The setup approximates shock tube experiments with a membrane pushed

through a wire mesh. The simulation produces mixing-layer widths similar to

those observed experimentally. Comparison of runs at various resolutions sug-

gests a transition from unstable to turbulent flow as the numerical Reynolds

number is increased. At the highest resolutions, the spectrum exhibits a re-

gion of power-law decay, in which the spectral flux is approximately constant,

suggestive of an inertial range, but with a weaker wavenumber dependence

than Kolmogorov scaling, about k−5/4. Analysis of structure functions at

the end of the simulation indicates the persistence of structures with veloc-

ities largest in the stream-wise direction. Comparison of three-dimensional

and two-dimensional runs illustrates the tendency toward forward cascade in
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three dimensions, vs. inverse cascade in two dimensions. Comparison of the

full simulation with a simulation of a single-scale perturbation indicates that

the coupling of the disparate scales leads to destruction of the small-scale

bubbles and spikes except near the spike growing from the large-scale per-

turbation. Finally, an analysis of the sub-grid-scale stresses in filtered data

indicates significant correlation of the resultant forward and back transfer of

energy with the determinant of the rate-of-strain tensor of the resolved scale

flow. A possible relation between this trend and alignment of vorticity on

small scales with the principle directions of strain on large scales is discussed.

The observed correlation lends support to the use of sub-grid-scale models

proportional to the determinant of the rate-of-strain tensor for large-eddy

simulation.
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I. INTRODUCTION

Richtmyer-Meshkov instability [1,2] arises when a shock passes through an interface

between two fluids. It is sometimes considered to be the impulsive limit of a Rayleigh-

Taylor instability, but with the important distinctions that (a) instability occurs whether

the acceleration is toward either side of the interface, whereas for Rayleigh-Taylor one has

instability only for gravity in the direction of the lighter fluid; and (b) since the drive is

impulsive, the evolution occurs largely during a time where the driving force is zero.

Richtmyer-Meshkov instability can occur in a number of natural and man-made settings,

such as supernova explosions, the interiors and the wakes of jet engines, and combustion

chambers. In addition there have been many laboratory shock-tube experiments to explore

the basic physics of the interaction of shock waves with contact discontinuities.

A generic feature of these systems, as is the case for fluid turbulence in general, is the

existence of fluctuations on multiple length scales. Multiple scales are generated through

the hydrodynamic nonlinearities, but can often be present even in the initial conditions.

Experiments set up to favor a single-wavelength initial perturbation often have a second,

disparate, wavelength. So, for example, shock tube experiments with wire grids, such as

those of Sturtevant and co-workers [3,4] will be characterized by the size scale of the grid

as well as transverse dimensions of the shock tube. Since pairwise interaction of disparate-

scale fluctuations is a fundamental building block in the physics of turbulence evolution, such

experiments and their analysis provides a laboratory for investigation of turbulent dynamics.

In this paper we focus on simulations of Richtmyer-Meshkov instability for such a two-

scale perturbation. We are motivated in particular by the shock-tube experiments of Vetter

and Sturtevant [4], in which two fluids are intially separated by a membrane placed over a

(two-dimensional) wire screen. In the particular experiments we have chosen to represent

in our simulations, the shock pushes the membrane through the screen and ruptures it,

creating a seed perturbation on the mesh scale, while deformation of the entire mesh creates

a perturbation on the scale of the transverse dimensions of the shock tube. The experimental
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setup is as shown schematically in Fig. 1.

Thanks to the advent of terascale parallel computers, simulation of disparate-scale initial

conditions can be undertaken, in three dimensions, with sufficient resolution to meaningfully

follow the disparate scales, and to allow energy to forward cascade from the largest energy-

containing scales through a discernable inertial range, to be dissipated at short wavelengths.

Although many 2-D simulations have been performed of the RM instability, relatively few

3-D simulations have been reported. Previously reported 3-D RM simulations [5–15] have

used either single-mode or “random” many-mode intial perturbations. The present study

appears to be the first report of a 3-D RM simulation with a two-scale initial perturbation.

The simulations presented here lead to following conclusions: (1) Due to code limita-

tions, the set-up of the Vetter-Sturtevant experiments could only by roughly approximated.

Nevertheless, the macroscopic mixing behavior of the experiments is reproduced. In partic-

ular the mixing layer widths from the simulation are in perhaps surprisingly good agreement

with the experiments; (2) The presence of the long wavelength perturbation has a notable

impact on the evolution of the short wavelength perturbations, in particular destroying most

of them, breaking them up into still-smaller perturbations. (3) Comparision of 2-D and 3-D

runs illustrates the difference in 2-D vs. 3-D dynamics: The 2-D simulations are character-

ized by coalescence into structures comparable to or larger than the initial short-wavelength

(mesh) scale, while the 3-D simulations evolve toward fine scales; this is as one would expect

from the predominance of inverse and forward cascades, respectively. (4) Comparison of

vizualizations at various resolutions suggests a transition from unstable to turbulent flow as

the resolution is increased, consistent with arguments by Dimotakis [16] that such a tran-

sition should occur with increasing Reynolds number. In this case the Reynolds number is

that attached to numerical dissipation. (5) As the resolution is increased, a kind of iner-

tial range is evident; this is not a classic Kolmogorov inertial range as the spectrum is not

continuously driven. The spectrum has a power-law region, but with a weaker wavenumber

dependence than Kolmogorov scaling, about k−5/4. The spectral flux is approximately con-

stant in this region. (6) Analysis of structure functions at the end of the simulation indicates
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the persistence of structures with velocities largest in the stream-wise direction. (7) There

is a significant correlation between the forward- and bacward-trasfer of energy due to the

sub-grid-scale stress and the determinant of the rate-of-strain tensor of the resolved-scale

flow. This correlation suggests that a Smagorinsky-like model is a good candidate for a

large-eddy-simulation (LES) model.

The remainder of this paper is organized as follows. In Sec. 2, we describe the codes,

the simulation setups, and the relationship of these setups to the experiments of Vetter

and Sturtevant [4]. Section 3 discusses macroscale properties of the temporal evolution,

including comparison of the mixing-layer growth rate with experimental results. Section

4 is devoted to a resolution study, with regard to spectral convergence, the turbulence

transition, and the nature of the “inertial” range. Section 5 presents a comparison of 2-D

vs. 3-D dynamics. Section 6 presents results on the interaction of the short and long scales

of the initial perturbation. Section 7 describes the comparison of the nonlinear stresses

with possible model forms, including the gradient of the rate-of-strain tensor. Section 8 is a

discussion and summary of the results.

II. SIMULATION SETUP

Vetter and Sturtevant performed a series of shock-tube experiments with various com-

binations of orientation of the high- and low-density gasses (respectively, SF6 and air), the

shock direction, and the positions of the membrane and the wire mesh. The particular sim-

ulation we have chosen is one where the shock passes from the low- to high-density fluids,

and the membrane is initially on the same side of the mesh as the shock. Of the various

combinations studied by the authors, this is the one that led to rupturing of the membrane

and thus leads to subsequent mixing-layer growth unencumbered by properties of the mem-

brane. Also because the membrane is pushed into the mesh, there is a distinct imprint of

the mesh spacing on the initial contact discontinuity shape.

The simulations presented here, which were done in November 1998, were the result of
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a unique opportunity: a large block of dedicated computer time was made available on a

(then) uniquely large computing facility, the IBM Blue Pacific system at Lawrence Livermore

National Laboratory, as part of the commissioning process for the facility. Exploiting this

opportunity required the choice of code and numerical and physics compromises described

below.

Our simulations were performed with the sPPM (simplified Piecewise Parabolic Method)

code [17]. The Piecewise Parabolic Method [18] (PPM) is a Godunov method that uses

parabolas to represent the dynamic fields within a grid cell. sPPM is a simple version of

PPM that does not include a number of refinements, such as contact-discontinuity detection

and steepening and the computation of a coefficient of numerical viscosity which adjust to

the local needs of the flow in both space and time. sPPM has a number of restrictions,

including periodic boundary conditions in two of its three dimensions, and a single ideal

gas. However, sPPM is highly optimized for performance on hybrid distributed-plus-shared

memory parallel computers such as the IBM Blue Pacific system at Lawrence Livermore Na-

tional Laboratory; it is this feature which made the highest-resolution simulations reported

here (ones with over eight billion computational zones) feasible.

The sPPM code solves the compressible Euler equations on a Cartesian computational

grid. There is no explicit (Navier-Stokes) dissipation; the only dissipation present is numer-

ical and takes the form of a strong damping of wavelengths comparable to the grid spacing.

The solution procedure is directionally split and entails taking a Lagrangian step followed

by a remap onto the original computational grid. Because of directional splitting, sPPM is

formally 2nd order accurate in smooth flow. sPPM is 1st order accurate at discontinuities.

Convergence tests of sPPM on decaying turbulence flows indicate that all effects of the nu-

merical dissipation go up to wavelengths of about 32δx, which corresponds to displacements

of 16δx. (Here δx is the computational grid size). The numerical viscosity of sPPM is very

similar to previous versions of PPM. Convergence tests [19–22] and comparisons with re-

solved Navier-Stokes solutions [19,22] have been performed. Measures of rate of decay of sin

waves in the velocity [21] indicate that the numerical dissipation of PPM leads to an effective
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kinematic viscosity which scales as the (δx/λ)3. Convergence tests of Navier-Stokes flows in

2-D [22] indicate that roughly eight mesh cells are required to resolve discontinuities, such

as shock waves. By contrast, the PPM family of codes are designed to handle these kinds of

discontinuities in about two mesh cells. The trade off is that Euler codes like PPM do not

claim to describe the interior of discontinuities, but only their placement and interaction

with larger scale flow.

We model the experimental setup approximately with sPPM, as follows. The air-SF6

contact discontinuity is modeled as a discontinuity in density of a single ideal gas with a

ratio of specific heats γ = 1.3. The temperature changes appropriately so as to maintain

a constant pressure across the interface. The code uses dimensionless units such that the

density and sound speed are 1.0 on the low-density (corresponding to air) side of the contact

discontinuity (and the simulation box width is also 1.0, with x and y running from -0.5 to

+0.5). The choice of length-scale normalization is discussed below. The density is set to 4.88

on the other (SF6) side. A shock is created by moving this fluid into a higher-density, higher-

pressure region where the density and pressure discontinuities are chosen so as to satisfy the

Rankine-Hugoniot relations for a Mach 1.5 shock. A shock is then formed and propagates

through the contact discontinuity and on out the end of the simulation box. Simple zero-

derivative boundary conditions at the ends of the box suffice to produce negligible shock

reflection for these parameters. The entire simulation is done in a reference frame in which

the final contact discontinuity is approximately at rest. Empirically, the required initial

velocity of the low-density fluid (and the contact discontinuity) is close to but not quite

equal to that from a solution to the Riemann problem; the difference is due primarily to the

effects of small but finite (∼ 1%) shock reflections off of the ends of the simulation box.

To model the initial contact discontinuity deformation, we choose a surface displacement

of the interface, of the form:

∆z = 0.01 (|sin kx| |sin ky| − cos 2πx cos 2πy) (1)

with k = 10π. The terms | sin kx|| sin ky| represent the result of pushing the membrane
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through the wire mesh, while cos 2πx cos 2πy represents the distortion of the wire mesh on

the scale of the shock tube transverse dimensions. The simulation has different boundary

conditions at the side walls and about a factor of two lower k as compared to the experiment.

The different boundary conditions are due to code limitations. The lower value of k is in

order for the simulation to be tractable.

The choice of k = 10π was a compromise between having a ratio of scale lengths compa-

rable to the experiment and having adequate numerical resolution to do interesting numer-

ical and physics studies. We determined that about 8 billion computational zones was the

maximum we could sustain and simulate an interesting physical time (one with significant

nonlinear evolution) with the computer time made available to us. The simulation domain

has to have an extent and resolution in the stream-wise direction at least comparable to

that in the transverse directions in order that there be enough room for the mixing layer to

grow and not be affected by the end boundaries. So this dictates having at most about 2000

cells in each of the transverse directions. Our exprience with the code in general and single-

wavelength initial perturbations in particular indicates that a minimum of about 64 cells in

the transverse (to the shock) directions is required to adequately follow the evolution of such

perturbations through the nonlinear stage where secondary eddies form (stated another way,

we need to be able to follow several harmonics of the fine scale perturbations to capture

their nonlinear evolution). The above initial perturbation has 2k/(2π) fine-scale oscillations

across the domain. Hence, the maximum allowed choice for k would be 30, which would

be barely adequate to reproduce the experiment. However, this would allow no leeway for

numerical convergence studies, or for observing such effects as increased forward cascade due

to coupling of the short- and long-wavelength scales, transition to turbulence with increased

resolution, etc. We chose to sacrifice quantitatively matching the experimental setup in

order to be able to do such studies.

This brings us to the specification of the length-scale normalization in our dimensionless

variables. Because the ratio of the short and long wavelength perturbations (corresponding

to the mesh wire spacing and shock tube transverse dimensions, respectively) are different
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in the simulation and experiment, two equally logical choices for length normalizaton are

(1) normalizing all lengths to the transverse (x, y; see Fig. 1) dimension of the shock tube;

or (2) normalizing all lengths to 10 times the distance between wires in the mesh (that is,

requiring that the wire spacing in the experiment and simulation correspond.) In either

case, we normalize time so that the sound speed is 1.0 in the lower density gas. We will

compare our simulations with experiment using both normalizations. As a result of the

various differences between the code and experiment, the comparisons can be expected to

yield only semi-quantitative agreement.

III. MACROSCOPIC EVOLUTION

The growth of the Richtmyer-Meshkov instability and the consequent mixing is illustrated

by the visualizations in Fig. 2. The variable plotted is the entropy

S = lnP − γ ln ρ . (2)

S is chosen because it vividly displays the contact discontinuity while, for the parameters

of the simulation, it has a relatively small change across the shock. The color mapping is

chosen to be red on the high-density (low-entropy, low-temperature) side and blue on the

low-density side of the contact discontinuity. These figures indicate the early-time growth of

Ricthmyer-Meshkov instability on the two initial perturbation scales (that of the simulation

box and that of the wire array), an appearance of secondary instabilities before the t = 1

time slice (visualizations at intermediate times first show secondary instabilities at t ≈ 0.7),

and an onset of turbulent behavior at t ∼ 4. In this and all subsequent work, time and

length are given in the dimensionless code units obtained by normalizing to the transverse

box dimension and to the time for a sound wave to cross the transverse dimension.

The growth of the combined perturbation is shown for the various resolutions studied

in Fig. 3. The plotted data is obtained as follows. From horizontal slices of the data are

extracted the minimum, maximum, and average values of S. Far away from the instability
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layer, these values are approximately the same (but different on the two sides of the contact

discontinuity). Denoting the values on either side as S1 and S2, and the average as S, we

define the layer width as extending from the value of z where the maximum value of S first

becomes as large as S to the value of z where the minimum value of S is for the last time

as small as S.

Also shown in Fig. 3. is the experimental data [4], normalized in two different ways

to the code’s dimensionless units, as discussed in the preceding section. We see that the

two sets of normalized data, while significantly displaced in time, both agree well with

the simulation data. It is noteworthy that the two different normalizations correspond to

two different normalized time intervals and hence are at different stages of the nonlinear

evolution (particularly of the fine scales), as indicated by the simulation. There is, however,

no indication in the experimental results presented in Ref. [4] of the nonlinear regime in

which the data lives.

IV. RESOLUTION STUDY

The simulation was performed at various resolutions ranging from 1923 to 20482× 1920.

The mixing layer width for the various resolutions is plotted in Fig. 3; it can be seen that the

mixing layer width history is very nearly the same for all resolutions from 3843 through the

maximum resolution of 20482 × 1920. It might be argued that this is to be expected, since

from Fig. 2 it can be seen that the large scale evolution is still not yet highly nonlinear. On

the other hand the same figure indicates that the fine scales are strongly nonlinear, and their

amplitude is non-negligible. A more sensitive test is provided by calculating the mixing-layer

width with the long-wavelength (transverse-box-size) perturbation subtracted; the results

of such a calculation is presented in Fig. 4, for three resolutions. This is accomplished by

defining an average surface for the long-wavelength mode as follows. First a z-averaged

entropy surface, S(x, y) is computed. The assumption is made that the change in entropy

at the z-position of S(x, y), zavg, is a simple jump, so that S = S1, z < zavg , while S = S2,
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z > zavg . If the range of the z integration is zmin to zmax then

S(x, y) = [(zmax − zavg) ∗ S2 + (zavg − zmin) ∗ S1]/(zmax − zmin) (3)

so

zavg =
[
zmin ∗

(
S1 − S(x, y)

)
+ zmax ∗

(
S(x, y)− S2

)]
/(S1 − S2). (4)

This evaluation of zavg is performed at each (x, y). This surface is then subjected to a

low-pass Fourier filter, in which only the constant, fundamental (with wavelength equal to

the transverse box dimension), second, and third harmonic modes are kept. Next, the data

is sampled along this reference surface, and along a family of surfaces displaced from the

reference surface by a constant displacement; from the data so sampled we extract layer

widths as with the standard sampling along horizontal slices. It can be seen that the layer

width growth is converging with resolution, but is somewhat more sensitive to resolution

than the overall layer width plotted in Fig. 3; this is not surprising since inspection of the

volume renderings indicates that, even at the end of the simulaton, the long-wavelength

perturbation constitutes the majority of the overall “layer width” and is still in a near-to-

linear regime, whereas the shorter wavelengths are in a highly nonlinear regime. It is perhaps

surprising that the three curves agree as well as they do, particularly since the fine-scale

structure is quite different at 5123 than at the higher resolutions.

A sensitive indication of numerical convergence is provided by examining the power

spectrum. In Fig. 5, Ep(k⊥), the 2-dimensional (x − y) power spectrum of the normalized

momentum p̂ = ρv/〈ρ〉 field [the square of the Fourier transform of p per unit interval in the

magnitude of the perpendicular (to the shock direction z) wavenumber], in a horizontal slice

which passes through the mixing layer, is plotted for each of the resolutions at the final time

of the highest resolution run, t = 9. Here 〈〉 denotes a horizontal average, and v is the total

speed (v2x+ v
2
y + v

2
z)
1/2. We choose to plot spectra of p̂ components rather than v as it is the

equation for evolution of the momentum density that can be cast in conservative form and

hence is more amenable to conservation arguments, etc. On the other hand, the momentum
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density spectra have sizeable contributions from advection of the density contrast across the

contact discontinuity. Remarkably, we find that the “inertial” ranges for either variable have

about the same slope, but plots of the v spectra show a less extended inertial range and a

steeper dissipation range.

Noteworthy in these plots are the remnants of the low- and high-wavenumber initial

perturbations, a range dominated by numerical dissipation near the upper end of the range

of wavenumber k⊥, and, for the higher resolutions, a region possibly identified as an inertial

range in between. These results are consistent with the notion of convergence for an Euler

code with only numerical dissipation: a spectrum that tends to be consistent in the low-

and intermediate-wavenumber range and then break away into a dissipation range at a

wavenumber that depends on the resolution. The most notable exception to this trend is

the variation in spectra at the odd harmonics at low wavenumber. The initial perturbation

has an even symmetry with respect to the midplanes in the x and y directions; odd modes

form only as a result of symmetry breaking due to finite numerical accuracy (e.g. roundoff

errors). Hence the amplitude of the odd modes is a reflection of such error sources at any

particular resolution, which cannot be expected to have any particular trend with resolution.

We consider the nature of the “inertial range” which appears in the highest-resolution

simulations. Traditionally one looks for a k−5/3 spectrum (or k−8/3 for Kolmogorov turbu-

lence integrated over a homogeneous direction), and a power spectral transfer rate (the rate

of flow of kinetic energy in wavenumber space across a surface of specified k) that is indepen-

dent of wavenumber k. But these results formally apply only to isotropic turbulence which

is continuously driven, or decaying infintesimally slowly compared to dynamical timescales.

Richtmyer-Meshkov instability is driven only impulsively, and the secondary instabilities

which give rise to turbulence are driven by a decaying velocity shear.

To analyze this, it is most convenient to consider the equation for the z-integrated

momentum density, as that can be written in conservative form with boundary source terms.

Specifically, starting from the local momentum equation in conservative form, integrating

over z, and dividing by the z domain length Lz, we obtain
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∂ρu

∂t
+∇⊥ · ρuu+ (1/Lz)∆(ρu

2
z)ez = −∇⊥P − (1/Lz)∆Pez (5)

where ∆P = P (zmax)−P (zmin), and similarly for (ρu2z). Here the line over a symbol denotes

its z average, and ∇⊥ is the gradient in the x, y (perpendicular to the shock propagation)

direction. It is assumed that the turbulent region is confined away from the ends so that

ux = uy = 0 at the ends. Subtracting the horizontal average of the above equation from the

equation itself removes the ∆ terms, leaving

∂δ (ρu)

∂t
+∇⊥ · ρuu = −∇⊥P (6)

where δ denotes the difference of a quantity from its horizontal average.

We define the spectral energy to be Ek = |pk|2, where pk = (ρu)k and k denotes the

transverse (x, y) wavenumber. Fourier transforming Eq. (6) in x, y then yields an equation

for spectral energy balance,

∂Ek
∂t
+ T = −2Im

(
k · p∗kPk

)
(7)

where the spectral transfer function T is given by

T (k) = 2Imk · (ρuu)k · p
∗
k (8)

= 2Imk ·
∑
k′

(
(ρu)k′uk−k′

)
· p∗k (9)

The spectral transfer function, spectral energy, and other scalar statistical quantities are

symmetric with respect to an interchange of the x and y directions, but, because of the

square box cross-section wire mesh pattern, is not rotationally symmetric (though they may

become so at short wavelengths).

The spectral energy flux is the integral of the transfer function,

Π =
∫
|k′|<|k|

dk′T (k′) . (10)

In particular, this should be equal to the rate of decay of the integral of the power

spectrum over lower wavenumbers, plus the correction from PdV work, i.e.,
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Π = −
∫ k⊥
0
dk⊥

′dE(k⊥
′)/dt− 2Im

∫
|k′|<|k|

dk′k′ · pkk′Pk′ . (11)

where Ek⊥ =
∫
dk̂⊥k⊥Ek is the energy per unit thickness shell in kx − ky space and

∫
dk̂⊥

denotes integration over the direction of k⊥. Since the integrated spectral decay term is, at

any fixed time, an increasing function of k⊥, then, if the PdV term were negligible and the

spectrum decaying at all wavenumbers, the spectral flux would increase with k⊥, approaching

a constant only at wavenumbers large compared to that at the transition between the energy-

containing and inertial ranges.

In Fig. 6, we plot the spectral flux versus wavenumber for the 20482 × 1920 simulation

at the final time (t = 9). A striking feature is the large flux out to the 9th harmonic (just

below the shorter initial perturbation), followed by a rapid falloff. It is evident that spectral

transfer is contributing to a filling in of the scales between the two initial wavelengths, at

the expense of the longer one. Another significant feature is that the flux is everywhere

positive, indicative of forward transfer; we will see later that this is not the case for early

times, low resolution, or two-dimensional simulations. Is there anything in this diagnostic

suggestive of an inertial range? The spectral flux is fairly constant beyond about the 30th

harmonic (wavenumber 200), perhaps suggestive of an inertial range; but note that the

integral definition we have used will produce a near-constant flux even in the dissipation

range, so long as the fluctuating fields are significanlty weak there.

We note that the “correction” from PdV work, the last term in Eq. (11), is not small; it is

in fact an order of magnitude larger than Π even at the final time of the simulation. However

Π is the only term that can account for the transfer of energy between wavenumbers. We will

return to a discussion of the spectral flux in conjunction with the “transition to turbulence”,

below.

Another issue governing the spectral shape is isotropy. In addition to the previously

noted absence of rotation symmetry in the x − y plane, the direction of shock propagation

(z) is different than the other two coordinate directions, and the initial growth of structures

on the scale of the initial perturbations is preferentially in this direction. A convenient way
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to quantify this effect, and its dependence on the perturbation scale length, is to plot the

second-order structure function

Si(δxj) = 〈(ui(x+ ejδxj/2)− ui(x− ejδxj/2))
2〉 , (12)

where the average is over the position x and ej is a unit vector in the j direction (j = x, y, z).

For isotropic turbulence, and more generally for any “cubically symmetric” turbulence (in-

dependent of arbitrary interchange of the x, y, z directions), there would be two independent

components; all of the diagonal (longitudinal) components would equal one another, as would

all of the off-diagonal (transverse) components. As can be seen in Fig. 7, this is the case

for relatively short wavelengths: about a factor of 30 up from the short-wavelength cutoff

for the diagonal components, and about a factor of ten for the off-diagonal components.

In particular, as the scale length is increased, the stream-wise on-diagonal component be-

comes progressively larger than the other two, corresponding to the preference for structures

extended in, and/or velocities largest in, the streamwise direction. The asymmetry in the

off-diagonal components may help sort out these two possibilities, since at the longest scales

there is a strong asymmetry in favor of components containing uz, and a weak asymme-

try between the remaining components which favors components that involve streamwise

separation.

Returning now to the local-in-z spectra plotted in Fig. 5, inspection indicates that the

mid-range wavenumber spectrum is falling off more slowly than k−5/3 [the rate we would

expect for the inertial range of homogeneous, isotropic (Kolmogorov) turbulence]. We find

that a semi-compensated spectrum k⊥
5/3E(k⊥) shows a distinct power-law rise with k⊥

over this range; a good fit is provided instead by k⊥
−5/4, as indicated by the compensated

spectrum k⊥
5/4E(k⊥) plotted in Fig. 8.

A recent analysis [23] suggests that for Richtmyer-Meshkov turbulence the spectrum

should decay as k⊥
−3/2, which is closer, but still not as shallow a fall-off, as our data.

In this analysis, Kolmogorov phenomenology is extended to form a general framework to

incorporate the case with an external time scale (Zhou, 2001). Here “external time scale” is
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used to represent any time scale other than the nonlinear eddy turnover time. The key of the

analysis is to estimate the time scale for decay of transfer function correlations, τT , which is

responsible for inducing turbulent spectral transfer. The external time scale associated with

Richtmyer-Meshkov intability is τRM = (kAV )
−1, where k is the wave number of the initial

perturbation, A is the Atwood number, and V is the change in the velocity produced by

the impulsive acceleration. When τRM is dominant, one identifies τT = τRM . Dimensional

reasoning gives

E(k, z) = CRM [AV ε(z)]
1/2k−3/2,

where CRM is a constant. This theoretical prediction is for the mildly nonlinear regime; for

later times, a transition to the steeper Kolmogorov spectrum is expected.

Our results are less steep than either a Kolmogorov spectrum or that of Ref. [23]. A

referee has kindly pointed out that the difference between the computations and the Kol-

mogorov or Zhou decays is possibly due to the fact that, within the period that was com-

puted, the present results comprise two dominant length scales. In contrast, both the Kol-

mogorov and Zhou results assume a smooth spectrum from the large to the small scales.

We note two additional effects that can contribute to a flatter spectrum: (1) the presence of

an additional timescale, namely that of the decay of the energy-containing scales, not well

separated from the timescale for spectral transfer (used to derive the Kolmogorov spectrum)

and that associated with shock passage (used for the Richtmyer-Meshkov analysis of Ref.

[23]); (2) advection of near-step-wise discontinuities in velocity and density by the instabil-

ity; and (3) growth of the spectral flux with k⊥ resulting from the contribution of a larger

number of decaying modes, as discussed following Eq. (11).

We consider first effect (1). Turbulent energy in the inertial range gets there by a finitely

fast cascade rate from the inertial range. Turbulence deep in the inertial range will have

originated from the energy-containing range longer ago than turbulence in the near (close

to energy-containing) inertial range, at a time when the energy-containing turbulence was

stronger. This should lead to a spectrum that falls more slowly than that which would
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cascade from a steady energy-containing range. Mathematically, Ref. [23] notes that the

spectrum is of the form

E(k) = Cεpk−q (13)

where for Richtmyer-Meshkov instability, p = 1/2 and q = 3/2, whereas for Kolmogorov

(homogeneous, isotropic) turbulence, p = 2/3, q = 5/3. Usually it is argued that the dissi-

pation rate ε is constant. However, under the present circumstance, we may expect ε to be

a decaying function of time, decaying with the available energy to transfer and dissipate.

More specifically, we expect that ε would be constant for a packet of turbulent energy as

it makes its way through the spectrum, but that at fixed time, ε at any k will depend on

the value of ε in the energy containing range (k ∼ k0) at some time t−∆t in the past, i.e.,

ε(k, t) = ε(k0, t−∆t). For example, if the time τ for a perturbation to propagate a distance

∆k scales as τ(k) ∼ K(∆k)m, (where for example m would be 1/2 for a diffusive model in

k space), and if the spectral energy is decaying as (1 + αt)n, then we would expect that

ε(k⊥, t) ∼ ε(k0, t−Kk⊥
m) = ε0(t = 0) [1 + α(t0 −Kk⊥

m)]−n (14)

and hence E(k⊥) decays more slowly.

Effect (2) arises from for example advection of the density contrast across the contact dis-

continuity, by the Richtmyer-Meshkov instability dynamics. For a slice through the bubbles

and spikes of an initial monochromatic disturbance, the density changes as a two-dimensional

square wave, smoothed only be the resolution of the contact discontinuity. Since the Fourier

transform of a two-dimensional square wave is 1/k, we would expect to see such a component

in the spectra. A similar phenomenon occurs even in the velocity field, as the passage of

the shock sets up tangential velocity discontinuities across the perturbed interface. (At later

times, as the bubbles and spikes develop secondary instabilities, the square-wave pattern

becomes blurred, and this spectral feature would be less distinct.)

A comparison of the volume renderings at t = 9, and even more dramatically, a com-

parison of renderings of vertical slices of the volume at various resolutions, shown in Fig. 9,
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indicates a qualitatively different behavior at the higher resolutions (10243 and 20482×1920)

than at the lower ones (1923, 3843 and 5123). The lower resolution runs are characterized

by well-defined structures which become sharper with resolution; the higher-resolution sim-

ulations show abundant fine-scale features and “look turbulent”. This is suggestive of a

transition to turbulence with increasing Reynolds number, as suggested by Dimotakis [16],

though in the present case the finiteness of the Reynolds number is due to numerical dis-

sipation. The transition is thought to arise from the development of sufficient separation

between energy-containing and dissipation-scale wavenumbers that a true forward energy

cascade can develop.

Dimotakis indicates that the transition should occur for a macroscale Reynolds number

of order 104. Hence we derive an approximate Reynolds number for our simulations, as

follows: We take the integral scale length Lint to be the transverse (x−y) correlation length,

Lint =

∑
i

∫
dxdx′dy (ui(x, y)ui(x− x′, y))∑

i

∫
dxdy (ui(x, y))

2

=
3π

4

∫
dk⊥k⊥

−1E(k⊥)∫
dk⊥E(k⊥)

(15)

where the second form is presented in Ref. [24]. Following Dimotakis, [16], we take the

Kolmogorov scale kkol ≡ 2π/Lkol to be 50kν, where the dissipation scale kν is defined to be

the value of k⊥ at which the spectrum begins to drop below the extrapolation of the inertial

range; then, we take the (numerical) Reynolds number Re to be

Re =
(
Lint

Lkol

)4/3
(16)

Using this defintion, we obtain Re = 1700, 4700, and 8200 for, respectively, the 5123,

10243 and 20482 × 1920 simulations. Thus the change in character of the turbulence is

roughly consistent with Dimotakis’s criterion. Whether there is a fairly abrupt transition or

a smooth change as the resolution is increased from 5123 to 10243 is not settled; additional

simulations at intermediate resolutions would be required.

Another possible indicator of the turbulence transition is the spectral flux Π defined

by Eq. (10). We note from Fig. 6 that, at the final time of the 20482 × 1920 simulation,
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its value at large wavenumber (above the energy-containing range) is positive, indicating

forward transfer of wave energy. The corresponding plot for 10243 resolution (shown in the

next section; see Fig. 13) shown, is qualitatively similar, again with positive Π at high k.

The volume renderings of these simulations look qualitatively similar, namely turbulent. In

contrast, as shown in Fig. 10, the large-wavenumber value is negative at lower resolution

(5123) and also for the 20482 × 1920 simulation at an early time (t = 2); in both of those

at which the volume rendering looks non-turbulent. Thus it seems that the sign of Π is an

indicator of forward cascade to a turbulent state. A corroborating piece of evidence, the

negativity of Π at high k for a two-dimensional high-resolution simulation, will be discussed

in the next section.

The turbulence transition criterion might be described in a somewhat different way,

as follows. In three-dimensional turbulence simulations [25] and experiments [26], there

has been observed a “bottleneck” in the spectra, over a factor of about 4 in wavenumber

extending downward from the beginning of the dissipation range. This bottleneck is thought

to be due to the inhibition of forward cascade as a result of suppression of modes in the

dissipation range that would otherwise be involved in triad mode couplings [27]. The result

is an excess of spectral energy in the upper end of the inertial range. There may be a

suggestion of such a bump in Fig. 8. For a turbulent cascade to proceed, one needs a

finite range, presumably at least a factor of 2–4, of uninhibited inertial range. This then

translates to a minimum separation of 8–16 between the energy-containing and dissipation

ranges, which is consistent with the transition we observe.

V. 2-D VS. 3-D DYNAMICS

As discussed in the review article by Kraichnan and Montgomery (Two-dimensional tur-

bulence, Rep. Prog. Phys. vol. 43, p.547, (1980)), “Two dimensional turbulence has the

special distinction that it is nowhere realised in nature or the laboratory but only in com-

puter simulations. Its importance is two-fold: first, it is idealises geophysical phenomena in
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the atmosphere, oceans, and magnetosphere and provides a starting point for modeling these

phenomena; second, that it presents a bizarre and instructive statistic mechanics. Phenom-

ena characteristic of two-dimensional turbulence also play essential roles in the confinement

of thermonuclear plasmas and in superfluid and superconductive behaviour of thin films”. As

a very recent example, Schorghofer and Gille [28] found that simple forced two-dimensional

turbulence simulations agree with upper ocean observations (data from TOPEX satellite al-

timeter measurements) with regard to probability density functions and conditional averages

of velocity gradients.

It is well-known that two-dimensional and three-dimensional turbulence have a funda-

mental difference, in that two-dimensional turbulence can exhibit a dual cascade, with energy

inversely cascading to longer wavelengths while enstrophy forward-cascades. In contrast, in

three dimensions there can only be a forward cascade. Hence one would expect the structure

of the mixing layer to be quite different in two and three dimensions. To observe this dis-

tinction in simulations, one must have sufficient resolution to allow a significant separation

between energy-containing and dissipation scales, as noted in the preceding section. With

the high resolution in three dimensions now available, such an examination is feasible.

In Fig. 11, we show a rendering of the entropy field for a 10242 two-dimensional simulation

and for a vertical slice of the 10243 simulation. The contrast is evident: a predominance of

sizeable structures with sharp edges in the two-dimensional results, versus predominantly

fine-scale structure in the slice of the three-dimensional simulation.

As one might expect, the two-dimensional and three-dimensional cases differ substantially

in their spectra, as shown in Fig. 12. The 3-D case shows a Kolmogorov-like (though less

steep) inertial range as discussed earlier, while the 2-D case has a much steeper spectrum

between the energy-containing and inertial ranges, k−px , where p is found to be in the range

2.8–4.3 (depending on the wavelength range fitted; all are about equally good fits). This is

as one would expect for a two-dimensional inverse cascade process. For the fit and fitting

range shown in the figure, p = 4.3.

Another indication of the difference is provided in Fig. 13, where the spectral flux is
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plotted for the 10242 two-dimensional and 10243 3-dimensional cases. We see that the

high-k value is negative for the former case and positive for the latter, consistent with the

dominance of inverse cascade dynamics in two dimensions and forward cascade in three

dimensions, and consistent, as noted in the previous section, with a transition to turbulence

in 3-D, but not in 2-D.

VI. TWO-SCALE INTERACTIONS

In order to assess the effect of having two disparate scales of perturbations present, we

have compared the full three-dimensional simulation to a smaller one which follows only a

single bubble and spike. The smaller one has enough grid points to represent the single

bubble and spike with as much resolution as the comparable portion of the full simulation.

A rendering of the entropy from a vertical slice at the final time are plotted in Fig. 14.

The single-bubble simulation, replicated 20 times in each of the transverse (to the shock

propagation) directions, would represent the result of an experiment with only the short

wavelength (wire mesh spacing) perturbation and no noise to break the perfect periodicity.

If we imagine this construction and compare to the full two-scale simulation, we see that

the presence of the long-wavelength perturbation leads to a break-up of most of the wire-

spacing-scale bubbles and spikes; only the ones closest to the middle of the long-wavelength

spike survive. Examining renderings of sub-volumes of the full simulation shows a circular

ring around the center of the long-wavelength spike, with a diameter of about five wire-mesh

spacings, within which the wire-spacing-scale bubbles and spikes survive. Most of the mixing

region is thus filled with fine-scale turbulent features.

There are several possible interpretations of these results. One is that there is more

vorticity deposition on the sides of the large-scale spike than at its peak. This is certainly

true of the large-scale feature by itself. But for the combination of two scales, there is also

an effect: while ∇P ×∇ρ passes through zero for each small-scale bubble, it does so asym-

metrically on the sides of the long-wavelength structure; the extrema and the average of the
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magnitude over the short wavelength is larger on the sides than at the extrema of the long-

wavelength structure. An expression for the circulation deposition (integral of the vorticity

deposition across the contact discontinuity) per unit length has been derived by Samtaney,

Ray and Zabusky [29], Eq. (2.24) of their paper. We have evaluated this expression for our

initial perturbation and display the results for a slice in the stream-wize direction that passes

through the middle of the simulation volume in Fig. 15. We notice, as expected, that the

circulation deposition is oscillatory on the scale of the short-wavelength perturbation, and

that the magnitude is largest on the sides of the long-wavelength perturbation. There is,

however, no obvious difference between the peak magnitude or average around the maximum

and minimum of the long-wavelength perturbation.

Hence the variation in circulation deposition contributes to the more complete breakup

of the bubbles and spike on the sides of the large-scale perturbation, but cannot account

for the apparent asymmetry between the long-wavelength bubble and spike with regard to

survival of the short-scale bubbles and spikes. One possible explanation for the asymmetry is

that the fine-scale spikes grow in a direction close to the local normal to the long-wavelength

perturbation rather than perpendicular to the unperturbed shock propagation direction (see

sketch in Fig. 16, and simulation results in Figs. 9 and 14). Hence the fine-scale spikes grow

apart from one another (i.e. are further apart at their tips than the midpoints of their

bases) about the large-scale spike peak, whereas the reverse is true about the peak of the

large-scale bubble. (Also, the midpoints of the bases might be expected to be further apart

near the large-scale spike than near the large-scale bubble, as the former grows faster than

the latter. But this effect, if present,is small.) The small-scale spikes may as a result have

less interaction with one another and hence survive better.

VII. TOWARD A SUB-GRID-SCALE MODEL

A major challenge facing the hydrodynamics community is to develop sub-grid scale

models that capture the fine-scale effects for use in large-eddy simulations (LES). A successful
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model must be able to relate the effect of sub-grid-scale terms to resolved-scale quantities.

There has been very little work deriving such models for Ricthmyer-Meshkov turbulence.

We can make use of the high resolutions now available to test candidate models. In partic-

ular, here we construct the sub-grid scale stress, and its constituent components (Reynolds,

Leonard, and cross), and determine their correlation with various macroscopic quantities.

We can think of a numerical simulation as an attempt to follow the equations of motion

of the large scale component of a flow. This large scale component might be expressed as

either the values of the fluid quantities on a given computational mesh or by a finite series

of modes. Our approach is to take the results of a well resolved numerical simulation and

decompose the flow in to two components (resolved and unresolved) in terms of a spatial

filter which is much broader that the original computational mesh resolution. For the present

discussion we choose a Gaussian filter. For field, Q, and filter wavenumber, kf , we express

the filtered, or resolved, field as

Q̄(x) =
1

N

∫
e−(kf (x−x1))

2

Q(x1)d
3x1 , (17)

where

N =
∫
e−(kfx)

2

d3x . (18)

The original field Q is written as the local sum of its filtered and fluctuating components

Q(x, t) = Q̄(x, t) +Q′(x, t) (19)

We wish to assess the influence of the unresolved fields on the equations of motion of

the resolved fields. In order to have relatively simple equations, we follow the custom for

large-eddy simulation and choose as variables to diagnose, the density ρ, presure P , and

velocity v, with averages defined by Eq. (17) for ρ and P , but density-weighted (Favre) for

velocity, ṽ = ρv/ρ.

With these decompositions, as is well-known, the continuity equation for the filtered

fields is identical to the continuity equation for the raw fields, while the equation for the

filtered velocity
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∂t (ρũi) + ∂j(ρũiũj) = ∂iP̄ + ∂jτij (20)

includes an additional term, the subgrid-scale stress

τij = ρuiuj − ρ̄ũiũj (21)

In the following, we concentrate on an analysis of τij in terms of its influence on the

evolution of the kinetic energy of the filtered fields

Kf =
1

2
ρ̄ũ2 (22)

Evolution of this component of the kinetic energy, which may be derived from the continuity

and momentum equations, is given by

∂tKf =
1

2
ũi∂j(ρũiũj) +

1

2
ũiρũi∂j(ũj) + ũi∂iP̄ + ũi∂jτij . (23)

The first three terms on the right hand side of this equation involve only resolved fields. The

last term is the influence of the fluctuating part of the velocity field on the resolved kinetic

energy. We split this last term into two pieces

ũi∂jτij = ∂j(ũiτij)− τij∂j ũi (24)

While ũi∂jτij is not Galilean invariant, the term (∂j ũi)τij is invariant under a velocity boost.

The term ∂j(ũiτij) is the effect on Kf of the kinetic energy flux (ũiτij) due to the SGS

stresses: it only spatially redistributes kinetic energy of the resolved scale flow in the same

way that stresses due to the resolved pressure field does. Hence, the term ∂j(ũiτij) does not

correspond to any forward or back transfer of energy between the resolved and unresolved

components of the flow. We identify

εf = −(∂j ũi)τij

as the contribution of the subgrid-scale stress to the energy flux from the resolved to the

unresolved components of the flow. εf is a scalar function, defined locally in both space and
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time, and depends on the SGS stresses. Hence, the equation above can be considered as one

constraint equation on the six independent components of the subgrid-scale stress tensor τij .

We examine the 20482×1920 Richtmyer-Meshkov simulation at time t = 9. We filter the

flow with a Gaussian filter with a filter wavenumber kf = 16, corresponding to a wavelength

of L/16. Figure 17a shows a visualization of the sgs forward transfer, εf , in the entire

simulation volume. Figure 17b shows the probability distribution function (pdf) of εf taken

over the entire volume at time 9. Probability distribution functions shown in Figure 17, and

thereafter, were computed by counting the number of zones which had values falling in bins

linearly distributed across the range of the respective quantity. The counts in each bin were

then normalized by the total number of counts and the bin size so that the resulting curve

integrates to unity. Most of the volume is filled with regions of weak energy transfer (i.e.,

small values of εf) which are rendered transparent. Regions of strong transfer, with forward

transfer shown in blue-green and inverse transfer shown in red-yellow, are seen to be entirely

in the mixing layer. It is of interest to relate these regions of forward and inverse transfer

with the geometry of the large scale flow.

We correlate εf with components of the rate of strain tensor of the resolved velocity field.

The velocity gradient tensor Aij = ∂iũj may be decomposed

Aij =
1

2
(Rij + SD,ij + SI,ij) (25)

into a rotational component

Rij = Aij − Aji , (26)

a deviatoric component

SD,ij = Aij + Aji −
2

3
δijAkk , (27)

and a compressional component

SI,ij =
2

3
δijAkk (28)
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of the flow. We start by examining the rotational invariants of Aij and of its components.

The modulus squared of R is the enstrophy. The pdf of enstrophy is shown in Fig. 18.

The enstrophy of the filtered velocity, ω2f = |∇ × ũ|
2, is strong in the mixing layer and is

seen to be organized in vortex rings, or tightly curved vortex tubes. These rings correspond

to the heads of the plumes seen in entropy. A cross correlation of the ω2f and εf (see Fig. 19)

shows little or no spatially local correlation between these two fields. This is expected from

the standard argument that enstrophy corresponds to solid body rotation, which produces

no deformation of local flow structures.

The compressional component of the flow, SI,ij, is parameterized by df ≡ Trace(Aij) =

∇ · ṽ. Figure 20 shows the pdf of df . Like ω2f and εf , df is only large in the mixing layer.

The cross correlation between df and εf (Fig. 21) shows a positive correlation with a large

spread. This positive correlation is due to converging or diverging flow carrying structures

through the filter plus pressure dilatation work.

The pdf for the modulus squared of the deviatoric component of the flow, |SD|2 is shown

in 22. Again, it is large only in the mixing region. Figure 23 shows a strong correlation

of large |SD|2 with large forward transfer, corresponding to εf << 0. Standard sub-grid

scale models of turbulence (such as the Smagorinsky and k-ε models) typically use a factor

which scales with |SD|2 in the sgs dissipation. |SD|2 seems to be able to identify regions of

strong forward transfer in this flow. The modulus squared of the deviatoric strain, |SD|2, is

positive definite and can not distinguish between forward and inverse energy transfer. Even

expressing the sgs stress purely as a function of SD, such as

τij = νturb|SD| SD,ij , (29)

being of the same form as the Navier-Stokes diffusion term, can only produce forward trans-

fer. However, large forward transfer is always associated with a large modulus of SD in

this flow. This motivates the question of whether there is some other invariant of SD which

tracks both forward and inverse transfer.

While point by point there seems to be no correlation between ω2f and εf , volume visual-

26



izations indicate a tendency for pairs of regions of positive and negative εf to straddle vortex

rings in the filtered flow; see for example Fig. 17b. This is most clearly evident in the head

of the central plume shown in the upper left corner of this figure. The only invariant of the

rate of strain tensor with opposite signs on either side of a vortex ring is the determinant of

SD : ahead of a vortex ring (in the direction of propagation) SD has two positive eigenvalues

and one negative leading to Det(SD) < 0; behind a vortex ring two eigenvalues are negative

and one is positive leading to Det(SD) > 0. Intriguingly, both εf and Det(SD) scale as

(∂iuj)
3.

A rate of energy transfer, such as εf , has units of

(Energy Density)/(Time) ∼ (Mass Density)(Velocity)3/(Length) ∼ λ2fρ(∂iuj)
3 (30)

Here, λf is a characteristic wavelength of the filter. Two invariants of A which scale as

(∂iũj)
3 include ∇ · v|A|2 and Det(SD). So we construct two terms with units of εf

R1 = λ
2
f ρ̄Det(SD) . (31)

and

R2 = λ
2
f ρ̄∇ · ũ|A|

2 , (32)

The first term is motivated by the correlation between div(u) and εf seen in Fig. 21. A

factor like ρ̄λ2f |A|
2 can be thought of as an estimate of the local energy on the scale of

the filter, while ∇ · ṽ is the rate at which structures are carried across the filter by the

compressibility of the flow. Comparison of visualizations of R1 with those of εf indicate a

fairly strong agreement both in regions of forward and inverse transfer. Figure 24 shows the

cross correlation. Note the linear relation between λ2f ρ̄Det(SD) and εf for strong forward

transfer. There is a kink at (0,0) with inverse transfer (i.e., positive values of εf ) being

positively and linearly related to R1 but with a different slope.

Finally, we consider a fit of the form

εf = Aλ
2
f ρ̄(Det(SD) + B∇ · ũ|A|

2) = A (R1 +BR2) . (33)
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For the 20482×1920 data at time 9, with a filter width of kf = 16, best fit values of the two

unitless coefficients are A = 0.032 and B = 2.0. This fit is shown in Fig. 25. Note, this fit,

which minimizes the mean square error

(εf − Aλ
2
f ρ̄(Det(SD) +B∇ · ũ|A|

2))2 (34)

also produces a common linear slope (i.e., A = 0.032) for both positive and negative values

of εf . This same analysis was also performed for filter widths kf = 8/L and kf = 32/L with

similar results, despite the proximity of the dissipation and energy containing scales. On a

mesh where δx = L/2048, the dissipative effects are expected to span wavenumbers down

to about k = 64/L. The energy containing scale spans wavenumbers up to k = 10/L in this

problem.

One possible reason for the agreement between Det(SD) and εf is that when Det(SD)

is positive, only one eigenvalue of SD is positive, which tends to align the vorticity field

along the corresponding eigenvector direction. In these regions the flow tends to behave like

a 2D flow with the associated inverse transfer of energy. When Det(SD) is negative, two

eigenvalues of SD are positive, vortex stretching can occur along any direction in the plane

spanned by the corresponding eigenvectors, and forward transfer is enhanced.

VIII. SUMMARY

The simulations described in this paper lead to a number of conclusions:

Simulations such as these can reproduce the macroscopic mixing behavior of experiments.

In particular the mixing layer widths from our simulation are in remarkably good agreement

with the Vetter et al [4] experiments.

The two scales present in the initial perturbation interact. The presence of the long

wavelength perturbation has a notable impact on the evolution of the short wavelength per-

turbations, destroying most of them, breaking them up into still-smaller structures. This is

particularly evident on the sides of the long wavelength structures. One effective mechanism
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of interaction is that, on the sides of the long-wavelength perturbation, the maximum angle

between the gradients pressure and density is increased,thereby increasing the vorticity depo-

sition, as found in Fig. 15. There is also an asymmetry in the survival of the short-wavelength

features between the bubbles and spikes of the long-wavelength perturbation, with survival

greatest around the peak of the long-wavelength spike. Our results suggest that this asym-

metry is associated with the tendency of short-wavelength spikes to “grow apart” around

the long-wavelength spike, versus growing together around the long-wavelength bubble.

The well-known differences between 2-D and 3-D fluid dynamics is dramatically illus-

trated in our simulation visualizations. The 2-D simulations are characterized by coalescence

into structures comparable to or larger than the initial short-wavelength (mesh) scale, while

the 3-D simulations evolve toward fine scales. This is consistent with the predominance of

inverse and forward cascades, respectively.

Comparison of visualizations at various resolutions suggests a transition from unstable

to turbulent flow as the resolution is increased, consistent with arguments by Dimotakis

[16] that such a transition should occur with increasing Reynolds number. In this case the

Reynolds number is that attached to numerical dissipation. More generally, they provide

a warning about resolution requirements in three-dimensional hydrodynamics simulations:

with inadequate resolution, qualitatively wrong conclusions can be drawn about the struc-

ture of the fluid flows. The resolution required is surely problem-dependent (beyond a

simple Reynolds number dependence). The example studied here indicates that billion-zone

simulatons may be required even for relatively simple flows.

As the resolution is increased, a kind of inertial range is evident; this is not a classic

Kolmogorov inertial range as the spectrum is not continuously driven. The spectrum has

a power-law region, but with a weaker wavenumber dependence than Kolmogorov scaling,

about k−5/4. The spectral flux, defined as the integral over magnitude of wavenumber of

the nonlinear transfer function, is approximately constant in this region, which is consistent

with, but not necessarily indicative of, an inertial range.

Analysis of structure functions at the end of the simulation indicates the persistence of
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structures with velocities largest in the stream-wise direction, and a weaker indication of

predominance of structures spatially extended in the streamwise direction.

Finally, our analysis of quantities smaller and larger than a post-processing filter indicate

that there is a significant correlation between the (sub-grid-scale) nonlinear stress and the

(resolved) rate-of-strain tensor. This suggests that a Smagorinsky-like model is a good

candidate for a large-eddy-simulation (LES) model.
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FIGURES

FIG. 1. Schematic representation of Vetter-Sturtevant shock-tube experiment

FIG. 2. Volume renderings of the simulation at successive times

FIG. 3. Computed and experimental mixing-layer widths. The squares denote the experimental

data normalized to the transverse dimension of the shock tube; the “x”’s denote the data normalized

to the wire spacing

FIG. 4. Computed mixing-layer width with box-size perturbation subtracted out.

FIG. 5. Kinetic energy power spectrum for various resolutions, averaged over four transverse

(fixed-z) slices through the mixing layer

FIG. 6. Spectral kinetic energy flux versus wavenumber for 20482×1920 simulation at the final

time

FIG. 7. Structure functions for components of velocity (a) longitudinal to and (b) transverse

to the spatial separation. ux and uy refer to the components of velocity in the plane of the mixing

layer, while uz refers to the component of velocity normal to the mixing layer. Similarly, dx, dy

and dz refer to structure functions in each of these three directions, respectively.

FIG. 8. Compensated power spectrum vs. transverse wavenumber

FIG. 9. Vertical slices of entropy at various resolutions

FIG. 10. Spectral kinetic energy flux versus wavenumber for (a) the 20482 × 1920 simulation

at t = 2, and (b) the 5123 simulation at t = 9

FIG. 11. Entropy from two-dimensional simulation vs. slice of 3-D simulation
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FIG. 12. Kinetic energy spectrum from two-dimensional simulation vs. slice of 3-D simulation

FIG. 13. Spectral flux in two-dimensional simulation (a) vs. 3-D simulation (b), both for 10243

resolution at t = 9

FIG. 14. Comparison of (a) a slice through the midplane of the full two-scale simulation with

(b) a slice of a single-wavelength (fine-scale) perturbation, plotted at the same scale. The The solid

black line shows the z-location of the spike and the dashed black line shows the z-location of the

bubble.

FIG. 15. Normalized circulation deposition vs. position along interface in slice, from Samtaney

et al. formula

FIG. 16. Sketch of small-scale spikes on large-scale bubble and spike. Arrows depict direction

of growth of small-scale bubbles

FIG. 17. Energy flux across a spatial filter due to SGS stresses, εf , shown volume rendered (a),

and the corresponding PDF (b). Negative values of εf correspond to forward transfer of energy

and are colored yellow and green in the volume rendering.

FIG. 18. Probability distribution function of enstrophy

FIG. 19. Cross-correlation of enstrophy and εf

FIG. 20. Probability distribution function of ∇ · v

FIG. 21. Cross-correlation of ∇ · v, εf

FIG. 22. Probability distribution function of |SD|2
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FIG. 23. Cross-correlation of |SD|2, εf

FIG. 24. Cross-correlation of R1, εf

FIG. 25. Cross-correlation of R1 +BR2, εf
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