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Introduction 

Thanks to a generous donation of an ES-7000 machine from Unisys to the LCSE, our team at the 
LCSE has had the opportunity to study PPM code kernel performance in detail on Intel Itanium-2 (IA-64) 
CPUs and to compare it with performance on Intel Pentium-4 and Pentium-M CPUs.  The testing reported 
here shows that with appropriate effort one can obtain excellent performance on these Intel processors.  
The general coding techniques used to obtain this performance are described briefly here and in more 
detail in another document, a discussion of the PPM performance spreadsheet (www.lcse.umn.edu/PPM-
performance-spreadsheet).  In the study reported here, performance is first measured for PPM code 
kernels that update single strips of grid cells repeatedly, working from data that usually fits entirely into 
the processor’s cache memory.  These measurements give an idea of how the mix of instructions char-
acteristic of modern fluid dynamics applications can execute essentially right “on the metal.”  Next, for a 
demonstration code, built in collaboration with Unisys using one of the kernels, a full two-time-step 
update of a single 2-D grid tile on a single CPU, with all its data reorganization and also with the 
generation of an image to visualize the developing flow, is executed.  This allows us to measure the 
aggregate performance of the system on the mix of work that is actually necessary for a run involving 
user interaction (through the graphical display) as well as the application of boundary conditions and the 
many data copies, transpositions, etc., that are involved in a real world computation.  Then for our two 
most used PPM code versions, a full single-time-step update of a single 3-D grid brick is executed, again 
with preparation of image data, in this case for use with our 3-D volume rendering utility, HVR (see 
www.lcse.umn.edu/hvr).  Finally, 2-D grid tile and 3-D grid brick updates are used as building blocks for 
larger-scale parallel computation within our SHMOD framework (see www.lcse.umn.edu/shmod), which 
allows us to measure the efficiency with which the Unisys ES-7000 supports parallel computation. 

The codes reported here achieve performance levels that are significantly higher than the average 
workload at, for example, NCSA.  It is therefore reasonable to ask why they do this:  is it something about 
the scientific problems they are addressing that permits this, or is it rather something about the way in 
which the numerical algorithms are designed and implemented?  This is not an easy question to answer, 
and therefore in this paper we take the approach of explaining the key techniques in obtaining this 
performance at each level of the code structure – single CPU kernel, single CPU task, multiple CPU job 
on a single machine, and multiple machine job on a cluster.  It is then left to the reader to decide what is 
special, the science addressed or the code design, or both.  Today’s computing systems are so complex 
that it is not possible to distill effective code design into just one or two simple principles.  Overall 
performance is achieved through effort expended at each level of the computing hierarchy.  However, this 
effort can be divided among people, as can the coding itself, so that it is not as onerous as it might seem.  
It is hoped that if one cannot apply all the techniques described below in one’s own work, at least some of 
them may be used to improve performance at one or another of the levels of the code and computing 
system structure.  We will begin our discussion at the level of a code kernel for execution on a single 
CPU out of its cache memory, then build outwards to a complete task performed by a CPU working out 
of its main memory, and finally to an entire job working from a memory shared either in hardware or in 
software by many CPUs. 
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Test Systems and Code Kernels 

Three Intel CPUs were used for these performance measurements – the 1.7 GHz Pentium-M CPU, 
with 1 MB cache, in a Dell Inspiron 8600 laptop machine, the 3.2 GHz Pentium-4 CPU, Extreme edition 
(with 2 MB cache), in a Dell desktop PC, and the 1.3 GHz Itanium-2 CPU, with 3 MB cache, in a 16-
processor Unisys ES-7000 machine.  All 3 machines use the 800 MHz frontside bus, so that in principle 
their paths to main system memory run at the same bandwidth.  The Unisys ES-7000 consists of two 16-
processor SMPs, each with 32 GB of memory.  Obviously, the large shared memory and 32 CPUs of the 
Unisys machine give it many advantages for large-scale parallel computation.  Our parallel computing 
model uses a shared memory paradigm, so it operates most naturally on a system of this type.  For cluster 
systems, we implement a global shared memory manually in software at the application, rather than at the 
system, level.  This technique, which we call SHMOD, has been described elsewhere (cf. www.lcse.umn.-
edu/shmod).  

For the tests reported here, 5 versions of our PPM code have been used: 

1. sPPM.   This is a simplified version of PPM that the LCSE team generated in 1996 for the DoE’s 
ASCI program to use as a performance benchmark.  It is publicly available in source code on our 
Web site (www.lcse.umn.edu/research/sppm).  Many vendor representatives who have dealt with 
this code have been unaware that it was intended only as a benchmark code, not a real application.  
It is included here, because it is by now a well known item.  Two versions of this benchmark kernel 
are used: 

a. The first version is the fully vectorizable version originally demanded by the ASCI program.  
This is the version on the LCSE Web site. 

b. The second version is a scalar, pipelined version generated by hand and shared over the years 
with compiler teams from several different vendors.  This version ran 58% faster than the 
vector version on the MIPS R-10000 CPU and 100% faster on the HP PA-RISC CPU 5 years 
ago.  It has about 25 loops all combined into one by a process of aggressive loop fusion that 
has been implemented in some vendor compilers.  The final, combined loop is then unrolled 
once for the benefit of superscalar microprocessors.  It is an example of scalar code containing 
almost no cache misses, as a result of the loop fusion process (see www.lcse.umn.edu/HPDC8 
appendix for statistics on the MIPS R-10000).  It is truly scalar, since the Cray C-90 was 
brought by this code to the unprecedented low performance level of just 16 Mflop/s.  This 
code kernel performs the identical arithmetic of the vectorized version, but in a totally 
different order.  Today’s microprocessors offering hardware support for vector computation 
out of their cache memories and supplied with compilers targeting this sort of vector execution 
do not prefer this version of sPPM.  Nevertheless, it provides us with a useful estimate of the 
scalar-to-vector speedup on the Intel CPUs studied here, and it is thus included for reference. 

2. PPMslowFlow.   This is a version of our present production PPM kernel that is suitable for slow 
flow applications (such as solar convection or perhaps mesoscale weather, for which shocks, if they 
occur at all, are so weak that the entropy they generate can be neglected).  It is entirely vectoriz-
able, like sPPM, but unlike sPPM this code is something we would actually care to run. 

3. MultiFluidPPM.   This is a new and highly complex version of our present production PPM kernel.  
It treats two-fluid flow problems with, potentially, strong shocks.  It incorporates a very elaborate 
fluid interface treatment which is vectorized but which involves a great deal of vectorizable logic.  
This scheme updates 16 independent variables per grid cell in 3D. 

4. PPM.   This is our standard version of our present production PPM kernel.  It treats only single-
fluid flow, but it does so very carefully, with special work performed at contact discontinuities and 
at strong shocks.  This scheme updates only 5 independent variables per grid cell in 3D. 
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5. StateFairPPM.   This is a very complex version of our present production PPM kernel.  It treats only 
single-fluid flow, but it very carefully advects 3 scalar fields, and it less carefully advects a fourth 
scalar field.  In the state fair demo these 3 scalar fields are the R, G, and B color channels of an 
image.  In more scientific applications, these might instead be chemical concentrations.  They could 
also represent the original x-, y-, and z-locations of the fluid elements at some instant, so that a 
continuous distribution of tracer particles in the flow could be visualized to reveal its dynamics.  
The advection scheme used here has roughly 3 times the linear resolving power of PPM when 
applied on the same grid.  This scheme updates 24 independent variables per grid cell in 2D. 

These code kernels are all, of course, gas dynamics schemes.  Nevertheless they cover an extensive 
gamut, from the totally scalar sPPM code, to the relatively simple vector code of SlowFlowPPM, and 
finally to the extremely complex, only partially vectorizable code of MultiFluidPPM with its hundreds of 
vector temporaries (the Intel 7.0 compiler vectorizer claims that the main module of this last kernel 
“cannot be analyzed” unless scratch arrays are statically dimensioned;  note that this “kernel,” with 
comments, is several thousand lines of Fortran-77).  The standard version of PPM was recently used to 
perform a simulation of homogeneous, Mach 1 turbulence on a grid of 20483 cells using a variable 
number, between 80 and 500, Intel Itanium-2 CPUs at NCSA (see  www.lcse.umn.edu/shmod/IEEE-
Cluster-Computing-paper-4-27-04-2cols.pdf  and  www.lcse.umn.edu/VDA2005).  In all tests, even those 
for single, 1-D grid strip updates, all the kernels except the state fair kernel perform all the work that is 
required for a 1-D pass of a fully 3-D computation.  The state fair kernel does the 1-D grid strip update 
from a full 2-D computation. 

 

Code 
kernel 

N=4096 

Flops/Cell 
Update 

(1-D pass) 

Adds/Cell 
Update 

(1-D pass)

Mults/Cell 
Update 

(1-D pass)

Recips/Cell 
Update 

(1-D pass) 

Sqrts/Cell 
Update 

(1-D pass) 

Cvmgms/Cell 
Update 

(1-D pass) 

sPPM 
scalar 

701 255 264 23 8 68 

sPPM 
vector 

734 266 286 23 8 116 

PPM 
SlowFlow 

680 293 249 13 7 141 

PPM 
StateFair 

1345 630 644 19 1 386 

PPM 
MultiFluid 

1426 616 647 35.5 4 380 

PPM 
Classic 

921 430 409 17.2 2.2 249 

 
This table gives the computational makeup of the 5 code kernels used in the performance tests.  The two 
versions of the sPPM benchmark kernel actually perform identical arithmetic.  However, in the scalar 
implementation, a few redundant computations have been eliminated upon fusing multiple calls to the 
same subroutine in the vectorized version.  The multifluid PPM kernel is by far the most complex.  It 
contains several scalar loops dealing only with cells in strong shocks, and it has the largest temporary 
workspace that needs to be held in the cache memory. 
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A Working Definition of the Flop 

Although over the years there has been great temptation to redefine the flop, we have here chosen to 
follow established tradition in this study.  The applications reported here all count their own flops.  None 
relies on any hardware counters, since these have historically been based on varying definitions of the 
flop.  It is the definition of the flop that was implemented in the Cray hardware performance monitor over 
two decades ago that here is taken to be the standard.  As a result of manually programming the test codes 
so that they accumulate their own flop counts, there may be small errors in flop counting here, but the 
counts are at least uniform across the CPUs. 

Operations are summed as the computation proceeds, accumulating totals in the categories of adds, 
multiplies, reciprocals, square roots, reciprocal square roots (usually implemented as a single operation on 
microprocessors), exponentials or logarithms, and “cvmgm” operations.  The cvmgm operation (or its 
equivalent), so named by Cray (for “Cray vector merge minus,” although it is actually a vector mask 
rather than a vector merge operation), is the foundation of vector logic.  It has also been termed a 
“conditional move,” and it is found as a basic instruction on most microprocessors.  It examines the sign 
of a floating point number and based on the result selects one or the other of two floating point operands.  
Following the Cray tradition, we give no credit in the flop total to the cvmgm operations, despite the fact 
that they represent valid and useful labor.  The add and the multiply each count as one flop, even if they 
are performed in a single multiply-add operation.  A divide is counted as 4 flops, unless it is actually just 
a reciprocal, in which case it is counted as 3 flops.  No modern CPUs made in America perform divides 
this fast, but we count them the way Cray did, since that is the standard.  It is possible to implement 
divisions in terms of adds and multiplies and to count them as such.  This yields much higher flop counts, 
and in this work this sort of counting is viewed as illegal.  Sometimes comparisons count as one flop 
each, but only if we must first perform a subtraction in order to get a sign to examine.  It is with the 
remaining operations, square roots, exponentials, and the like that we have problems defining flop counts.  
Here we have assigned 14 flops each to these operations, which past experimentation seemed to reveal as 
the choice made by Cray long ago. 

We have counted the flops reported here, and programmed them in, following the rules set out in the 
previous paragraph.  No redundant flops in common subexpressions are counted.  The main ambiguity 
comes in vectorizable loops with logic.  For example, there are loops in which fluxes at cell interfaces are 
computed using items from the cell on the left or on the right depending upon the sign of the time-
averaged interface velocity.  In a scalar implementation, there would be a single test on this sign and the 
arithmetic would be performed once, either with one set of values or with the other.  These sections of 
code have been counted as if there were a cvmgm operation to select each operand.  This procedure 
inflates the number of tests, but these tests do not count as flops.  The arithmetic that is performed, one 
way or the other, is counted only once.  It has been interesting to compare these flop counts with those 
generated by hardware monitors.  In the case of the MIPS processors, the hardware count was low.  In the 
case of the Intel IA-64 processors, the hardware count is high.  The principal injustice of the flop counts 
reported here is that they attempt to adhere to an obsolete Cray standard that gives too little credit for the 
actual work performed in obtaining reciprocals and gives no credit at all for logical operations.  For this 
reason, the counts in the various categories are broken out separately in the table above. 

1-D Sweep Kernel Performance 

The tables below give the performance of the 1-D kernels in Mflop/s.  All these CPUs have rather 
large caches, so that performance degrades only at quite long vector lengths.  In each performance test, a 
real 1-D problem is solved, so that any scalar loops involving execution in only a small, dynamically 
varying subset of the 1-D grid strip are exercised to a realistic degree.  However, the 1-D grid strip 
updates are called multiple times at each time step level in order to greatly lessen the measured cost of 
boundary condition setting, copying of output to input arrays in cache, or any potential traffic to main 
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memory.  The performance measurements are therefore useful in assessing the effectiveness of these 
CPUs in performing computationally intensive tasks from their cache memories.  Therefore these figures 
do not give an entirely accurate guide to performance that might be achieved in performing a real 1-D 
application (but such applications are rare today in any event).  All the performance measurements show a 
roll off at large vector lengths caused by the failure of the workspace to fit into the cache memory. 

 

32-bit PM N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024 N = 2048 N = 4096 
Scalar 
sPPM 539 554 561 571 573 577 574 577 

Vector 
sPPM 985 1237 1467 1591 1634 1600 1102 638 

SlowFlow 
PPM 1205 1430 1511 1585 1588 1555 1465 780 

StateFair 
PPM 751 877 1008 1100 1109 1031 772 648 

MultiFluid 
PPM 947 1094 1193 1247 1250 919 648 563 

Standard 
PPM 864 1031 1147 1230 1255 1144 746 593 

 
Performance of the code kernels with 32-bit arithmetic on an Intel Pentium-M CPU running at 1.7 GHz in a Dell Inspiron 8600. 

 

 

32-bit P4 N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024 N = 2048 N = 4096 
Scalar 
sPPM 683 698 705 734 739 740 742 741 

Vector 
sPPM 1310 1666 2017 2263 2380 2242 2227 1794 

SlowFlow 
PPM 1650 1907 2124 2078 2169 2069 1982 1896 

StateFair 
PPM 957 1111 1280 1378 1399 1423 1412 1185 

MultiFluid 
PPM 1203 1388 1523 1569 1570 1457 1332 1032 

Standard 
PPM 1146 1346 1493 1577 1607 1530 1440 1159 

 
Performance of the code kernels with 32-bit arithmetic on an Intel Pentium-4 (Extreme edition) CPU 

running at 3.2 GHz in a Dell desktop PC. 
 

These results show performance for 32-bit arithmetic that is fairly consistent across these related 
processor families.  The Itanium-2 processor targets 64-bit arithmetic, and therefore its performance for 
32-bit arithmetic is only slightly faster, and in some cases can even be slower.  It is interesting that the 
Pentium-M holds its own quite well against the Pentium-4, which here has nearly double the clock rate, 
but certainly not double the performance in 32-bit mode.  We note that the codes run on the Pentium-M 
and Pentium-4 CPUs are compiled with the Intel 7.1 Fortran compiler, generating code exclusively for 
streaming SIMD extensions 2 (SSE2).  This produces much faster code than use of the Intel 8.0 Fortran 
compiler, even if that compiler is directed to target each individual CPU exclusively.  The 8.0 Fortran 
compiler also significantly reduces performance (by up to 30%) on the Itanium-2 CPU for some of the 
codes tested here (notably sPPM and State Fair PPM).  In these cases the Intel 7.1 Fortran compiler is 
used.  For the Itanium-2, the 8.0 compiler produces slightly faster code for the standard version of PPM in 
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32-bit mode, but significantly slower code in 64-bit mode.  The 8.0 compiler does consistently produce 
superior performance for very long vector lengths, when the workspace of the calculation can no longer 
fit into the cache.  Since many applications are not written to fit into the cache, such codes may have been 
a special target for the 8.0 compiler development.  Perhaps compromises were made to enable compiling 
such code well that, unfortunately, reduced performance significantly for code of the sort studied here, 
where great effort is made to keep all computationally intensive kernels working within the cache 
memory.  The behavior of the two compilers can be seen in the table entries for the code kernels for 
which results from both compilers are given. 

 

32-bit 
Itanium-2 

N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024 N = 2048 N = 4096 

Scalar 
sPPM 560 570 574 572 575 576 576 577 

 
Vector 
sPPM 

(7.1; O3) 

1065 1317 1516 1662 1717 1762 1772 1774 

SlowFlow 
PPM 1216 1364 1452 1525 1538 1535 1532 1534 

StateFair 
PPM 

(7.1; O3) 

1016 1149 1265 1329 1363 1381 1379 1220 

StateFair 
PPM 

(8.0; O3) 

890 956 1014 1043 1082 1130 1146 1021 

MultiFluid 
PPM 

(7.1; O3) 

948 1013 1104 1161 1060 1062 1068 883 

MultiFluid 
PPM 975 903 1017 1036 1020 1035 1164 973 

Standard 
PPM 

(7.1; O3) 

1001 1106 1176 1201 1215 1230 1227 1199 

Standard 
PPM 1068 1160 1224 1240 1244 1251 1255 1220 

 
Performance of the code kernels with 32-bit arithmetic on an Intel Itanium-2 CPU running at 1.3 GHz in the Unisys ES-7000. 

Intel Fortran compiler versions and option flags are indicated in parentheses. 
 

 

Either compiler for the Itanium-2 is used with the “/O3” compiler flag.  The “/fast” compiler flag 
turns on interprocedural optimizations and perhaps some other things.  These usually (but not always) 
tend to reduce performance for our codes when 32-bit arithmetic is used, while for 64-bit arithmetic they 
deliver some benefit.  The multifluid PPM code kernel in particular has been manually optimized by 
inlining what were previously separate subroutines and by aggregating individual short loops, that the 
compiler demanded for automatic vectorization to be applied, into single, long loops preceded by 
vectorization directives.  These loop aggregations always improve performance in these codes, although 
the compiler is apparently unaware of this fact.  In these codes subroutine inlining never reduces 
performance, it sometimes is neutral in effect, and it can deliver an additional 50 Mflop/s or so in certain 
cases.  The compiler appears not to make subroutine inlining transformation decisions properly on its 
own, at least for the rather large subroutines involved in these kernels.  Therefore the inlining was done 
manually, which has an adverse impact on the code readability. 
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64-bit PM N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024 N = 2048 N = 4096 
Scalar 
sPPM 412 432 441 443 447 448 448 448 

Vector 
sPPM 481 517 538 544 538 414 281 242 

SlowFlow 
PPM 652 677 698 715 698 660 365 298 

StateFair 
PPM 545 592 625 644 604 428 350 279 

MultiFluid 
PPM 552 569 619 623 476 336 289 184 

Standard 
PPM 611 653 677 689 628 410 309 279 

 
Performance of the code kernels with 64-bit arithmetic on an Intel Pentium-M CPU running at 1.7 GHz in a Dell Inspiron 8600.  

 

64-bit P4 N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024 N = 2048 N = 4096 
Scalar 
sPPM 546 569 577 584 581 583 586 585 

Vector 
sPPM 807 901 974 995 970 950 828 638 

SlowFlow 
PPM 1115 1232 1297 1317 1290 1213 1151 726 

StateFair 
PPM 900 985 1042 1063 1048 1030 769 685 

MultiFluid 
PPM 922 971 1004 985 947 827 605 534 

Standard 
PPM 1032 1087 1129 1132 1073 1040 728 620 

 
Performance of the code kernels with 64-bit arithmetic on an Intel Pentium-4 (Extreme edition) CPU 

running at 3.2 GHz in a Dell desktop PC. 
 

The kernels and codes used here had to be massaged so that the “/O3” compiler flag would result in 
generation of correct compiled code on the Itanium-2.  The effort involved in making /O3 work was 
definitely worth the trouble.  A helpful technique proved to be the designation of fixed lengths for work-
space arrays, even if these were dynamically allocated on the stack.  For the State Fair PPM kernel, one 
large workspace had to be statically allocated on the heap, via “save” instructions, in order for correct 
code to result with the “/O3” compiler flag.  These fixed length working storage allocations required 
recompilation for each vector length, but compilation is very fast, and that was no particular trouble. 

The Intel Fortran compilers try to make intelligent judgments about whether or not to vectorize a 
given loop.  In a small number of cases, decisions by the compiler not to vectorize a loop give very slight 
performance improvements.  However, it is much more common that these judgments by the compiler 
reduce performance for the codes studied here.  Therefore directives were inserted to force vectorization 
for all vectorizable loops in all these codes.  This procedure had the felicitous side effect of speeding up 
the compilation process enormously.  It is a mystery why different vectorization assertions are required 
for the same compiler, depending upon the target Intel CPU.  Nevertheless, both assertions were made, 
and the warnings generated by the wrong ones in either case were suppressed with the “/w” compiler flag. 

Because these are cache-based CPUs, performance varies from one execution of the compiled code 
to another, even on a dedicated machine.  The numbers quoted are the best observed.  For the bulk of the 
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table entries, the worst observed numbers were within 2% to at most 5% of the quoted values.  
Performance variation is greatest near the special vector lengths at which the entire workspace no longer 
fits within the cache memory, and this variation is much larger (up to 50%) for the 7.1 Fortran compiler in 
this special region than for version 8.0.  Since long grid strips can easily be updated a section at a time, it 
is the performance when the entire workspace fits into the cache memory that is most important, and the 
7.1 version of the compiler is the superior one in this regime for most of these codes.  When we run our 
codes in production mode on many processors, we often find that one or two out of the 32 processors is 
running slower by up to 30%.  We have therefore written our parallel job execution framework to sense 
this, kill that particular process, and then restart it.  We find that if a process starts slow, it will always be 
slow, and if it starts fast, it will remain so.  Because of the way in which our parallel job execution 
framework is designed (see www.lcse.umn.edu/shmod), it is not a problem to kill and restart these 
occasional slow processes. 

 

64-bit 
Itanium-2 

N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024 N = 2048 N = 4096 

Scalar 
sPPM 560 570 574 572 575 576 576 577 

Vector 
sPPM 

(7.1; fast) 

992 1178 1316 1325 1321 1294 1240 515 

SlowFlow 
PPM 1123 1208 1241 1273 1255 1222 1202 1094 

StateFair 
PPM 

(7.1; fast) 

1076 1172 1212 1226 1231 1192 
 

673 475 

StateFair 
PPM 

(8.0; O3) 

764 832 890 952 1000 1002 780 672 

MultiFluid 
PPM 

(7.1; fast) 

990 1040 1052 1060 1060 1039 598 461 

MultiFluid 
PPM 

(8.0; fast) 

779 853 936 988 1004 1009 803 634 

Standard 
PPM 

(7.1; fast) 

1126 1202 1230 1223 1214 1205 1106 405 

Standard 
PPM 965 1037 1073 1091 1104 1108 1048 590 

 
Performance of the code kernels with 64-bit arithmetic on an Intel Itanium-2 CPU running at 1.3 GHz in the Unisys ES-7000. 

Intel Fortran compiler versions and option flags are indicated in parentheses. 
 

We can see from the tables above that once we use 64-bit arithmetic, the Itanium-2 processor is 
working according to its design, and it delivers the best performance, even though it has the lowest clock 
rate of these 3 CPUs.  Its peak performance is 4 flops per clock, or 5.2 Gflop/s.  The 100% vectorized 
code of the sPPM kernel delivers 25% of this promise, which is exceptional, while the multifluid PPM 
kernel delivers 20%, which is still very good.  This performance difference comes mainly from the small 
number of loops that are executed in scalar mode in multifluid PPM.  Scalar loops are most efficient in 
performing the significant extra work that needs to be done at strong shocks, at centered rarefaction fans, 
and at any reflecting walls, because there are relatively few cells in which this extra work is required.  
Unless we are running the LinPack benchmark, we should not expect more than half the manufacturer’s 
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peak advertised performance.  This is because the combined multiply-add instruction, responsible for half 
the peak performance figure, is nearly useless in normal computation.  We note that the Pentium-M CPU 
does not support this instruction, but one would hardly know that from its performance numbers. 

The performance numbers in the tables above do not take into account the cost of the process of 
preparing the data to be operated upon by the PPM kernel or in generating images from the results for the 
user to see.  We would normally expect these ancillary processes to consume relatively little resources, 
however at the 6.2 GB/sec memory bus speeds in these machines, this is not quite the case, as the tables 
of the next section clearly show.  In 2D, our PPM codes can run in interactive mode, presenting images of 
the evolving simulated fluid flows to the user as the computation proceeds.  Using the 16 CPUs of the 
Unisys ES-7000 machine, quite detailed 2-D flow simulations can be performed in a fully interactive 
mode.  Together with Unisys, our team at the LCSE demonstrated this at the Minnesota State Fair’s 
Wonders of Technology exhibit in August, 2003.  In the next section, we report performance measure-
ments for the full 2-D grid tile update and image generation process from this interactive flow simulation 
application. 

Techniques for Enhancing Single-CPU Kernel Performance 

The Intel CPUs studied here are all cache-based microprocessors.  Although CPUs of significantly 
different design are still available today, it is a general fact that code targeted to microprocessors like 
these will run nearly optimally on every CPU in the world today.  The reason for this is that the Intel 
microprocessors involve in their hardware and compilers, in one form or another, nearly every successful 
strategy for improving code performance that has emerged over the last 30 years (with the exception, for 
the Itanium-2, of instruction reordering).  Those features of the CPU design that have made achieving 
performance harder than on some other platforms have done only that:  they have made our job harder, 
but they have not made it impossible.  It may still be familiar to some that Cray vector computers of years 
long past delivered roughly half of their peak performance on well written codes (and of course 
everything delivers all of its performance to LinPack).  It is not completely clear why microprocessors do 
not deliver 50% of their peak performance, but a likely reason is that they have very many fewer registers.  
If this is indeed the reason, it is clearly a cost issue, not only because registers are expensive but also 
because only scientists, who as a group are poor, seem to need them.  Nevertheless, as we can see from 
the performance measurements for the PPM Slow Flow kernel, vector code on these Intel CPUs delivers 
25%, rather than 50%, of the peak performance.  Thus these CPUs are cost effective, even for scientists, 
so long as they cost less than half the price for equivalent vector CPUs.  Occasionally, even scientists 
wish to go out of the vector paradigm to do some unusual computation, and then these microprocessor 
CPUs deliver half to one third of their vector performance, which is very good, as our table entries for the 
scalar sPPM kernel clearly show. 

The code kernels tested here are all written in a single style, which is largely responsible for their 
high levels of performance.  Each kernel targets the processing of a linear array of entities, in these cases 
a single, 1-D strip of grid cells.  The data needed for this processing is handed to a subroutine as a 
collection of 1-D arrays.  Even if the data actually comes from multi-D arrays, from the point of view of 
the Fortran subroutine doing the processing all the subroutine arguments are interpreted as 1-D arrays.  
There are no routines that are written to process only a single grid cell, since this would not allow 
performance enhancements through vectorization.  Upon the call to the routine responsible for the grid 
strip update, a workspace consisting of tens to many tens of 1-D scratch arrays of equal length is dynam-
ically allocated on the subroutine’s stack.  For a single-CPU machine, like a desktop PC or a laptop, the 
distinction between the stack and the heap (heap allocation is obtained by using Fortran “save” instruct-
tions) is minimal.  On a multiprocessor, shared memory machine the distinction can be major.  Since the 
stack is reallocated on each call, the compiler can take care that this memory is always allocated in the 
best possible place.  On machines with many processors, this can be extremely useful. 



 

 
 

10

Our code kernels all consist of unit-stride loops that process vector inputs and produce vector 
outputs.  The fewer the number of vector inputs and outputs in relation to the amount of processing in the 
loop, the greater are the opportunities for the CPU to use its registers rather than its cache memory, and 
therefore the higher is the delivered performance.  Vectorizable loops have highly predictable patterns of 
functional unit usage, and hence can be scheduled optimally.  All the Intel CPUs studied here have special 
hardware instructions supporting vector computation.  This allows groups of words to be loaded in blocks 
and multiple functional units to operate simultaneously without the possibility of conflicts.  Automatic 
vectorization by the Intel compilers works only for relatively short loops, which cannot be fully efficient 
because they are forced to output temporary results of the computation in vector form for consumption by 
the following loop.  Longer vector loops in general have higher ratios of computation to the sum of their 
inputs and outputs, which makes it possible for a good compiler to generate more efficient vector code 
from them (a possibility that is not always realized, but which can always be hoped for).  The Intel 
compilers will agree to vectorize long, and potentially very efficient vector loops if the user inserts a 
directive just before the loop, which is highly recommended.  Nonvectorizable loops can usually be 
written in the following format:  the first statement of the loop is a test on a flag vector, which decides 
whether or not to execute the loop body.  The flag vector is computed in a preceding vectorizable loop at 
high speed.  Even with a vectorization assertion in front of such a loop, the Intel compilers will not 
generate vector code, so that this loop structure cannot be mistaken even if one simply puts vector 
assertions in front of all loops in the program.  Since the vector-to-scalar execution speed ratio is about 3 
to 1, such scalar loops should be used when one is fairly sure that no more than about a third of the flag 
entries are “true.”  It is almost always easy for the programmer to know which kind of loop is preferred, 
either vector or scalar, and it is then unnecessary for the compiler to make this decision. 

One might ask how one can come up with the groups of 1-D, unit-stride vector inputs to computa-
tional kernels when one has multi-dimensional problems to solve.  First, we note that it is possible to copy 
these vector inputs out of higher dimensional arrays explicitly.  This is not needless copying, which might 
be expensive.  The reason is that the vector computation we want to do demands short arrays that are 
resident in the cache memory.  This data must therefore be copied into the cache in any event, whether we 
explicitly express that in our program or not.  A typical modality is for a subroutine to operate on 1-D 
vectors that are refilled again and again with different data by the calling routine.  If the entire workspace 
of the subroutine fits into the cache, then the data in these arrays need never, or almost never, be sent to 
the main memory.  This is the advantage of a “write-back” cache;  if we keep refilling the arrays, we can 
truly think of them as cache resident, with effectively no copy maintained in the main memory.  The main 
memory is very slow, and this technique avoids using it at all for the bulk of the temporary storage 
required during the computation.  The impact on code performance when all the temporary workspace 
cannot fit in the cache is easily seen in the performance tables of the preceding section. 

From the above discussion it should be clear that it is highly worthwhile to keep the size of our 
temporary workspace small.  One way to do this is to use short vectors.  However, this technique usually 
comes at a cost in redundant computation.  Another method is to reuse our temporary vectors that we 
have allocated on the stack.  The first way to do this is to rely on the compiler to assist.  In the process of 
vectorizing our code, the compiler will probably be forced to allocate temporary vectors to hold results 
for which there is not enough room in the registers.  The advantage of having the compiler do this as 
opposed to doing it ourselves is that the compiler can reuse the same few vectors without becoming 
confused by all sorts of different quantities that are all given the same names.  From this perspective, it 
was a step backwards for the Intel compiler team to force programmers to allocate such vectors in order to 
make use of vectorizable logic.  A programmer can reuse vector temporaries that are explicitly allocated 
by employing the Fortran “equivalence” statement.  This is a very dangerous programming technique.  
The same effect can, however, be achieved by breaking a subroutine into several ones to which temporary 
workspace vectors are passed as arguments.  Then inside each subroutine a meaningful and readable name 
can be assigned to each temporary vector, and these names can be different in the different subroutines.  
Unfortunately, the Intel compilers will not inline these subroutines, thus generating the equivalences that 
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were initially desired.  Instead, performance will suffer, presumably because assumptions about the 
alignment of the vector arguments (with respect to multi-word boundaries) cannot legally be made, even 
if the interprocedural optimizations are turned on.  Compiler assistance in this area would be very helpful.  
In its absence, one is forced to use too large a workspace if one wants a readable and maintainable code.  
Happily, caches of 1 MB or greater are available even on laptop processors today; nevertheless, managing 
the workspace size can be expected to be an important performance issue for some time to come. 

Aside from avoiding divisions and special function calls wherever possible and avoiding use of 
short subroutines (manual inlining), the remaining technique that can deliver a major performance benefit 
for code kernels is the use of 32-bit arithmetic.  This is discussed briefly below. 

Why 64-bit Arithmetic? 

Most computational scientists are convinced that they need 64-bit arithmetic.  Nevertheless, the 
PPM codes studied here do not.  It is not completely clear why people believe 64 bits are necessary, but 
the following theory might help to understand this.  First, high arithmetical precision can allow conven-
ient algorithmic expression.  The elaborate advection scheme used in the multifluid and state fair PPM 
codes can help to illustrate this point.  This advection scheme is derived from the PPB scheme described 
in Woodward 1986, which is a 2-D extension of Bram van Leer’s Scheme VI, first described by van Leer 
in the 1970s.  It updates not only average values of the advected function in grid cells but also moments 
of that function in the cells.  The x- and y-coordinates used to generate the moments are scaled separately 
for each grid cell, so that the origin is at the center of the cell and the cell width is unity.  Were the global 
x- and y-coordinates to be used, we would need another 3 or 4 digits of arithmetical precision on fine 
grids, and 32-bit arithmetic would probably no longer suffice.  It is more trouble to express the algorithm 
in these cell-centric coordinates, but the algorithm is then better suited to computation.  With 64-bit 
arithmetic, we could take the easier and more natural approach, but the cell-centric coordinates give us the 
option of faster computation on microprocessors with the use of 32-bit arithmetic at essentially no cost in 
solution accuracy.  This is just one of many examples;  unnecessarily demanding a global view raises a 
cost in required arithmetic precision.  This can especially be seen if one demands that a global set of grid 
point values be coupled together by a matrix inversion process.  An alternative formulation might be to 
iteratively solve a relaxation process based on just local data, with no requirement beyond 32-bit 
precision.  Not everything that we sometimes assert to be mathematically coupled together is actually 
physically coupled at a practical level of significance.  The trade-offs here do not only involve computa-
tional speed but also memory size requirements, both of cache and main memory.  Use of 32-bit arith-
metic effectively doubles both the memory size and the memory bandwidth of a computer.  Both of these 
are very expensive commodities. 
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2-D Grid Tile Update Performance 

We here report results of the 2-D state fair PPM code running on a single CPU.  Results of several 
CPUs running this code in parallel are reported in a later section.  According to the PPM parallel 
performance model, so long as all interprocessor communication is thoroughly overlapped with this 
computation, essentially all overheads associated with parallel computation of this job are accounted for 
within the single grid tile update.  In addition to the cost of the raw computation using the PPM kernel 
code, the measurements below include all the costs of transposing, uninterleaving, re-interleaving, and 
possibly re-transposing the 24 vectors of fundamental fluid state quantities (such as the density, pressure, 
and velocity) that this PPM kernel processes for each grid strip.  These data manipulations do not run at 
the raw main memory bandwidth, because the CPU must always rearrange the data as it streams into the 
cache so that contiguous, unit-stride vectors are formed in the cache to enable vector processing.  Also, 
the results of the kernel computation must also be rearranged, so that all the values referring to the same 
cell are stored in contiguous locations in the main memory.  This allows the data to be transposed 
efficiently upon the next 1-D pass of the algorithm. 

 

32-bit 
1.7 GHz PM 

N = 32 N = 64 N = 128 N = 256 N = 512 N = 
1024 

Adds/Cell 3024 2051 1650 1469 1384 1343 

Mults/Cell 3010 2049 1649 1470 1386 1345 
Cvmgms/ 

Cell 1811 1235 996 889 839 814 

Recips/ 
Cell 95.5 64.7 52.0 46.3 43.6 42.3 

Sqrts/Cell 
5.4 3.5 2.7 2.3 2.2 2.1 

Flops/Cell 
6398 4343 3493 3112 2931 2844 

Sec/∆t 0.00508 0.0186 0.0555 0.203 0.833 3.58 
Sec/∆t 

@N=4096 83.2 76.3 56.8 52.0 53.3 57.2 

Mflop/s 647 716 778 752 692 626 
Fraction 1D 

Perf. 86% 82% 77% 68% 62% 61% 

 
Performance of the 2-D state fair PPM code with 32-bit arithmetic on an Intel Pentium-M CPU running at 1.7 GHz 

in a Dell Inspiron 8600. 
 

64-bit 
1.7 GHz PM 

N = 32 N = 64 N = 128 N = 256 N = 512 N = 
1024 

Sec/∆t 0.0112 0.0297 0.0982 0.384 1.61 7.12 
Sec/∆t 

@N=4096 184 122 101 98.2 103 114 

Mflop/s 440 450 437 398 358 314 
Fraction 1D 

Perf. 81% 76% 70% 62% 59% 73% 

 
Performance of the 2-D state fair PPM code with 64-bit arithmetic on an Intel Pentium-M CPU running at 1.7 GHz 

in a Dell Inspiron 8600. 
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32-bit 
3.2 GHz P4 

N = 32 N = 64 N = 128 N = 256 N = 512 N = 
1024 

Flops/Cell 
6398 4347 3492 3112 2931 2843 

Sec/∆t 0.00578 0.0140 0.0412 0.141 0.538 2.26 
Sec/∆t 

@N=4096 94.7 57.5 42.2 36.2 34.5 36.1 

Mflop/s 850 951 1042 1083 1071 990 
Fraction 1D 

Perf. 89% 86% 81% 79% 77% 70% 

 
Performance of the 2-D state fair PPM code with 32-bit arithmetic on an Intel Pentium-4 CPU (Extreme Edition) 

running at 3.2 GHz in a Dell desktop PC. 
 

 

64-bit 
3.2 GHz P4 

N = 32 N = 64 N = 128 N = 256 N = 512 N = 
1024 

Flops/Cell 
6398 4347 3492 3112 2931 2843 

Sec/∆t 0.00659 0.0170 0.0538 0.202 0.849 3.46 
Sec/∆t 

@N=4096 108 69.6 55.0 51.6 54.3 55.4 

Mflop/s 749 785 798 758 679 647 
Fraction 1D 

Perf. 83% 80% 77% 71% 65% 63% 

 
Performance of the 2-D state fair PPM code with 64-bit arithmetic on an Intel Pentium-4 CPU (Extreme Edition) 

running at 3.2 GHz in a Dell desktop PC. 
 

 

The large cost of the data manipulations needed to prepare grid strips for processing in the cache 
memory is apparent from the tables above.  Not only does this work take up 15% of the time, even for the 
smallest grid tile and 32-bit arithmetic, but as we try to make the computation more efficient by enlarging 
the grid tile, the temporary arrays that must be cache resident for the data manipulations to be efficient 
begin to crowd out the workspace of temporary vectors needed to update a grid strip.  The result is that 
for the most efficient grid tile size, with N=256, only 2/3 of the time is spent computing.  The remaining 
third of the time is spent rearranging data in memory in complex but highly ordered ways.  Using 64-bit 
arithmetic, the situation is even worse.  For the Pentium-4 and the Itanium-2 CPUs, the grid strip update 
is nearly as fast with 64-bit arithmetic, but the data manipulations are twice as slow.  There is no reason 
why these data rearrangements could not proceed in parallel with the grid strip update, but this would 
require, with present technology, two threads sharing the single CPU.  Even with Intel’s concept of 
“hyperthreading” on a single CPU, it is not clear that the performance improvement would be worth the 
very significant programming effort.  However, as CPUs continue to speed up and memory speed 
continues to lag behind, it may prove useful to contemplate such programming mechanisms.  We note 
that during the data manipulations, as presently implemented, the floating point units are entirely idle.  
Language or compiler assistance with such asynchronous prefetching of large blocks of data into the 
cache would certainly be helpful.  It should also be clear that this problem only gets worse when we go to 
3D problems. 
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32-bit 
1.3 GHz It2 

N = 32 N = 64 N = 128 N = 256 N = 512 N = 
1024 

Flops/Cell 
6398 4347 3492 3112 2931 2843 

Sec/∆t 0.00567 0.0143 0.0431 0.145 0.600 3.47 
Sec/∆t 

@N=4096 92.8 58.6 44.1 37.2 38.4 55.5 

Mflop/s 867 934 997 1053 960 645 
Fraction 1D 

Perf. 85% 81% 79% 79% 70% 47% 

 
Performance of the 2-D state fair PPM code with 32-bit arithmetic on an Intel Itanium-2 CPU running at 1.3 GHz 

in the Unisys ES-7000. 
 

 

64-bit 
1.3 GHz It2 

N = 32 N = 64 N = 128 N = 256 N = 512 N = 
1024 

Flops/Cell 
6398 4343 3492 3111 2931 2844 

Sec/∆t 0.00647 0.0166 0.0506 0.198 0.934 4.38 
Sec/∆t 

@N=4096 106 67.9 51.8 50.7 59.8 70.1 

Mflop/s 759 805 848 772 617 510 
Fraction 1D 

Perf. 71% 69% 70% 63% 50% 43% 

 
Performance of the 2-D state fair PPM code with 64-bit arithmetic on an Intel Itanium-2 CPU running at 1.3 GHz 

in the Unisys ES-7000. 
 

The 2-D codes were compiled with /O3, while the 1-D ones were compiled with /fast, which 
produced a faster result.  For the 2-D codes, however, /O3 made much faster code (20%). 

Techniques for Enhancing Single-CPU Task Performance 

The performance measurements in the tables above correspond to single CPU tasks.  In each such 
task an entire grid tile with dimensions  N×(3N/4),  augmented by a picture frame of ghost cells 16 cells 
wide, is updated for two full time steps.  The ghost cells are used to provide the proper boundary 
conditions for the grid tile update.  For this algorithm, 8 ghost cells are required for each time step update.  
By providing 16 ghost cells, we are able to perform four 1-D sweeps on the data without any need to 
communicate with any other processor that is updating any other grid tile.  There is a trade-off here 
between the cost of the redundant computation that is performed in the ghost cell regions of adjacent grid 
tiles and the benefit of uninterrupted, independent computation.  One aspect of this trade-off is measured 
in the row of each table entitled “Sec/∆t @N=4096.”  These table entries tell us how much time would be 
required to update a  4096×3072  grid tile for 2 time steps, updating one subdomain of the given size at a 
time.  In all but one case, using subdomains of  256×192  would give the best performance.  This 
subdomain size does not always yield the highest Mflop/s, but the ratio of redundant to unredundant flops 
is quite good for this size.  In the row of the tables labeled “flops/cell,” the cost of all flops, both 
redundant and not, is given.  This cost is lowered by only 6% in going to a  512×384  tile size, while the 
CPU performance usually decreases by more than a compensating amount. 
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The optimal tile size of  256×192  cells requires at least 0.14 seconds for a 2-time-step update.  This 
is a reasonable amount of time for the CPU to be occupied with a single task, because it is much larger 
than any latency in the computing system, be it a network communication or a disk access.  The slowest 
data bandwidth that is likely to be relevant to this computation is a data transfer over Gigabit Ethernet, 
which would proceed at about 35 MB/sec.  During the  0.14 sec  grid tile update, such a transfer could 
deliver  nearly 5 MB of data.  The ghost cell data for the grid tile is only  24 (variables/cell) × 4 
(bytes/variable) × ((288×224) – (256×192)) cells  =  1.9 MB.  We could therefore both send and receive 
this amount of ghost cell data over such a network during the time it takes to update another grid tile.  If 
we get the ghost cell data we need for our next grid tile while we are updating the present one, the 
calculation will not be slowed by waiting on data even if it is distributed over a (slow) Gigabit Ethernet 
network.  On a Myrinet network, where transmissions at 150 MB/sec are possible, we might choose not to 
plan ahead in this way and to pause our computation while fetching this data.  This choice would only 
slow us down by about 20%. 

On a shared memory machine like the Unisys ES-7000, we can fetch the ghost cell data from shared 
memory at over 2 GB/sec.  This is so fast that we can fetch the next entire grid tile, a record of just under 
6 MB (only 3 times larger than just the ghost cell data).  This frees our CPU from having to update one of 
some pre-assigned set of grid tiles, and it makes our computation much more flexible.  If very different 
times are required to update different grid tiles, as is the case in many applications, when we finish a grid 
tile update we can fetch the next tile on some globally ordered list.  In this fashion the 16 CPUs in the ES-
7000 can cooperatively update the entire grid without any of them needing to wait for other CPUs to 
complete their jobs.  When no more grid tiles need to be updated for this time step, if the global ordering 
of updates was done intelligently, it is almost certain that a CPU needing work can begin updating the 
first listed tile for the next time step.  For the PPM codes, we need to compute a value of the time step 
interval to use, and this is properly the result of a global reduction operation.  However, one time step 
usually resembles the next pretty closely, so we can obtain a speculative value for the time step using the 
best information available and go on.  If the speculation proves incorrect, which is very rare, we can 
repeat the necessary grid tile updates with no problem. 

Our SHMOD framework implements this parallel computation model for 2-D runs.  SHMOD stands 
for Shared Memory On Disk.  For very large 3-D runs we place all the grid brick records on disk.  Since 
150 MB/sec can be delivered to a set of striped SATA disks on a PC, there is more than enough time to 
prefetch the next grid brick while updating the present one.  This allows small machines to perform huge 
problems.  We have used this technique to do a PPM simulation on a 1024³ grid on our ES-7000, as is 
discussed in a later section.  For 2-D problems, where fitting the entire data context into the ES-7000 
memory is not a problem, we can nevertheless use the same SHMOD paradigm by storing the grid tile 
records in a memory-mapped file or files, which can be accessed by all the CPUs.  Then each CPU need 
only read the separate “disk” records for the interior, ghost cell edges, and ghost cell corners of its next 
grid tile from the memory mapped file in 9 sequential data transfers.  The SHMOD framework composes 
these separate data records into a single one.  A single array, DD, dimensioned as follows with the first, 
fast-running index going over the 24 physical state variables in each cell,  DD(24,-15:nx+16,-15:ny+16),  
holds the data to be updated.  This composition process for the array DD goes at over 2 GB/sec, so that its 
cost is negligible.  The performance data in the tables above report the speed at which the Intel processors 
studied here update the data in DD. 

We have already discussed the manner in which each grid strip update is implemented, and why that 
implementation makes sense on this hardware.  The 2-D grid tile update, starting from the array DD, 
consists of a sequence of calls to the 1-D grid strip update routine.  To prepare the data for these calls, we 
need to construct the set of 1-D grid strip vectors that the 1-D routine expects, and we must take the 1-D 
vectors it produces and place them back into a new version, DDNEW, of our DD array.  In the x-pass, this 
involves reading entire rows of DD data and sprinkling the results into individual row vectors in the cache 
memory, with one vector for each of the 24 physical state variables.  This process goes quite rapidly, at 
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just under 2 GB/sec on the tested hardware.  After updating the grid strip, the 24 new vector results must 
be interleaved for storage into DDNEW in the main memory.  This is also quite rapid.  In the y-pass, 
however, we need to effectively transpose the data in the DD array.  This is not straightforward, because 
of the organization of the main memory in cache lines.  To get good memory performance, we must read 
in several cells worth of data in a row.  Here the number of cells we need to read is reduced by a factor of 
24 because we have interleaved all the state variables in the single array DD.  We have found that it is a 
good idea to read in groups of 4 to 8 cells in the same row of DD at a time.  This not only gives good 
memory performance, but, as we will soon see, prevents the need to read the data over and over again.  
Speeds of up to 1.5 GB/sec can be obtained on the tested hardware for this process, but not if all the data 
that is read does not fit into the cache. 

Anticipating our 3-D applications, we will call the band of grid strips that we read into the cache as 
a grid pencil.  The PPM algorithm requires data in two grid strips above and below the present one in 
order to perform its update.  This means that if we are to update a pencil of 4 grid strips, we need to read 
8 grid strips into the cache.  In principle, we could reuse some of this data for processing the next grid 
strip.  However, we have written the code so that the next grid strip might actually be updated by another 
CPU sharing the same main memory.  This means that if we update pencils of 4 grid strips, we end up 
reading each data value in the DD array twice, effectively halving our CPU’s main memory bandwidth 
for this operation.  By updating pencils of 8 grid strips, we reduce this overhead by a factor of 2.  This 
consideration is most important in 3-D, where updating a 4×4 grid pencil involves reading into the cache 
an 8×8 set of grid strips. 

The substantial cost of the data rearrangements just discussed is clear from the performance data in 
the tables above.  The large number, 24, of state variables and the 8-strip grid pencils used take up a 
significant portion of the cache memory available, especially when we use 64-bit arithmetic.  The 
Itanium-2 processor in the Unisys ES-7000 is the top performer here, at 772 Mflop/s.  The cost of the 
memory manipulations, however, means that this is only 63% of the computational performance possible 
for a single grid strip update.  Thus, 47% of the 0.198 seconds required for the tile update are spent 
rearranging memory.  The total amount of data read from and written to main memory in this process, 
over 4 1-D passes of the algorithm, is  24×8×(288×224 + 276×220×2 + 272×208×2 + 268×196×2 + 
256×192)  bytes   =   84.1 MB.    However, we did not account for the fact that by reading grid pencils 8 
strips wide, we must actually read half of the data twice, although we only write each datum once.  This 
increases our estimate by 25% to 105 MB.  In addition, at the outset of the grid tile update, our test code 
constructs the grid tile from an interior, 4 ghost cell edges, and 4 ghost cell corners, applying boundary 
conditions in this process.  At the end of the 2 time step update, these 9 individual records are copied out 
from the new DD array.  These copies each involve both reading and writing the data, so that they add 
another  4×24×8×288×224 = 47.25 MB  to our total.  Thus our total becomes  152 MB.  Assuming that 
the generation of the image, which is part of the cost of the grid tile update, is negligible (which we have 
verified), then the average delivered memory bandwidth for these data manipulations is  152/0.0931 = 1.6 
GB/sec.  At well over half the speed we could expect for a simple, sequential data copy, this average data 
manipulation speed is quite respectable.  The memory bus bandwidth is 6 GB/sec, but our data 
manipulations are far more complex than simple sequential copies into or out of the cache.  Had we not 
interleaved our state data in a single DD array, our results would have been much worse. 

The relationship between numerical algorithm accuracy and memory bandwidth requirements: 

The above discussion shows that the PPM state fair application has a memory bandwidth require-
ment that, with 64-bit arithmetic, forces nearly half the time to be spent reading and writing data to and 
from main memory.  This is because it updates 24 state variables in each grid cell with 1345 flops in each 
of its 1-D passes.  In contrast, the standard PPM algorithm updates only 5 state variables with 921 flops.  
These facts are best stated in terms of the  bytes/flop  ratio.  For the state fair PPM 1-D pass, 384 bytes are 
transferred for every 1345 flops, with 64-bit arithmetic, giving a ratio of  0.286 bytes/flop.  For standard 
PPM we get  0.087 bytes/flop,  which is much better.  When these algorithms work out of the CPU’s 
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cache memory, the impact of these very different bytes/flop ratios is negligible, since far more bandwidth 
than either algorithm requires is provided by the hardware.  But in working from the main memory, the 
factor of 3 difference is very important. 

Here we see a general principle at play.  The more work we can perform on local, cached data with 
our numerical algorithm, the better the machine performance will be.  Decreasing the bytes/flop ratio to 
enhance machine performance is not difficult.  There are two general techniques.  Both involve increasing 
the accuracy of the computation, which is good in and of itself.  The first technique, which is the easiest, 
is to build a more accurate grid cell update by subdividing the cell into quadrants (in 2-D) and updating 
these for 2 half-time-steps in a single operation.  This operation requires 4 times the data to be transferred, 
but it does 8 times as much arithmetic.  Hence its bytes/flop ratio is half that of the original process.  We 
note that in the state fair grid tile update we are effectively doing this already, since we are performing 4 
1-D sweeps on the same data.  However, we have not organized the computation in such a way that all 4 
sweeps are performed at once while a particular subset of the data remains in the cache memory.  This 
could in fact be done by using a general programming technique which we call aggressive loop fusion.  
We would need to formulate our 1-D sweep algorithm so that it processed rows rather than columns of 
data at a time in our y-passes.  In such a formulation, we would need to have a separate row vector for, 
say, the density in our cells of interest and for the densities in the cells below them.  We would need to 
sweep through our grid row-by-row, and before we could produce a row of entirely new state variables, 
updated through all 4 1-D sweeps, we would have to partially process a great many rows (26 in fact) 
above the one for which the updated results would finally become available.  Performing this code 
transformation by hand is tedious and prone to error, but compilers can do this for us.  We have worked 
with Rob Fowler and the compiler team at Rice University to experiment with this procedure using Bob 
Wilhelmson and Lew Wicker’s NCOMMAS meteorology code with some success. 

A second, less straightforward but perhaps more rewarding technique for increasing the bytes/flop 
ratio is to use a fundamentally more accurate difference scheme.  There is a general relationship between 
the accuracy of a difference scheme and its computational intensity.  Here we mean accuracy in a 
practical rather than in a formal sense.  In the state fair PPM code, 3 fields are advected with a moment 
conserving difference scheme that is, in 1-D, formally 5th-order accurate.  In 2-D the formal accuracy is 
much less, but as a practical matter this advection scheme delivers about the same accuracy as the PPM 
advection scheme operating on a grid refined by a factor of 3 in each spatial dimension and time.  This 
scheme performs about twice as many flops as PPM advection operating, in 2-D, on 6 times as much data.  
But to achieve this same accuracy with PPM advection, we would need to operate on 9 cells worth of 
data.  Hence, for equal quality results, the bytes/flop ratio of the state fair code’s advection scheme is 
smaller than that of PPM by a factor of about 3, even without accounting for the 3 time steps we would 
need to take with the PPM advection scheme on its imagined subdivided grid.  The computational 
intensity of the PPM gas dynamics scheme itself also is related to its accuracy.  Were we to subdivide its 
grid and perform a much simpler updating scheme for the subcell patches, we could equal its accuracy, 
but the bytes/flop ratio would be very much larger.  In a sense, the point we are making here is that on 
modern microprocessor CPUs we can think of computation as free when compared to data movement.  If 
there is any reasonable additional computation we can perform to increase the accuracy of our result using 
the same cached data, we should not hesitate to do it. 
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3-D Grid Brick Update Performance 

We here report results of the 3-D standard and multifluid PPM codes running on a single CPU.  
Results of several CPUs running these codes in parallel are reported in a later section.  As with the 2-D 
tests reported above, the PPM parallel performance model implies that, so long as all interprocessor 
communication is thoroughly overlapped with this computation, essentially all overheads associated with 
parallel computation of a 3-D job are accounted for within the single grid brick update.  In addition to the 
cost of the raw computation using the PPM kernel code, the measurements below include all the costs of 
transposing, uninterleaving, re-interleaving, and possibly re-transposing the 5 or 16 vectors of funda-
mental fluid state quantities (such as the density, pressure, and velocity) that these two PPM kernels 
process for each grid strip.  Data for producing volume rendered 3-D images is generated upon each time 
step as well.  As in the 2-D case, the cost of the image data generation is negligible.  However, the 3-D 
data manipulations consume a greater fraction of the time than in 2-D.  Grid pencils of 8×8×N cells are 
constructed in the cache memory for each fluid state variable from data stored in a single 4-D array for 
which the first dimension (the fast-running index) is the number of the fluid state variable.  Thus, as in the 
2-D case, we store the variables for each cell together in main memory in order to allow efficient 
transposition of the data for the y- and z-passes of the algorithm.  The cost of the necessary data manip-
ulations is significantly greater in 3D than in 2D, which is reflected in the last rows of the tables below.  
In those rows are entered the fractions of the 1-D grid strip update performance that are obtained by the 
full 3-D applications. 

 

32-bit 
1.7 GHz PM 

N = 32 N = 64 N = 128 64-bit 
1.7 GHz PM 

N = 32 N = 64 N = 128 

Flops/Cell 6116 4088 3455 Flops/Cell 6116 4080 3328 

Sec/∆t 0.263 1.23 7.60 Sec/∆t 0.386 2.01 13.1 
Sec/∆t 

@N=5123 1077 628 486 
Sec/∆t 

@N=5123 1582 1029 836 

Mflop/s 762 873 954 Mflop/s 519 532 534 
Fraction 1D 

Perf. 88% 85% 83% 
Fraction 1D 

Perf. 85% 81% 79% 

 
Performance of the 3-D standard PPM code with 32- and 64-bit arithmetic on an Intel Pentium-M CPU running at 1.7 GHz 

in a Dell Inspiron 8600. 
 

 

32-bit 
3.2 GHz P4 

N = 32 N = 64 N = 128 64-bit 
3.2 GHz P4

N = 32 N = 64 N = 128 

Flops/Cell 6222 4253 3455 Flops/Cell 6240 4252 3444 

Sec/∆t 0.200 0.952 5.69 Sec/∆t 0.228 1.19 7.70 
Sec/∆t 

@N=5123 820 488 364 
Sec/∆t 

@N=5123 933 608 493 

Mflop/s 1019 1171 1273 Mflop/s 898 939 938 
Fraction 1D 

Perf. 89% 87% 85% 
Fraction 1D 

Perf. 87% 86% 83% 

 
Performance of the 3-D standard PPM code with 32- and 64-bit arithmetic on an Intel Pentium-4 CPU (Extreme Edition) 

running at 3.2 GHz in a Dell desktop PC.. 
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32-bit 
1.3 GHz It-2 

N = 32 N = 64 N = 128 64-bit 
1.3 GHz It-2 

N = 32 N = 64 N = 128 

Flops/Cell 6222 4253 3455 Flops/Cell 6225 4252 3444 

Sec/∆t 0.206 1.09 6.78 Sec/∆t 0.253 1.28 8.34 
Sec/∆t 

@N=5123 843 557 434 
Sec/∆t 

@N=5123 1037 655 534 

Mflop/s 990 1025 1068 Mflop/s 807 871 866 
Fraction 1D 

Perf. 93% 88% 87% 
Fraction 1D 

Perf. 72% 72% 70% 

 
Performance of the 3-D standard PPM code with 32- and 64-bit arithmetic on an Intel Itanium-2 CPU running at 1.3 GHz 

in a Unisys ES-7000. 
 

The results reported in the above tables for the standard PPM gas dynamics code in 3D are quite 
encouraging.  As we make our grid brick bigger, the fraction of the 1-D grid strip update performance that 
we obtain declines due to the increasing cost of the manipulation of the data in memory, but none of the 
values here show this cost to be excessive.  Grid bricks larger than 1283 cells are not tested here.  Such 
large grid bricks are useful in parallel computation of only extremely large problems, which can take 
months to complete.  Using 32-bit arithmetic, we obtain about a gigaflop from each of these 3 processor 
types, and the cost of the data manipulations in the memory is no more than 17%.  However, the 
multifluid PPM code, which updates 16 rather than 5 variables per cell and which performs only about 
50% more flops for each cell update, has a bytes/flop ratio that is about two times worse than standard 
PPM.  Not only is the cost of the data manipulations for the multifluid code greater due to this bytes/flop 
ratio, but the grid pencils of fluid state variables require about triple the storage space in the processor’s 
cache memory for this code.  The result is that the overall cost of the data manipulations is a little more 
than double that for the standard PPM code, as is clear from the tables below.  This brings the overall 
performance below the 1 Gflop/s mark on all 3 types of CPU, but the performance is nevertheless quite 
respectable. 

Using 64-bit arithmetic on the Itanium-2, updating a grid brick of 1283 cells with the multifluid 
PPM algorithm, we obtain 615 Mflop/s, or only 12% of the processor’s peak performance.  In this case 
only 58% of the time is spent computing, and the remainder of the time is spent rearranging the data in 
memory.  It is not clear how this situation can be alleviated, since the multifluid volume fraction 
advection scheme that updates 10 of the 16 variables in each cell is already very computationally 
intensive.  Use of 32-bit arithmetic seems the best solution;  it increases the performance to 840 Mflop/s 
and reduces the fraction of the time spent rearranging data in memory to only 24%.  The reason for the 
unusually high fractions of the 1-D strip update performance that are achieved using 32-bit arithmetic on 
the Itanium-2 processor is that on this CPU 32-bit arithmetic runs at essentially the same speed as 64-bit 
arithmetic.  For this CPU it may therefore be possible at essentially no extra cost to store the data in main 
memory in 32-bit form, thus effectively doubling the main memory capacity and bandwidth, but to 
perform all the 1-D grid strip updates in 64-bit form for whatever accuracy benefit this might yield. 
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32-bit 
1.7 GHz PM 

N = 32 N = 64 N = 128 64-bit 
1.7 GHz PM 

N = 32 N = 64 N = 128 

Flops/Cell 8781 6206 5232 Flops/Cell 8787 6207 5145 

Sec/∆t 0.437 2.23 14.0 Sec/∆t 0.716 4.00 26.4 
Sec/∆t 

@N=5123 1792 1142 893 
Sec/∆t 

@N=5123 2933 2046 1691 

Mflop/s 658 730 786 Mflop/s 402 407 408 
Fraction 1D 

Perf. 72% 67% 66% 
Fraction 1D 

Perf. 72% 68% 66% 

 
Performance of the 3-D multifluid PPM code with 32- and 64-bit arithmetic on an Intel Pentium-M CPU running at 1.7 GHz 

in a Dell Inspiron 8600. 
 

 

32-bit 
3.2 GHz P4 

N = 32 N = 64 N = 128 64-bit 
3.2 GHz P4

N = 32 N = 64 N = 128 

Flops/Cell 8781 6206 5232 Flops/Cell 8787 6207 5145 

Sec/∆t 0.325 1.64 10.3 Sec/∆t 0.421 2.32 15.4 
Sec/∆t 

@N=5123 1330 839 657 
Sec/∆t 

@N=5123 1724 1188 983 

Mflop/s 886 993 1069 Mflop/s 684 701 703 
Fraction 1D 

Perf. 74% 72% 70% 
Fraction 1D 

Perf. 74% 72% 70% 

 
Performance of the 3-D multifluid PPM code with 32- and 64-bit arithmetic on an Intel Pentium-4 CPU (extreme edition) 

running at 3.2 GHz in a Dell desktop PC. 
 

 

 

32-bit 
1.2 GHz It2 

N = 32 N = 64 N = 128 64-bit 
1.2 GHz It2 

N = 32 N = 64 N = 128 

Flops/Cell 8781 6207 5196 Flops/Cell 8787 6207 5109 

Sec/∆t 0.350 1.95 13.0 Sec/∆t 0.447 2.52 17.4 
Sec/∆t 

@N=5123 1432 999 830 
Sec/∆t 

@N=5123 1833 1291 1115 

Mflop/s 823 834 840 Mflop/s 643 646 615 
Fraction 1D 

Perf. 87% 82% 76% 
Fraction 1D 

Perf. 65% 62% 58% 

 
Performance of the 3-D multifluid PPM code with 32- and 64-bit arithmetic on an Intel Itanium-2 CPU running at 1.3 GHz 

in the Unisys ES-7000.  These results were obtained using the Intel 7.1 Fortran compiler, 
with the flag /O3 for 32-bit arithmetic and /fast for 64-bit arithmetic, and with the use of 8×8 grid pencils. 

 

 



 

 
 

21

Parallel Computation 

Although all the machines tested here support computation on a single CPU very well, with 
extremely well integrated graphics, only small 2-D problems can be run interactively in this mode.  A 
huge advantage of the Unisys ES-7000 is its ability to support parallel computation on 16 CPUs with a 
shared memory programming model.  This makes possible truly interactive 2-D computation, even at very 
respectable resolution.  Together with Unisys, we demonstrated this point in August, 2003, by running 
complex flow problems on demand in just a few minutes, displaying the evolving simulated flows at the 
Wonders of Technology exhibit at the Minnesota State Fair.  It should be clear from the performance 
figures quoted earlier that if 16 CPUs are used to update a 4×4 set of grid tiles, each with 256×192 cells, 
then we can expect a time step to take no more than about a seventh of a second for our ¾-million-cell 
grid.  We can resolve a great deal of detail on a grid of this size (cf. www.lcse.umn.edu/StateFair-
DemoCode).  We need about 2000 time steps to do a run at this resolution, which, at our estimate of 7 
steps per second, would take about 5 minutes.  This strategy would work well for simulations in which 
nearly identical amounts of computational labor is expended in each grid cell.  In this case each CPU 
would complete its grid tile update at almost the same instant.  Then all could pause to exchange ghost 
cell data using the very low latency and high bandwidth of the shared memory system in the ES-7000.  
This data exchange would take very little time, after which the grid tiles could all be simultaneously 
updated again. 

A more general parallel computing model exploits the shared memory of the ES-7000 to dynam-
ically balance uneven computational loads among the several grid tiles.  In this model, which we call 
SHMOD (see www.lcse.umn.edu/shmod), we decompose the problem domain more finely.  We could, 
for example, use an 8×8 matrix of grid tiles, each with only 128×96 cells.  According to the measure-
ments in our tables, this finer domain decomposition would introduce an additional 19% to the cost for 
the run in a case with precisely the same amount of work to do in each grid tile.  However, for dynam-
ically varying loads coming from such physical processes as the movement of shocks and multifluid 
mixing layers, our overall computation could become very much more efficient.  We can exploit the 
shared memory to allow any processor that becomes available for work to update the next grid tile in a 
carefully ordered sequence.  Then, with our 4 tiles per processor, we would be able to let processors who 
had been given lighter loads proceed on to update tiles later in the sequence while processors given more 
difficult tiles finish up this greater work.  If we are willing to guess at the value to use for the next time 
step based upon past history and incomplete data about the present step, then we can also let processors 
finishing work for this time step early proceed on to the next time step.  If this strategy occasionally fails 
us, we can have the processors go back and repeat some of their work.  The work they would repeat in 
such an instance is not wasted, since a more conservative strategy would have kept them idle otherwise. 

The parallel computing strategy just described is very flexible, and it can be used on a cluster 
network or on a shared memory machine.  On the cluster, the shared grid tile and ghost cell data must be 
passed around the cluster network by the application explicitly, with the locations of all this data managed 
by the application as well.  This programming labor is unnecessary on a true shared memory machine like 
the ES-7000, since the grid tile data can simply be stored in arrays accessible transparently to all 
processors.  If one is writing such a parallel application from scratch, it is obviously far simpler to do on a 
shared memory machine.  However, even if one has gone to all the trouble, as our team has with our 
SHMOD framework, to implement this shared memory computing paradigm on clusters, there is still a 
huge advantage to a true shared memory machine.  The reason for this is that the proprietary internal 
memory interconnection network has lower latency and higher bandwidth than any third-party cluster 
network.  For very large problem sizes, where we have large chunks of data to transmit and seconds in 
which to do this, the latency of a cluster network becomes largely irrelevant.  If the grid tiles or grid 
bricks are sufficiently large, and enough ghost cell data is supplied, we can update them for enough time 
steps so that the bandwidth of a third-party interconnect is sufficient to the task for our PPM codes.  
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However, for small problem sizes latency becomes very important.  If the computation is to be efficient, 
small problems do not allow large enough grid tiles or grid bricks with enough ghost cell data to permit 
more than a single time step update.  For the small transmissions involved, the bandwidth actually 
delivered also becomes much less than the link specifications might suggest.  The result is that clusters 
are not good at running small problems fast, while shared memory machines excel at this very important 
job.  We can see this from our earlier example of a dynamically load balanced simulation on a ¾-million-
cell grid using 16 CPUs.  If these 16 CPUs are in a shared memory machine like the ES-7000, we can get 
the run done interactively in just 5 minutes.  On a cluster with a Gigabit Ethernet interconnect and with 
the simplest programming approach, in which the communication is not overlapped with computation, the 
run would take about 10 minutes.  To make the run more efficient on the cluster, we could make each grid 
tile 4 times larger, or 512×384 grid cells, and update each tile for 4 rather than just 2 time steps.  The 
fraction of redundant labor in ghost cell regions would then be unchanged, but there would now be four 
times as much data to communicate while the tile updates would take 8 times longer.  Rather than 
spending half of the time sending and receiving data, we would now spend only a third of the time.  But 
the total run would now take about an hour, and the efficiency would still be rather poor.  One can see 
that clusters can do parallel computations efficiently only when the problems are very large.  Shared 
memory machines, like the Unisys ES-7000, with their high bandwidth and low latency interconnects are 
efficient for problems whose solution we can see unfold during a time we are willing to wait. 

3-D Full Problem Performance 

We here report results for computing a problem whose grid consists of a  2×4×8  arrangement of  
grid bricks.  We used our standard PPM code on the ES-7000, first employing grid bricks of 643 cells and 
then using bricks of 1283 cells.  We chose a problem similar to that used for the earlier tests, so that the 
performance levels can be directly and meaningfully compared.   We also report results for computing a 
problem with the multifluid PPM code on the ES-7000 with a grids of  2×4×8  grid bricks of 64³ and of 
128³ cells.  These parallel computations are done in our SHMOD framework, but with the brick records 
stored in the shared memory rather than on disk.  The data transfers were carried out by extra threads of 
execution which copied data into our out of sections of memory-mapped files.  The memory server 
threads all ran on a single CPU, and for the cases with 15 computational threads, each pinned to a 
particular CPU, the memory servers consumed about half of the 16th CPU.  Using a first-touch 
mechanism, we were careful to have each computational thread lay out its workspace on memory within 
its own 4-CPU “pod” on the ES-7000.  The brick data records that were updated were evenly distributed 
among the 4 pods in the machine.  By pinning the computational threads to particular CPUs and by 
distributing the data upon which all these CPUs operate over the course of the computation, we were able 
to obtain excellent scaling of performance as the number of CPUs was increased.  The multifluid 
problems involving 1283 bricks consumed a great deal of the ES-7000’s 32 GB memory while delivering 
9¼ Gflop/s sustained performance on 15 CPUs.  For these larger bricks, the standard PPM code delivered  
11.1 Gflop/s.  This is about  13%  of the machine’s  83.2 Gflop/s  aggregate peak performance (for all 16 
CPUs).  We are very pleased with this result, especially since this performance is delivered to a real, very 
practical calculation, and it includes all costs of image data generation so that the results of the run can be 
studied.  There is even about half a processor remaining unused, allowing the machine to remain 
responsive to such other tasks as database queries or dispatching generated image data over the network 
to a user.  The difference in the performance of the standard PPM and of the multifluid version results 
mainly from the 3 times greater data bandwidth required by the somewhat slower, multifluid code. 
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32-bit 
1.2 GHz It2 

Standard PPM 

Sec / ∆t 
(2×4×8 

643 bricks) 

Gflop/s Mflop/s 
per CPU 

32-bit 
1.2 GHz It2

PPMMF 

Sec / ∆t 
(2×4×8 

643 bricks)  

Gflop/s Mflop/s 
per CPU 

1 CPU ? 0.772 772 1 CPU  0.645 644 

2 CPUs ? 1.538 769 2 CPUs  1.280 640 

4 CPUs ? 3.064 766 4 CPUs  2.540 635 

8 CPUs ? 6.064 758 8 CPUs  5.008 626 

12 CPUs ? 8.988 749 12 CPUs  7.404 617 

15 CPUs ? 11.115 741 15 CPUs  9.090 606 

The performance measurements in the above table show a loss of only 31 out of 772 Mflop/s per CPU, or 
about 4%, in going from 1 to 15 CPUs working cooperatively to update these 64 grid bricks under our 
SHMOD framework.  The loss in per-CPU performance is somewhat greater, about 6%, for the multifluid 
application, since it involves much greater data movement within the machine.  For the larger bricks, the 
parallel performance losses are smaller.  Only 2.2% in per-CPU performance is lost in going from 4 to 15 
CPUs for these large bricks, while for the smaller bricks the corresponding loss is 3.3%.  About 7.4% of 
the performance for a single CPU is lost here from the measurements of the previous section, because this 
application must read and write entire grid bricks from the main memory into the CPU task’s private main 
memory, shuffling brick interiors, faces, edges, and corners in order to compose a complete grid brick 
augmented with the proper ghost cell regions. 

 

32-bit 
1.2 GHz It2 

Standard PPM 

Sec / ∆t 
(2×4×8 

1283 
bricks) 

Gflop/s Mflop/s 
per CPU 

32-bit 
1.2 GHz It2

PPMMF 

Sec / ∆t 
(2×4×8 

1283 
bricks)  

Gflop/s Mflop/s 
per CPU 

4 CPUs ? 3.151 788 4 CPUs  2.600 0.650 

8 CPUs ? 6.263 783 8 CPUs  5.112 0.639 

12 CPUs ? 9.332 778 12 CPUs  7.548 0.629 

15 CPUs ? 11.559 771 16 CPUs  9.255 0.617 
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Applications 

For several years we have been studying the behavior of compressible, homogeneous turbulence.  
From simulations carried out at various national centers over this period, we have developed the conject-
ure that the rate at which energy is transferred from the local large-scale flow to small-scale turbulent 
motions is related to the flow topology.  We have identified a correlation of this energy transfer with 
regions in which the flow is compressing in one dimension and expanding in the other two – the type of 
flow that results in air when you claps your hands.  In contrast, we identified a correlation of inverse 
energy transfer, from small scales to large, in regions where the flow is compressing in two dimensions 
and expanding in the other one.  This type of flow results when you squeeze a tube of toothpaste.  An 
example in air is a tornado.  These unexpected correlations emerge from our simulations of very compli-
cated flows such as the homogeneous turbulence simulation shown in the figure above. 

In order to clarify the role of the flow topology, which can be measured quntitatively by the 
determinant of the rate of strain tensor, we constructed last year a set of carefully designed experiments.  
We computed these flows on grids of up to a billion cells using our PPM code on the Unisys ES-7000.  
The textbook example of shear instability, the Kelvin-Helmholtz instability in 2D, is neither conducive 
nor destructive to turbulent energy, according to our model for the energy transfer.  First, we point out 
that in the absence of a process such as gravitational separation of two fluids and wind forces acting on 

The distribution of the logarithm of the magnitude of vorticity is shown in a thin slice of the 20483 simulation 
volume of a PPM simulation of Mach 1 decaying homogeneous turbulence.  The flow is shown in the midst of 
the transition to fully developed turbulence (t = 1.05).  White regions have the largest vorticity, and as the 
vorticity decreases the color changes from white to yellow, red, purple, blue, and finally for very weak vorticity 
values the flow is made transparent.  Shear layers breaking up into lattices of roughly parallel vortex tubes can 
be seen as well as the results of such structures developing 3-D instabilities leading to local turbulence. 
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fluids with very different inertia, it is hard to understand how the shear layer that forms the initial 
condition for the Kelvin-Helmholtz instability can have come to be.  To create such shear within a single 
fluid in the absence of gravity, it is likely that the fluid was compressed  in  the  dimension perpendicular 
to the shear layer.  The passage of a three-shock intersection line is another mechanism from which such a 
shear layer might have formed, but that would require supersonic flow.  So it is unlikely to find a shear 
layer ready to undergo the Kelvin-Helmholtz behavior that has not already experienced a local 
compression in one dimension with expansion in the other two.  Nevertheless, regardless of how the shear 
layer formed, a strictly 2-D layer cannot generate turbulence as we know it in 3-D, since the evolution of 
the layer is to accumulate vorticity, originally in an extremely thin layer, into ever larger vortex cores.  
Instability in the third dimension, resulting from the interaction of these vortex tubes, is required to 
generate turbulence. 

We set up a classic 2-D planar shear layer and perturbed it with two sinusoidal modes of very 
different wavelength.  In 2-D this initial set up would generate the familiar Kelvin-Helholtz behavior.  We 
then added an incompressible circulation in two counter-rotating rolls, one above and one below the layer.  
This was done in such a way that this incompressible flow squeezed down on the shear layer on one side 
(in the third dimension) and pulled it apart on the other.  Our model for the energy transfer to turbulence 
indicates that on the side of the layer that is squeezed, energy should be  transferred  to  turbulent  motions 
on the smallest possible scales, while on the other side of the layer, any existing turbulence should be 
reduced in intensity.  This experiment provides a fairly clear, yes-or-no answer to the question of whether 
our correlations make sense.  The result can be viewed in a movie on our Web site at www.lcse.umn.edu/-
AVIs.  It is not as clear an answer as we had hoped, but it is very illuminating.  We initialized the shear 
layer with a width of a few cells and a hyperbolic tangent velocity profile.  The squeezing flow intensified  
this shear, enhancing the unstable Kelvin-Helmholtz behavior on this side of the layer in the third dimen-
sion.  Where the vertically expanding flow was pulling the layer apart, unstable growth was initially much 
slower.  The initial development of the flow is not turbulent.  Instead highly organized, parallel vortex 
tubes form on the side of the layer that is being squeezed.  On this side of the layer, these vortex tubes 
rotate more rapidly than the fatter vortex tube sections that form on the other side, where the shear layer is 
being pulled apart. The faster rotation on the squeezed ends of these vortices causes them to split into two, 

The distribution of the logarithm of the magnitude of vorticity is shown in a PPM simulation of a Mach 1 shear 
layer with two sinusoidal perturbations of wavelengths differing by a factor of 11.  A Mach 1 circulating flow 
above and below the shear layer squeezes the side of the layer near the viewpoint and pulls the layer apart on the 
far side.  The layer is viewed at two early times in the development of the Kelvin-Helmholtz instability. 
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 two, which then intertwine like a braided rope.  The circulating flow stretches these vortices on the ends 
that are being squeezed, so that they remain roughly parallel, while the compression of the vortices along 
their lengths on the other end of the layer is destabilizing, and turbulence develops there. 

At first glance, the behavior described above may cause one to think our model for the turbulent 
energy transfer is wrong.  However, one must analyze this flow in the co-moving frame, in which our 
model is intended to apply.  The conditions that set up the growth of the small-scale, intense vortex tubes 
exist in the region of the flow where shear is being intensified by squeezing upon it.  As this region of the 
flow circulates into the side of the shear layer that is being expanded, turbulence  develops  and  is  subse- 
quently clearly diminished.  A quantitative analysis of detailed data from these experiments indicates that 

Here the shear layer of the previous figure is viewed from above, so that the different behaviors, described in the text, 
between the side of the layer that is squeezed by a Mach 1 circulating flow and the side that is pulled apart by it can clearly 
be seen.  On the side that is squeezed, vortex tubes form and intensify much more rapidly.  As the circulating flow carries 
these vortex tubes to the expanding side of the layer, 3-D instabilities generate turbulence, which is subsequently diminished 
by the vertically expanding flow. 
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which then intertwine like a braided rope.  The circulating flow 
stretches these vortices on the ends that are being squeezed, so 
that they remain roughly parallel, while the compression of the 
vortices along their lengths on the other end of the layer is 
destabilizing, and turbulence develops there. 

At first glance, the behavior described above may cause 
one to think our model for the turbulent energy transfer is 
wrong.  However, one must analyze this flow in the co-moving 
frame, in which our model is intended to apply.  The condi-
tions that set up the growth of the small-scale, intense vortex 
tubes exist in the region of the flow where shear is being 
intensified by squeezing upon it.  As this region of the flow 
circulates into the side of the shear layer that is being 
expanded, turbulence  develops  and  is  subsequently advected 
into the surrounding flow and diminished in intensity by the 
circulating flows above and below the shear layer.  This behav-
ior is entirely consistent with our model, both phenomenolog-
ically and quantitatively.  In fact, the statistical data is fit 
beautifully using the same dimensionless coefficients of the 
terms in our model that we derived from the homogeneous 
turbulence data.  This experiment serves to clarify why the 
transfer of energy to turbulence depends upon the local flow 
topology.  This topology does not generate turbulence directly, 
but it generates the intensified shear that in turn creates vortex 
tubes through the action of the Kelvin-Helmholtz instability, 
and additionally it stretches these vortices with the result that 
they are greatly intensified.  The vortex-vortex interactions that actually produce turbulence are a 
subsequent phenomenon.  However, it is very important to recognize that this  flow  topology  provides  a 
context in which these 3-D vortex-vortex interactions can play out, since the alignment of the individual 
vortices within the plane of the shear is not constrained. 

X 

Y

The circulating flow in a plane perpen-
dicular to that of the initial shear layer 
(dotted line) is indicated here.  In this 
view, the gas in the lower half-plane 
flows into the paper and the gas in the 
upper half plane flows out of the paper. 

A matrix of turbulent shear layer simulations performed using the PPM code on the Unisys ES-7000.  Simula-
tions in the upper row have all velocities 4 times larger in magnitude than the corresponding simulations in the 
lower row.  For the top center simulation, the flow parallel to the shear layer is  ±Mach 1, and the peak 
magnitude of the circulating flow is Mach 1 also.  As we move along the top row of this figure, the shear velocity 
remains Mach 2 (relative velocity), while the speed of the circulating flow decreases or increases by one factor 
of 2 for each simulation that we go to the left or to the right from the central one.  These volume renderings 
show the logarithm of the magnitude of the vorticity.  Grids of 128×256×512 cells were used for all these runs. 
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Our team has been extending 
this work recently to two-fluid 
problems, using the new multifluid 
PPM code whose performance we 
have reported here in detail.  We first 
used the Unisys ES-7000 to validate 
this code in 2D by simulating shock 
tube experiments performed at the 
University of Arizona to study the 
Richtmyer-Meshkov instability of a 
shock-accelerated interface between 
SF6 and air.  That work will be 
reported in another document.  We are 
now using the ES-7000 to run the 
multifluid PPM code on 3-D shear 
layer instability problems like the one 
just presented, but with the shear 
along an initially planar interface 
between SF6 and air.  We will use the 
data from these runs to test our ideas 
on turbulent energy transfer in 
situations involving two-fluid mixing.  
This investigation is of considerable 
interest to our DoE sponsors.  We 
began this work by first performing a 
parameter study of these shear layer 
problems on the ES-7000.  Some 
results of that study are shown at the 
bottom of the previous page. 

We are now in the process of 
performing a multifluid simulation on 
a billion-cell grid, but results from a 
run on a grid of 256×512×1024 cells 
are shown below.  Here we represent 
both fluids as gamma-law gases, 
where gamma for the air is 1.4 and for 
the sulfur hexafluoride is 1.09.  We 
take the SF6 to be 4.88 times denser 
than the air when they are at the same 
pressure and temperature.  The 
relative shear velocity between the air 
and the SF6 is 0.399 times the sound 
speed in the air, or just the sound speed in the SF6.  The amplitudes of the circulating velocities in the air 
and in the SF6 are, respectively, Mach 0.2 and Mach 0.226.  Finally, the initial amplitudes of the 
fundamental and 11th harmonic sinusoidal vertical velocity disturbances are Mach 0.05 and 0.0045 
relative to the speed of sound in the air. 

The vorticity structures in this developing, multifluid shear layer are shown above, looking at the 
layer from the sulfur hexafluoride side.  The development of the vorticity structures is not too different 
from the earlier, single-fluid case, despite the density contrast of 4.88 in this problem.  Here the Mach 
numbers are about a third as great as in the earlier case also.  We are interested in this problem not only in 

Vorticity structures in the multifluid shear layer instability problem 
described in the text.  The shear layer is viewed from the sulfur 
hexafluoride side, with the near edge experiencing squeezing from 
the circulating flows in the two fluids.  The vorticity associated with 
this circulating flow in the air on the other side of the shear layer is 
just visible in these visualizations.  The behavior in this multifluid 
problem is quite similar to the single-fluid behavior discussed 
earlier.
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the development of turbulence, and the extent to which our model can predict where that occurs, but we 
are also interested in the mixing of the two distinct fluids by this developing turbulence.  That process is 
best visualized by looking at the multifluid mixing fraction, which is very carefully tracked by this new 
multifluid PPM code. 

The developing multifluid shear layer is seen from above, looking through the air and into the sulfur hexa-
fluoride below.  The fraction of SF6 that is mixed with the air is visualized, with regions of either pure fluid 
rendered transparent.  Blue and dark blue represent mixes with more air and even more air, while yellow and 
brown represent mixtures of more and still more SF6.  The moiré patterns are rendering artifacts caused when 
the transition takes place over distances comparable to just one or two grid cell widths.  The initial transition 
layer for both the shear and the fluid fractional volume was 16 grid cells thick in this simulation.  The mixed 
fluid present initially is rapidly transported into the 11 small breaking waves, and the mixing layer elsewhere is 
then given the thinnest representation possible with this grid and this numerical scheme.  Note that at the far 
edge of the shear layer, where it hits a reflecting wall, the circulating flow entrains mixed fluid that is mostly air.
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The multifluid shear layer, like the single-fluid one, develops vorticity most strongly at the near 
edge, where the circulating flow is squeezing on it.  Again, the development of the turbulence occurs 
downstream, which in this case means near the center of the layer.  Finally, at the far edge, the circulating 
flow draws the mixing fluids into the unmixed regions.  Here the intensity of the turbulence is 
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diminishing, but the mixing of the fluids is no longer confined to a thin layer.  The entrainment of the 
mixed gases into the pure sulfur hexafluoride is less rapid, as the final views from both the air side (top) 
and SF6 side (bottom) of the layer attest. 
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Summary 

The performance measurements reported here demonstrate that with appropriate coding effort 
excellent computational performance can be obtained with the latest CPUs from Intel.  These CPUs 
support vector computation from arrays located in their cache memories.  Although the vector 
performance is lower as a fraction of the processor’s theoretical peak performance than it was for a Cray 
vector CPU of the distant past, it is nevertheless very good, especially for the price.  The performance 
enhancement over good scalar code is roughly a factor of  2.5  for the Itanium-2 CPU and a factor of  1.7  
for the Pentium-4, with both using 64-bit arithmetic.  With 32-bit arithmetic, the vector-to-scalar ratio 
remains  2.5  for the Itanium-2 CPU but increases to  3.2  for the Pentium-4.  The quite comprehensive 
tests of processor performance embodied in the 2-D grid tile and 3-D grid brick updates, with image 
generation, for the various PPM codes reveal that the limitations of the supporting memory systems for 
these powerful CPUs reduce the delivered performance substantially when they are using 64-bit 
arithmetic.  Keeping this performance degradation due to the memory system under control requires 
considerable care in algorithm and code design.  All effective strategies benefit from larger cache 
memories than are now found on these CPUs.  The parallel performance measurements for 16 CPUs in 
the Unisys ES-7000 show very good scaling for such a shared memory machine.  These measurements 
highlight the machine’s ability to deliver excellent performance even on small problems which, in the 
case of 2D flows, can be delivered interactively in just minutes rather than hours or days. 
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