
Draft. Not for Distribution.
2/10/05

The PPM Compressible Gas Dynamics Scheme
(This is a Draft. References especially are incomplete.)

Paul R. Woodward
University of Minnesota, LCSE

Feb. 10, 2005

1. Introduction.

The development of the PPM gas dynamics scheme grew out of earlier work in the mid 1970s with
Bram van Leer on the MUSCL scheme [1-3]. At Livermore, in the late 1970s, the use of moments of the
internal cell distributions which makes MUSCL resemble finite element schemes was abandoned for
reasons of compatibilit with Livermore production codes. In order to recapture the accuracy of MUSCL
while using only cell averages as the fundamental data, PPM, the Piecewise-Parabolic Method, was
developed in collaboration with Phil Colella [4-7]. Over the last 20 years, PPM has evolved considerably
in order to address shortcomings of the scheme as it was laid out in [6] and [7]. PPM has also been
extended to MHD [8-18] in collaboration with Wenlong Dai, applied extensively to the study of jets and
supersonic shear layers [19-25] in collaboration with Karl-Heinz Winkler, Steve Hodson, Norm Zabusky,
Jeffrey Pedelty, and Gene Bassett, used to simulate flow in disk galaxies and around stationary and
moving objects [26-28] in collaboration with B. Kevin Edgar, applied extensively to convection and
turbulence problems [29-56] in collaboration with David Porter, Annick Pouquet, and Igor Sytine (see later
article in this volume), and most recently extended to multifluid gas dynamics problems. Implicit versions
of the method have also been worked on [59-66] in collaboration with Bruce Fryxell and Karl-Heinz
Winkler and, later, Wenlong Dai. A cell-based AMR version of PPM has been under development [see
67], in collaboration with Dennis Dinge. The PPM code has been implemented on many parallel
computing systems, including some with thousands of processors [68-69; 54-55]. Versions of the PPM
gas dynamics scheme have become incorporated into 3 community codes aimed at astrophysics
applications: FLASH [refs], ENZO [refs], and VH-1 [refs].

Because the several improvements and modifications to the 1984 or 1986 versions of PPM in the
literature have not been published, we here lay out the present scheme for simple, single-fluid, ideal gas
dynamics from start to finish. Then selected results on homogeneous, isotropic, compressible turbulence
in a cubical, periodic domain are briefly reviewed.

2. Design Constraints.

Before launching into a systematic description of the PPM algorithm, it is worthwhile to first explain
the constraints that have influenced its design. These are:

1. Directional operator splitting.

2. Robustness for problems involving very strong shocks.

3. Contact discontinuity steepening.

4. Minimal dissipation.

5. Numerical errors dominated by dissipation, as opposed to dispersion.

6. Preservation of signals, if possible, even if their shapes are modified, so long as they travel at
roughly the right speeds.

7. Minimal degradation of accuracy as the Courant number decreases toward 0.

The first of these design constraints was to guarantee very high processing speeds on all CPU
designs. It has the side benefit of allowing the PPM scheme to employ complicated techniques to achieve
high accuracy that would be impractical in a truly multi-dimensional implementation, especially in 3D.
Accuracy is still limited in principle by the use of 1-D sweeps, but in practical problems errors produced by
the use of 1-D sweeps have rarely, if ever, appeared to be important. The demand that the scheme be
robust in the presence of very strong shocks has produced a general orientation that dissipation, in the
right places, times, and amounts is good rather than bad. Early experience with Glimm’s random choice
scheme for multidimensional compressible gas dynamics in the 1970s illustrated the error of letting the
formal dissipation of the scheme vanish for flows containing shocks. In low-speed turbulent flows, the

Draft. Not for Distribution.
2/10/05

2

need for dissipation in the numerical scheme is less obvious but no less real. Contact discontinuity
steepening is included in PPM in order to allow multifluid problems to be treated simply through the
addition of passively advected constitutive properties, such as the constants of an analytic representation
of the equation of state. The view of dissipation in PPM has already been mentioned. Naturally, a design
goal has always been to minimize the dissipation consistent with an accurate solution. Nevertheless, it
has also been a design goal that it is better to dissipate a signal than to significantly falsify its speed. This
has led to an intolerance for signals with very short wavelengths, such as, for example, 4 cell widths.
However, a further design goal was to preserve those signals that could be propagated accurately, even if
this were to require a falsification of the signal shape. Such signals tend to move through the grid at the
fluid velocity, since very short wavelength sound waves, with the exception of shocks, are difficult to
propagate at the right speeds. The final design goal, that the accuracy of the scheme should be
maintained in the limit of very many very small time steps is achieved through special features of the
interpolation discussed below.

The attitude that has been taken in the PPM design toward numerical dissipation is the most
relevant of these design constraints for the use of PPM in simulating turbulent flows. This point will be
discussed after the scheme has been laid out, using simulations of decaying compressible turbulence as
illustrations.

3. PPM Interpolation.

The heart of any numerical scheme is its approach to interpolation. PPM utilizes the cell averages
of various quantities in a fairly broad stencil surrounding a cell in 3D in order to construct a picture of the
internal structure of the cell. Because the equations of hydrodynamics are coupled, the PPM interpolation
of the relevant quantities is also coupled. However, to see how the interpolation process works, it is
easiest to consider it first for the simple case of a single variable, which we will represent by the symbol

a . We will represent the cell averages of a by
i

a . We write the value of a at the left- and right-

hand interfaces of the cells as iLa , and iRa , . We will determine the coefficients of a parabola

2
210
~~)~(xaxaaxa ++= representing the distribution of the variable a within the cell in terms of a cell-

centered local coordinate xxxx M ∆−= /)(~ . Here Mx is the cell center and x∆ is the cell width.

For simplicity, we first assume a uniform grid. (In modern AMR codes, interpolation on non-uniform grids
is unnecessary.) Our first task is to determine whether or not the function)(xa is smooth in the region
near our grid cell. To do this, we will essentially compare the first and third derivatives of the function in
our cell. This process can be formulated in several different ways, all of which boil down to essentially the
same criterion. We begin by determining the unique parabola that has the prescribed cell averages in our
cell of interest and its two nearest neighbors.

If we write

1−
−=∆

iiiL aaa

then we have

() 2/)(;2/ 21 LRRL aaaaaa ∆−∆=∆+∆=

Here we have dropped the subscript i by writing Ra∆ for 1, +∆ iLa . Where possible, we will try to

eliminate confusing subscripts by such devices. However, all our subscript indices will refer to cells, and
none to interfaces (no half-indices will be used). If no subscript index is given, the subscript i for our cell
of interest will always be implied. In PPM, interpolated variables are discontinuous at interfaces, which
makes the use of index subscripts such as 2/1+i ambiguous. Thus, iRa , , or simply Ra , is not

equivalent to 1, +iLa .

Draft. Not for Distribution.
2/10/05

3

We will consider a function to be smooth near our grid cell if the above unique parabola, when
extrapolated to the next nearest neighbor cells, gives a reasonable approximation to the behavior of the
function there. This will not be true, of course, if the third derivative of the function is sufficiently large.
We will consider the function to be smooth in our cell of interest if the parabola in its neighbor on the left,
when extrapolated into our cell’s neighbor on the right gives an accurate estimate of that cell’s average,
and if also that cell’s parabola gives a good estimate of the average in our cell’s neighbor on the left.

Writing the average of the extrapolated parabola in the neighbor cell as
1±ii

a and in the next nearest

neighbor cell as
2±ii

a , we find that

)(2;)(2 1,221121,211 +−−−++
−=−−=− iiiiiiii
aaaaaaaa

Here we have used the fact that, by construction of these parabolae,
11 ±±

=
iii

aa . We denote the

fractional error in this extrapolation by errf , given by

() () () (){ }LLiRRierr asignaaaasignaaaf ∆+∆−∆+∆−= −+ ,(/,,(/max 1,2221,2 αα

Here sign is the Fortran sign transfer function, which applies the sign of its second argument to the
absolute value of its first argument. We also denote a trivial value of the quantity a by α . Thus the
term with the sign function is simply used to protect the divide operation in a Fortran program. Of course,
we ignore this error estimate when this difference is very small, since in that case it is of no consequence
whether we get a “good” extrapolation or not. To get some perspective on this measure, errf , of the

smoothness of the function a on our grid, it is instructive to evaluate errf for sine waves of

wavelengths xn ∆ . For the case where))/(2sin()(xnxxa ∆= π , we have 0asa = , where

0a is the value at the center of the cell and)2/sin()/2(xxs ∆∆= . The higher-order coefficients of

the interpolation parabola are given by))/(2cos()sin(1 xnxxsa M ∆∆= π , where Mx is the

coordinate of the cell center, and by 02)1)(cos(axsa −∆= . We therefore find that for values of n

ranging from 4 to 15, our fractional error, equal simply to)cos(1 x∆− , assumes the values: 1.00,
0.69, 0.50, 0.38, 0.29, 0.23, 0.19, 0.16, 0.13, 0.11, 0.10, and 0.09. If we assert that a sine wave over 14
cells is smooth and one over 10 cells is not, then we may conclude that it is reasonable to assert that a
function is smooth if 10.0≤errf and it is not smooth if 20.0≥errf . In between these two values, we

may treat the function as partially smooth, by taking a linear combination of a smooth and an unsmooth
interpolation parabola. The choice of which functions we will treat as smooth and which not comes from
experience. Using only cell averages, it takes five cell values to determine, for example, whether one is
really in a shock or not, as we will later see, or, as we have just seen, whether the function is locally
smooth or not. Under such conditions, it is simply unreasonable to believe that one can properly treat a
sine wave with a wavelength of only 6 cells. There are those in the community who believe this can be
done, but PPM assumes this is impossible without further independent information provided upon which
the numerical scheme can operate. Experience also shows that numerical noise, which can originate
from a number of sources, some of which will be identified later, tends to show up principally at
wavelengths between 4 and 8 cells. Signals that appear at these wavelengths are thus quite possibly
noise, and therefore deserve to be treated as if they might actually be noise. PPM takes the view that a
little noise is not bad, but too much is intolerable. This view is motivated by much experience indicating
that elimination of noise is usually accompanied by significant collateral elimination of the signal.

In PPM, we interpolate several different functions. Some of them, like the Riemann invariants, are
defined only as differences (the Riemann invariants are defined by inexact differentials). Other functions,
like the transverse velocities, are defined by cell averages. Some may have sharp transitions, associated
with contact discontinuities, that deserve special treatment. Below, we describe the most general
algorithm, for the special case of a uniform grid. This is the algorithm that PPM uses to interpolate a sub-

Draft. Not for Distribution.
2/10/05

4

grid structure for the Riemann invariant associated with the entropy, for which the differential form is given
by

2/ cdpddA −= ρ

From this most complicated interpolation algorithm, all other, simpler forms used in PPM can be derived
as special cases. We will therefore describe the interpolation for the entropy Riemann invariant in detail,
and later briefly note in which respects the other interpolations are degenerate cases of this one.

We begin the interpolation of dA by defining a variable A derived from it by determining the
arbitrary constant of integration such that the cell average of A vanishes. Thus each cell has its own
local scaling for A in which the cell average vanishes but the derivatives are correct. This local scaling
is much like the local, cell-centered coordinate, x~ , that we use to define the interpolation parabola in a
cell. There is a discontinuous jump in the integration constant when we go from one cell to its neighbor.
This jump is

() () 2
11

2 // LiiLLLL cppcpA
−−

−−−=∆−∆=∆ ρρρ

For the gamma-law equation of state, we estimate 2
Lc via

() ()[]ργργ //
2
1

11
2 ppc

iiL +=
−−

Here we see a common practice used in PPM, namely the evaluation of an estimate of the cell average of
a function of primitive fluid state variables as the function of the cell averages. Experience shows that
attempts to do better than this are usually unrewarded by compensating increases in simulation accuracy.
In the specific case of the kinetic energy, PPM does do a better job, but the effect on the flow accuracy is
only marginal in this case, and the cost is not insignificant.

Using the above definitions, we evaluate a fractional error estimate as follows:

αdAA
AAAAAA

f
RL

iLLRLRiL
err +∆+∆

∆+∆−∆+∆+∆−∆
= −+ 1,2, 22

2
1

Here αd represents a trivial Riemann invariant difference that is used to protect the divide in the Fortran
program. We note that this error estimate is very similar to but not exactly the same as the one discussed
earlier. Using this error estimate, we construct a measure, Ω , varying between 0 and 1, of the roughness
of the function near this grid cell as follows:

(){ }{ }1.010,0max,1min −=Ω errf

We now construct estimates 1sA and 1mA of the first-order parabola coefficient, which gives the change

of the variable across the cell. The first, 1sA , applies to the parabola that has the 3 prescribed average

values in this and the nearest neighbor cells. The second, 1mA , applies to this parabola after the

application of a monotonicity constraint. These quantities will be used in constructing further quantities
below. We have already seen that () 2/1 RLs AAA ∆+∆= . Defining a sign variable, s , of absolute

value unity to have the sign of 1sA , we may then compute 1mA in the following sequence of steps:

{ }RLm AsAsA ∆∆= ,min2~
1 , { }{ }111

~,min,0max
~~

msm AAssA =

() 111

~~1 msm AAA Ω−+Ω=

Draft. Not for Distribution.
2/10/05

5

(The superiority of Fortran over mathematical notation for the description of numerical algorithms is here
becoming apparent.) We now define two estimates, sLA and mLA , of the value at the left-hand cell

interface. The first of these, sLA , corresponds to an unconstrained interpolation polynomial, while mLA

corresponds to one that is constrained.

() LsissL AAAA ∆−−= − 2
1

6
1

11,1 , () LmimmL AAAA ∆−−= − 2
1

6
1

11,1

We note that these interface value estimates involve the cell averages in two cells on either side of the
interface. The unconstrained estimate is the value of the unique cubic curve that has the prescribed
average values in these 4 cells. The constrained value is guaranteed to lie within the range defined by
the cell averages adjacent to the interface. Of course, both these values refer to the choice of integration
constant that gives a vanishing cell average to the right of this interface (in the cell of interest, i). We
desire a linear combination of these two interface value estimates, which we will regard as a provisional
estimate mLsLpL AAA Ω+Ω−=)1(. Rather than build this value pLA by blending the unconstrained

and constrained estimates, we find it more useful to build blended parabola coefficients,

111)1(msp AAA Ω+Ω−= , and to form pLA from these. This procedure allows us to make use of the

coefficients 1pA later in our contact discontinuity detection and steepening algorithm. We now proceed

to modify our provisional interface values pLA in cells where the function is not smooth. First, we set our

interpolation function to a constant in cells where extrema occur, unless of course the function is smooth
there. Thus, if 0≥pRpL AA , we set new provisional values, indicated by a subscript q , as follows:

pLqL AA)1(Ω−= , pRqR AA)1(Ω−= . Otherwise we simply set pLqL AA = and pLqL AA = . Now,

in cells where the function is not smooth, we constrain the internal structure to be monotone. We must
make sure in this process not to revise the cell structure further in the cells containing extrema. We
therefore construct limiting values, lLA and lRA , which we must be careful to set to 0 in cells

containing extrema. In the remaining cells, these values are: pRlL AA 2−= and pLlR AA 2−= . This

reflects the fact that a parabola having zero slope at one side of the cell will assume at the opposite
interface the negative of twice this value, so long as the cell average is zero. If these limiting values are
exceeded in cells where the function is not smooth, we must reset them to these limits. Therefore we
construct new, but still provisional, values rLA and rRA (in Fortran, of course, no new names are
required), which reflect this additional constraint:

() () qLrLlLqLrLlLqLqLqR AAotherwiseAAAthenAAAAif =Ω+Ω−=<−− ,)1(,0

() () qRrRlRqRrRqRlRqLqR AAotherwiseAAAthenAAAAif =Ω+Ω−=<−− ,)1(,0
From these provisional interface values, we construct provisional interpolation parabola coefficients:

() 12/,3, 2021 rrrRrLrrLrRr AAAAAAAA −=+=−=

For interpolation of sound-wave Riemann invariant differences, for which we do no contact discontinuity
steepening, the above values are our final results. However, for the entropy Riemann invariant
differences, we continue as described below. We also note that interpolation of a variable, such as the
transverse velocity component, which is not expressed as a differential form, we may first construct
differences of the cell averages and then proceed as outlined above.

We wish to detect cells that are inside sharp jumps in the entropy Riemann invariant that are
associated with contact discontinuities. In such cells, it is inappropriate to try to fit smooth curves to
determine the subgrid structure, since it is actually discontinuous (PPM is solving the Euler equations).
For the purpose of computation, we will nevertheless require that the distribution inside the grid cell be a

Draft. Not for Distribution.
2/10/05

6

parabola; however, we may use the knowledge that the actual structure is discontinuous to construct an
appropriate choice for this parabola. The idea here is quite simple. We build a test that detects cells that
are within contact discontinuity structures. Then we obtain estimates of the interface values for such cells
by extrapolating to the cell interfaces presumably smoother structures from outside the cell and hence,
hopefully, from outside the discontinuity. Together with the prescribed cell averages, these more
appropriate cell interface values allow us to build an improved, steeper parabola to describe the
distribution within the cell. Obviously, the function in such cells is not smooth, so we apply monotonicity
constraints to the new edge values and also to this improved parabola. This procedure works very well in
practice. A similar procedure can be adapted for use with other numerical schemes that employ linear
interpolation functions for the cell structures, but it is less effective. Apparently, the curvature provided by
the use of parabolae allows the dimensionless constants that will be introduced below to make the
steepening process effective for contact discontinuities without requiring that the steepening process be
applied for marginal cases, which can occasionally turn out not to actually be contact discontinuities. That
is, using parabolae we are able to apply the steepening process only in unequivocal circumstances and
thus to avoid steepening structures by mistake that should not actually be steepened.

We begin, as with our test for function smoothness, with a measurement of the size of the third
derivative of the function relative to its first derivative. Reusing the symbol s for a different sign variable,
we build a steepness measure S in a sequence of steps as follows:

() ()αdsAAAAS sssLsR 10/ 111 +−−=

Here s has absolute value unity and has the same sign as 1sA in order to protect the divide without

altering the sign of the overall expression. As before, αd is a trivial Riemann invariant difference. We
must take care to realize that the numerator in this expression is not necessarily zero, since the edge
values that appear there come from cubic curves rather than the parabolae that define the 1sA values.

We must also take care to realize that because each cell has its own value of the integration constant for
this Riemann invariant’s differential form, we must set RisLsR AAA ∆+= +1, . With those cautions, we

see that this expression for 1S is very similar to our measure of the lack of function smoothness, except
that no absolute value signs appear in it. The first expression in the numerator for the variable difference
across the cell involves cubic interpolation, which accounts for the third derivative of the function. From
this we subtract 1sA , which removes the part that is due to the first 2 function derivatives. To obtain 1S ,

we divide by an estimate of the first derivative. The lack of absolute value operations in this formula for

1S is caused by our desire to detect sharp jumps in the function, and to reject sudden flat spots. Flat

spots will correspond to negative values of 1S . We now scale 1S and limit it to the range from 0 to 1:

(){ }{ }05.020,1min,0max 12 −= SS

To guard against applying our contact discontinuity steepening anywhere but at true sharp jumps in the
entropy, we reset 2S to zero where the second derivative of the function does not change sign and also
where the amplitude of the jump is not sufficient to warrant this special treatment (we do not want to
preserve, or worse, to amplify small numerical glitches). Thus:

2331,21,2 ,0,0 SSotherwiseSthenAAif isis ==≥+−

Here we use the earlier definition of the coefficients of the parabola that has the prescribed 3 cell
averages, writing () 2/2 LRs AAA ∆−∆= . To eliminate trivial jumps from consideration, we form 4S :

344 ,0, SSotherwiseSthendAAif RL ==<∆+∆ α

Before proceeding with the steepening algorithm, we make one further test to make certain that
steepening is appropriate. This test makes sense for contact discontinuities, but for other variables, such

Draft. Not for Distribution.
2/10/05

7

as a fractional volume of a second fluid, it might not. Therefore this last test is optional, but we do use it
for the entropy. The calling program to the interpolation routine provides two variable differences along
with the differences LA∆ . If the jump is one of the type we seek to detect, the differences B∆ will be

very small compared with the differences D∆ . Both these sets of differences are cell centered and
have the same units. We enforce this demand by constructing our final steepness measure, S , as
follows:

4,0,1.0/0 SSotherwiseSthenDBorDif ==≥∆∆=∆

In previous versions of PPM, the B∆ were pressure differences and the D∆ were estimates of

ρ∆2c , while the density was the quantity being interpolated with potential contact discontinuity
steepening. We still perform this additional test, although it is somewhat redundant when interpolating the

entropy Riemann invariant, for which the differential form is just 2/ cpA ∆−∆=∆ ρ .

With our contact discontinuity detection process complete, and all cells inside such structures
marked by S , varying from 0 to 1, we are at last ready to begin the steepening operation. Much earlier,

we computed constrained variable differences 1mA across the cells. In principle, these variable

differences could be only partially constrained, but it is safe to assume that if our cell is in a contact
discontinuity, the parameter Ω that measured the function roughness assumes the value unity in this
and the neighboring cells. We define cell interface values, cLA and cRA , appropriate for a contact

discontinuity structure by extrapolating the constrained slopes of the function in neighboring cells to the
interfaces of our cell of interest: 2/1,1 −+∆−= imLcL AAA and 2/1,1 +−∆= imRcR AAA . We

then construct our nearly final estimates for the interface values as:

cLrLtL ASASA +−=)1(, cRrRtR ASASA +−=)1(

We must once again apply the constraints on the implied parabola and then compute the coefficients of
that parabola, just as before (however, hardly any cells are steepened, and hence this extra work occurs
in a scalar loop for only these cells, which incurs hardly any additional computational cost). These
operations will not be repeated here. They are just like those we performed to arrive at first qLA and

then rLA beginning with pLA .

It is worthwhile to note the ways in which the above interpolation algorithm addresses the previously
listed design constraints for PPM. Some of the points are obvious, but others are less so. In particular, it
is not obvious that dissipation errors will dominate dispersion errors, although this is in fact the case. The
reason for this is the action of the monotonicity constraints on all short wavelength disturbances, which
always fail our test for function smoothness. The monotonicity constraints are nonlinear, in that they alter
the shape of a sine wave by introducing higher frequency components through effects such as the
clipping of extrema. Their overall effect is strongly dissipative for very short wavelength signals, which of
course are the ones for which the numerical scheme would otherwise introduce significant dispersion
errors. This dominance of dissipation over dispersion error as a design goal may seem incompatible with
the goal of minimal dissipation. Our task is to deliver as little dissipation as possible while still having
dissipation overwhelm dispersion. PPM’s use of parabolae rather than the more commonly used linear
interpolation functions is meant to address this design goal. The use of cubic interpolation functions to
help define these parabolae through interpolation of cell interface values reduces dissipation errors still
further, since not all parabolae provide equally good fits. However, even more importantly this use of
cubic interpolation in PPM preserves the accuracy of the scheme in the limit of vanishing Courant number.
Since, as is common practice, we will determine a single time step value for the entire grid based upon
Courant number limitations for the single most demanding cell, the bulk of the cells we update will have
very small Courant numbers. When AMR is added to the scheme, the Courant numbers used for the bulk
of the cells are likely to become even smaller. Therefore it is very important for the accuracy of the
calculation to hold up in this limit. The use of cubic interpolation of cell interface values is our way of

Draft. Not for Distribution.
2/10/05

8

addressing this issue in PPM. Over many years of applying PPM to a wide variety of flow problems, very
little Courant number sensitivity has ever appeared.

The monotonicity constraints and contact discontinuity detection and steepening algorithms
incorporated in PPM have important consequences for the propagation of barely resolved or effectively
unresolved signals. Our design goal is to preserve these signals, so long as we can propagate them at
roughly the proper speeds, rather than to destroy them through numerical diffusion processes. The
monotonicity constraints and, to a far greater degree, the contact discontinuity steepening in PPM have
this effect. They act upon passively advected signals, such as entropy variations, that can easily be
propagated at the correct speeds. They apply an artificial compression along with their other effects, such
as maintaining positivity where appropriate. This tends to maintain signal amplitude while altering signal
shape when the signal is not adequately resolved. As the description of the contact discontinuity
detection algorithm shows, we take great care to apply the steepening method only where appropriate,
since some small signals, better described as numerical glitches of various types and causes, deserve to
be dissipated.

4. Using the Interpolation Operators to Build a Subgrid-Scale Model for a Cell.

The above interpolation process is quite elaborate. Nevertheless, it is not the entire story of PPM
interpolation. As we remarked earlier, the equations of gas dynamics are coupled, and therefore the PPM
interpolations of the fluid state variables are also coupled. The goal is to come up with a complete and
consistent picture of the internal structure of a grid cell – that is, to come up with a subgrid-scale model.
This is not a turbulence model, but it is a subgrid-scale model. This model must satisfy, for consistency,
certain primary constraints. First, the integrated mass, momenta, and total energy must be consistent
with the prescribed cell averages of these quantities. This reflects the need for the numerical scheme to
be in strict conservation form in order to correctly capture and propagate shocks. PPM regards the
fundamental cell averages on which it operates to be the cell averages of density and pressure (both
volume-weighted) and those of the 3 velocity components (all mass-weighted). From these, PPM defines

the mass, momenta, and total energy of a cell to be: xm ∆=∆ ρ , mux ∆ , muy ∆ , muz ∆ ,

and () muuux
p

zyx ∆+++∆
−

222

2
1

1γ
 . Here we do not bother to include the cell widths in

the transverse directions, y∆ and z∆ , because they cancel out of all our equations for the x-pass.
The last expression, for the cell’s total energy, is misleading. At the beginning of the grid cell update for a
1-D pass, we compute the total energy of the cell in just this way. However, once we have done this, we
make a more accurate estimate of the cell’s kinetic energy and then revise its thermal energy, keeping
this total constant. We do this by using nearest neighbor cells to compute cell-centered slope estimates
for all 3 velocity components. We then apply the standard monotonicity constraints to these slopes. All
these computations are similar to the following steps, for the slope of yu in the z direction:

()
112

1
−+

−=∆
kykyyz uuu , () () (){ }

11max
,min2

−+
−−=∆

kyyykyyz uusuusu

(){ }{ }
max

,min,0max yzyzymz uussu ∆∆=∆

Here s has absolute value unity and the same sign as yzu∆ . We now estimate the cell’s average

kinetic energy to be given by

Draft. Not for Distribution.
2/10/05

9

() () ()[]
() () ()[]
() () ()[]2222

2222

2222

12
1
12
1

12
12

zmzzmyzmxz

ymzymyymxy

xmzxmyxmxxkin

uuuu

uuuu

uuuuE

∆+∆+∆++

∆+∆+∆++

∆+∆+∆+=

This process captures the first correction to the average kinetic energy that arises from the internal
structure of the velocity within the grid cell. The method would still be second-order accurate without this
correction, but this correction proves to be of some marginal value (relative to its implementation cost) in
flows involving strong shear layers. Terms of this sort make up part of some turbulence closure models,
although one might argue that this is inappropriate, since they have nothing specifically to do with
turbulence. In PPM we must compute estimates for cell averages of several other quantities, and
including terms like these for all those computations would roughly double the cost of the scheme. This
has been tried, and little noticeable benefit is delivered in practical problems. Therefore only these
velocity terms are included in PPM. One can see why these terms are important as follows. The velocity
slopes can be very large in a cell, because shear layers that are stretching due to the local flow or due to
their own instability naturally become ever thinner. The contribution to the kinetic energy from the velocity
slope terms can therefore be significant, and can thus have a significant effect upon the pressure (since
the total energy is prescribed), and hence upon the dynamics. Nevertheless, this effect upon the
dynamics is strongly localized, so that omitting the terms, as was done in PPM for many years, only tends
to increase by roughly 50% the numerical friction in thin, strong (roughly sonic or supersonic) shear
layers.

In order to propagate signals, we need to interpolate their subgrid structures. We therefore apply
the previously described interpolation algorithm to the 5 Riemann invariants of the Euler equations for 3-D
compressible flow. For the two transverse components of the velocity, yu and zu , which are advected

passively with the fluid velocity in the x-pass, we form differences and then apply the interpolation scheme
described above. We do no contact discontinuity detection or steepening for these variables, even though
they may in fact jump at such discontinuities. We have already discussed in detail the treatment for the
entropy Riemann invariant. The sound wave Riemann invariants, which we denote by ±R , are defined

by the following differential forms and their corresponding numerical approximations:

C
dpdudR x ±=±

() ()
111

/2
−−−± +−±−=

∆
±∆=∆

iiixx
L

L
xLL CCppuu

C
puR

Here we introduce the Lagrangian sound speed cC ρ= , and we approximate its cell average as

ργρ pcC == . The pressure, of course, is p , and only the x-component of velocity

appears because we are describing the x-pass of the directionally split PPM algorithm. It is disturbances
in +R that propagate to the right at speed cus x +=+ and disturbances in −R that propagate to the

left at speed cus x −=− . We interpolate parabolae to describe the structure of these sound wave

signals in the grid cells, using LR±∆ in place of LA∆ in the algorithm previously described, and of

course performing no contact discontinuity detection or steepening. Performing interpolations for the
Riemann invariants attempts to uncouple the gas dynamic equations as much as possible. However, we
will not work in terms of these variables directly. Instead, we will immediately go about constructing
interpolation parabolae for the primary fluid state variables – the density, pressure, and 3 components of
velocity – in a manner that attempts to achieve as much consistency as possible with the interpolated

Draft. Not for Distribution.
2/10/05

10

structures of the Riemann invariant signals. To perform our hydrodynamical cell update, we will require
internal cell structures for all these variables as well as the total energy. Any choice of structures for 5
variables will imply structures for all the others, but those implied structures may not satisfy reasonable
constraints, such as monotonicity or positivity when appropriate. PPM attempts to achieve consistency
between interpolated and implied structures by first interpolating constrained parabolae for the Riemann
invariant signals, constructing the implied parabolae for the primary state variables, and then constraining
those implied parabolae where appropriate. In a sense this is an attempt to “have it both ways,” which is
of course impossible. However, experience has shown that the extra labor involved in this process
delivers additional accuracy and robustness of a value worthy of its computational and programming cost.

From the interpolated parabolae for the sound wave Riemann invariants, we may compute the cell
interface values of the pressure and x-velocity as follows:

() 2/LLLL RRCpp −+ −+= , () 2/RRRR RRCpp −+ −+=

() 2/LLxxL RRuu −+ ++= , () 2/RRxxR RRuu −+ ++=

We also compute a measure, Ω , of the lack of smoothness of the associated functions as the maximum
of the values found for the two sound wave Riemann invariants separately during the process of their
interpolation: { }

−+
ΩΩ=Ω RR ,max . We will use this measure Ω to control the application of

constraints to our interpolation parabolae for p and xu . We first apply monotonicity constraints,

controlled by Ω , to the cell interface pressures and x-velocities obtained above. When 1=Ω , we
demand that the interface values lie within the ranges defined by the averages in adjacent cells. We then,
again when 1=Ω , demand that the parabolae defined by these constrained interface values and the
cell averages are monotone. These constraints are essentially the same as those described earlier for
the interpolation of the entropy Riemann invariant, and hence they will not be stated in detail here. Once
the interpolation parabola for the pressure has been so derfined, we may use the interpolated interface
values for the entropy to determine interface values for the density. Using the maximum of the Ω
measures for the pressure and for the entropy, we may then constrain the interface densities and
ultimately the parabolae that they and the cell averages define.

At the end of this lengthy process, we have interpolation parabolae defined for the density, pressure,
and all 3 velocity components. The formulae presented assume uniform cell sizes, although more general
formulae are easily derived and were presented in the description of PPM in [whatever]. We can think of
these interpolations as occurring in a cell number variable, so that they are valid, although potentially
somewhat less accurate, even if the cell size is smoothly varying. Nevertheless, we must take care in
interpreting these parabolae. Some of the variables described by them, such as the velocity components,
must be considered to vary according to mass fraction across each cell, since the (mass-weighted) cell
average is associated directly with the conserved cell momentum. For the velocities, therefore, we take
the interpolation variable x~ within the cell to have its origin at the center of mass and to describe
fractions of the cell mass rather than of the cell volume. For the pressure or the density, whose volume
integrals are directly associated with the mass and internal energy, we must interpret x~ as having its
origin at the center of the cell in a volume coordinate and to describe volume fractions within the cell. Our
use of the uniform grid formulae therefore reflects an assumption that all interpolated quantities are
smoothly varying in a cell fraction variable, be it a volume or a mass fraction. We know this assumption to
be false at contact discontinuities and slip surfaces (for some of the variables) and at shocks, but we have
augmented our interpolation procedure to deal with these discontinuities. The interpolation is therefore
valid, so long as we interpret it properly.

The process described above has enabled us to construct a subgrid-scale model for each cell.
Since each fluid state variable varies as a simple parabola inside a cell, this subgrid-scale model cannot
possibly describe subgrid-scale turbulent motions. To perform that function, the model would have to be
augmented by the addition of one or more new state variables, such as a subgrid-scale turbulent kinetic
energy variable, which could also be given an interpolation parabola within the cell. Nevertheless, our
demand that the structure of a velocity component within a cell be no more complicated than a parabola,

Draft. Not for Distribution.
2/10/05

11

and our constraints on that parabola, provide a powerful mechanism to dissipate kinetic energy of small-
scale motions unresolvable or marginally resolvable on our grid into heat. This is one of the important
functions of turbulence closure models, especially when incorporated into difference schemes that lack
any other method to accomplish this very necessary dissipation. In this respect, turbulence models can
be used to stabilize otherwise nonlinearly unstable numerical schemes, a role that has nothing to do with
turbulence itself and that confuses the purpose and function of a turbulence model. As we will see later,
with PPM we may compute turbulent flow directly from the Euler equations that govern it, and we
accomplish the dissipation of small-scale motions through the truncation errors of our numerical scheme
rather than from differencing an explicit viscous diffusion term. We take the view that the details of this
dissipation are unimportant so long as kinetic energy turning up on the smallest possible scales in our
computation is dissipated into heat with no unphysical side effects. We presume that in a far more
expensive and careful simulation of all relevant physics, this same kinetic energy would be dissipated in
any event, and the same amount of heat generated (since total energy is conserved), but the (hopefully
unimportant) details on tiny length and time scales would differ. The assumption here is that the kinetic
energy that appears on scales where the numerical dissipation comes into play has arrived there due to a
physical process, such as a turbulent cascade, that is correctly simulated in our calculation because it has
nothing to do with molecular viscosity.

5. The PPM Approximate Riemann Solver

We will update the cell averages in time by applying the laws of conservation of mass, momentum,
and total energy. To do this, for a 1-D x-pass of the algorithm, we must compute time-averaged fluxes at
the left- and right-hand cell interfaces of these 5 conserved quantities. This is done with the help of an
approximate Riemann solver. A fundamental approximation that we make is that the solution to the
Riemann problem for left and right states representing spatial averages over the appropriate domains of
dependence is roughly equivalent to the average in time of the many separate Riemann problem solutions
that each express the interaction of the specific Riemann invariant values arriving at the interface at that
particular time. The Riemann solver is a nonlinear operator, and we assume that its output when
operating on the averaged inputs is equivalent to the average of the outputs from the separate, time-
varying inputs. This assumption makes the Riemann solver relatively simple and efficient. Our elaborate
construction of subgrid-scale structures allows us to easily arrive at the spatial averages in the appropriate
domains of dependence. In the linear regime, when we have simple advection of the Riemann invariants,
we get the full advantage of or interpolation parabolae for the Riemann invariant signals. Experience
shows that when variations in ±R are large, shocks rapidly develop, and these demand techniques only
loosely related to concepts of formal order of accuracy.

Here we will discuss how we handle the domain of dependence for the Riemann invariant +R .

The treatment for −R is similar, and will not be described. We will treat the characteristic speed

cus +=+ to be constant both in space and time within each cell for this single time step. Accounting for

the space and time variation of +s is demanded only if we desire formal third-order accuracy. We will
focus our discussion on the left-hand interface of our cell of interest. We calculate a Courant number,

L+σ , which applies to one or the other of the adjacent cells, depending upon the signs of +s in them:

0,/;0,/ 1,1, ≤∆∆−=≥∆∆= +++−+−++ sifxtsotherwisesifxts LiiL σσ

We note that the two possibilities listed above are not exhaustive. In the case where +s is directed away
from the interface on both sides, we will have a centered rarefaction there. We will handle this case later.
For the moment it will be sufficient to set L+σ to zero in this rare event. The Courant condition demands

that we control the time step t∆ so that L+σ does not exceed unity. We now estimate the spatial

averages of the density and pressure,
L+

ρ and
L

p
+

, in the domain of dependence via:

Draft. Not for Distribution.
2/10/05

12

;0,
3

21
2 1,1,21,11, ≥⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −+−= −+−

+
−

+
−+ ii

L
i

L
iRL

sifρσρσρρ

.,
3

21
2 21 otherwiseLL

LL ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −−+= ++

+
ρσρσρρ

We obtain
L

p
+

 using similar formulae. From
L+

ρ we may calculate a mass fraction Courant

number, Lm+σ . When 01, ≥−+ is , we have
1

/
−+++ =
iLLLm ρρσσ , and otherwise we have

ρρσσ /
LLLm +++ = . We can then obtain

Lxu +
 using the same formulae as for the density or

pressure, but with L+σ replaced by Lm+σ . Note that we choose the upwind domain of dependence in

the case when +R Riemann invariant signals reach the interface from both adjacent cells. This can

happen if the interface is inside a shock structure, in which case the +R signals from the cell on the right

will become lost in the shock transition. Hence we take the signals from the cell on the left in this case,
which will correspond to the proper post-shock state. For the −R signals, we prefer signals from the cell

on the right, if such signals can reach the interface from both adjacent cells. In the case when 01, <−+ is

and also 0>+s , the left-hand interface of our cell is located inside a centered rarefaction fan. We

desire Riemann invariant information corresponding to a vanishing characteristic speed. We interpolate

L+
ρ ,

L
p

+
, and

Lxu +
 linearly between the two edge values, as in:

() LLiRLL
pfpfp +−++

−+= 11, , where ()1,/ −++++ −= iL sssf .

A simple, linearized solution to the Riemann problem at the cell interface can be obtained from the
demands that the time-averaged state at the interface have the same values of ±R as the domains of
dependence which we have just determined. At this point we desire only the time-averaged pressure and
x-velocity at the interface, which we denote by Lp and xLu . Using the differential forms that define the

Riemann invariants, we thus have: () 0/ =−±−
±± LLLLxxL Cppuu . Therefore:

() ()
LL

L
LxLxxL pp

C
uuu

−+−+
−++=

1
2
1

()
LxxLLLL uuCpp

−−
−+=

Because this is a numerical scheme, and anything can happen, we subsequently make sure that Lp is
at least as big as some trivial, floor value. This simple, linear Riemann solver suffices for almost all the
cell interfaces, but it is not good enough for interfaces that are in strong shock structures. For such cells,
which are very small in number, we can do much better. However, first we must determine which cells are
in shock structures. In PPM, we go to considerable lengths to identify these cells, and we will use the
information we glean in the process to build a “smart” diffusion velocity that we will use to greatly diminish
noise that can be generated at shocks in numerical computations.

Experience has shown that shock detection must be done using information from all 3 dimensions.
This fact means that the difference stencil of the PPM 1-D pass extends into the transverse dimensions.
This explicit acknowledgement that the 1-D pass is actually part of a multi-D computation allows PPM to
avoid a number of numerical pathologies that would otherwise occur. Several of these have been
discussed in the original paper laying out the design philosophy and major techniques of PPM [W&C].
(These pathologies were dubbed “Cray instabilities,” since at the time one needed to have access to a
Cray-1 computer in order to afford grids fine enough to observe them.) As with the detection of function

Draft. Not for Distribution.
2/10/05

13

roughness and sudden jumps associated with contact discontinuities, detection of shocks requires the
inspection of data from 2 cells on either side of the cell of interest. For the case of shock detection, we
use 2 cells on either side in each of the 3 dimensions. Taking differences over 4 cell widths allows us to
get a good estimate of the entire shock transition, and hence of its propagation speed. We will need to
know the propagation speed relative to the grid as well as the shock orientation relative to the grid in order
to detect those situations which require diffusion at the shock, and hence to be able to construct our smart
diffusion velocity. Our approach is to first compute in vectorizable loops quantities that allow us to
eliminate most candidate cells, and then to do the more involved computations determining shock
orientation and propagation speed only for the very few cells that require this. We will demand that to be
considered as within a shock structure a cell must be in a region of compression and in a sudden pressure
jump of at least 25%. These demands will allow us to eliminate from consideration the great bulk of our
cells.

First, in each of the 3 dimensions, we evaluate the jump between the next nearest neighbor cell
averages of the pressure on either side of our cell. In this process, we also determine which of these next
nearest neighbor cells has the lower pressure value. We then find the largest of these pressure jumps
and divide it by the lower pressure value in that dimension. For our cell to be considered inside a shock,
this ratio must exceed 0.25, although this particular value is not critical to the successful operation of the
scheme (a value of 0.33, for example, works well too). The choice of 0.25 indicates a Mach number,
which one could derive, for a shock below which no special treatment by PPM is necessary. Setting this
value too low is harmless, but it would cause the scheme to devote considerable unnecessary labor to
weak disturbances. Setting the value too high will let small, incorrect signals be generated at some
shocks under pathological circumstances. The choice 0.25 has served well for decades in a wide variety
of problems. In the same vectorizable loop, we evaluate simple difference approximations to the
divergence of the velocity. One of these uses differences between velocity component averages in
nearest neighbors to our cell and the other uses differences of such averages in next nearest neighbors.
If either of these estimates of the velocity divergence is positive, we eliminate our cell as a candidate for
being inside a shock structure. We mark our candidate cells, those with negative velocity divergence
estimates and with 25% or greater pressure jumps, with a flag vector that we call shocked . This flag
array vanishes everywhere but in our candidate cells, where it has the value unity.

For the cells marked by shocked , we now embark upon a complicated calculation described
below. First we use averages in next nearest neighbor cells to evaluate the contributions from each
dimension to the velocity divergence estimate. We will use weight factors, xf , yf , and zf , for each

dimension according to the relative size of these contributions. Because we desire no negative weight

factors, we define the contributions to the velocity divergence as (){ }
222 ,0min

−+
−=∆

jyjyyy uuu ,

with similar formulae for the x and z dimensions. We then define the weight factors as follows:

()
() () ()

()
() () ()2

2
2

2
2

2

2
2

2
2

2
2

2
2

2
2 ,

zzyyxx

zz
z

zzyyxx

yy
y uuu

uf
uuu

u
f

∆+∆+∆
∆

=
∆+∆+∆

∆
=

We define the remaining weight factor by subtraction: zyx fff −−=1 . Looking at values in next

nearest cells in each dimension, we select the pre- and post-shock cells in each. We then blend these 3
pre- and 3 post-shock cell averages using the above weight factors to obtain estimates of the pre- and
post-shock densities, pressures, and 3 velocity components. Using the jumps across the shock in the 3
velocity components computed from these blended values, we get the x-, y-, and z-components of a unit
vector pointing in the direction of the velocity jump, hence in the direction normal to the shock front. We
now project the pre- and post-shock velocities onto this normal direction by taking the dot products of
those velocities with the unit vector. We also compute the pre- and post-shock Lagrangian sound speeds.
The nonlinear Lagrangian wave speed, W , for the shock is computed via:

()postpostpreprepost VVVppW 00000001.0/~ +−−=

Draft. Not for Distribution.
2/10/05

14

This formula clearly involves some defenses against potential pathologies. In multidimensional flows next
to walls where Mach reflections of shocks can occur, some rather wild cases can arise to which our
formulae must be insensitive. The tilde in the formula indicates that this is a provisional value. To force
this wave speed estimate to be reasonable, we additionally execute the following constraints, resulting
ultimately in our final estimate, W :

{ }{ }postpre CCWW ,max,~min
~~ = , { }{ }postpre CCWW ,min,

~~max=

We now compute the Eulerian shock speed, w , by using the post-shock density and normal velocity:

postpost uWw ⊥+= ρ/

One might wonder why we need all this information about the shock. We will use it to compute a
diffusion speed that will determine the amount of additional dissipation that we introduce here. As
discussed in the original articles on PPM [W&C, C&W, W], shock representations on our grid tend to
become too thin when the shocks move slowly relative to the grid. Such a shock can linger near a grid
line, and then the action of the focusing characteristics can cause the shock jump to occur mostly across
that single cell interface. As the shock moves so that it becomes centered on a grid cell instead, it is
forced to have a quite different and broader numerical representation. The slow oscillation of the shock
structure from thicker to thinner numerical representation causes small disturbances to be emitted in all
the characteristic families that cross the shock (i.e. in our case in the entropy and in the oppositely
propagating sound wave Riemann invariants). This happens in 1-D problems, but in 2- or 3-D problems
we can get glitches caused by oversteepening of the shock structure as it crosses grid lines obliquely. At
each grazing intersection, a tiny shock and contact discontinuity pair can be emitted. The solution to all
these problems is to broaden the numerical shock representation so that it is roughly independent of
phase relative to the grid. The glitches and noise emission can be reduced dramatically by only a modest
broadening of the shock. We do this by means of a diffusion operation that will be described later. The
diffusion coefficient, which we evaluate as a diffusion velocity, must relate to the potential severity of the
numerical problems for a given shock in a given cell. We find that the diffusion coefficient needs to reflect
two independent factors – the shock strength and the wavelength of the fundamental noise signals that it
tends to emit. Our diffusion velocity, which we denote by diffu , has a factor equal to the negative of the

velocity divergence in order to reflect the strength of the shock. It also has a factor arising from the
fundamental wavelength of noise emission. The fundamental period for noise emission by the shock is
the interval between grid line crossings. The wavelength of any such signals, measured in grid cell
widths, is then dependent upon the Riemann invariant family involved and the post-shock fluid velocity
and sound speeds. The longest fundamental wavelength of signal emission, measured in grid cell widths,
will apply to the sound wave Riemann invariant, and it can be estimated as follows:

()
() prepostpost

postpost
noise cuW

cW
00000001.0/

/
++

+
=

⊥ρ
ρ

λ

When the shock moves rapidly across the grid, this wavelength is very short, and any noise signals are
immediately damped by the numerical scheme, if they can propagate at all. It is only as this wavelength
exceeds 2 that we need become concerned. We therefore compute our diffusion velocity in the following
steps:

222222
)(3.0~

−+−+−+
−+−+−=

kzkzjyjyixixdiff uuuuuushockdu

(){ }2,0max −=Θ noiseλ , ()1/ 33 +ΘΘ=Ξ , () diffdiff uu ~911.0 Ξ+=

Some aspects of these formulae may seem a bit arbitrary, and no doubt other variations might work
equally well. Nevertheless, the above formulation is quite serviceable, and has kept numerical glitches
and noise at bay in PPM simulations for at least 15 years. Changing the 0.3 to 0.5 in the formula for

Draft. Not for Distribution.
2/10/05

15

diffu~ will roughly double the thicknesses of shocks, almost completely eliminate numerical noise, and

reduce the overall quality of the solution by an amount comparable to coarsening the grid by a factor of 2
in every spatial dimension and time. Setting this constant to 0.1 will cause the noise to appear and to
mar the solution. The recommended value of 0.3 is thus a compromise, giving excellent results with thin
shock structures and crisply resolved details but allowing very low level signals of numerical origin into the
simulation at levels almost always below about 1.5% of the amplitude of the relevant, emitting shock jump.
The smart diffusion described here, and applied at the end of the grid cell update, supersedes all
previous formulations in the literature on PPM. Earlier formulations went to significant lengths to avoid the
use of any construct that could directly be interpreted as an artificial viscosity. This was a consequence of
a bet made with Bill Noh at Livermore. Since his death many years ago, there has been no satisfaction
from doing without explicit diffusion, and the present formulation, in use for about 15 years, is easily made
compatible with other code packages.

Now that we have identified the cells inside shock structures and computed the diffusion velocities
to be used there, we proceed, in a scalar loop for only these cells, to apply a nonlinear Riemann solver to
compute the fluxes at their interfaces. A fundamental approximation we will make is to use the shock
formulae for pressure and velocity differences across rarefaction fans. For weak rarefactions, this
approximation is easy to justify. Strong rarefactions at single cell interfaces are always transient
phenomena, with the exception of centered rarefactions attached to features in walls or solid objects. We
take the view that it is impossible to do a good job for these exceptional cases in any event, save to refine
the grid there using AMR or other techniques. We will describe the nonlinear Riemann solver for gamma-
law gases, but a generalization of it to arbitrary equations of state has been given in [W86]. We will
perform the following operations only at those interfaces for which one of the adjacent cells is marked by
the flag array shocked . We will do the first step of what could be used as an iteration. Experience has
shown that there is essentially no value in performing additional steps of such an iteration. The use of a
nonlinear Riemann solver allows us to compute a portion of the entropy jump in the shock from shock
jump conditions rather than obtaining it from a diffusion process that smears the shock structure.
However, the shock jump conditions that apply at a single cell interface are essentially never the proper
ones for the shock as a whole, and as a result it is not worthwhile to take them too seriously. A single
nonlinear iteration therefore suffices. We begin by computing positive-definite Lagrangian wave speeds in
the gas immediately to the left, LLW , and to the right, RLW , of the contact discontinuity that initially

forms at the interface L . To improve our estimate, Lp , of the pressure at this contact discontinuity, we

also evaluate the slopes, ()LLxup ∂∂ / and ()RLxup ∂∂ / , of the tangent lines at the pressure Lp to the

Hugoniot curves in the velocity-pressure plane:

LLLL ppf)1()1(++−=
+

γγ , LLRL ppf)1()1(++−=
−

γγ

2/
LLLLL fW

+
= ρ , 2/

LRLRL fW
−

= ρ

() ()
LLLL

LLLL
LLx ppf

Wfup
+

−+−
=∂∂

)1(
/

2
1 γ

 , () ()
LLRL

RLRL
RLx ppf

Wfup
−

−+−
=∂∂

)1(
/

2
1 γ

We now compute the point of intersection of the two tangents to the Hugoniot curves, which gives us an
improved estimate, shkLp , for Lp . The tangent lines pass through the points),(LxLL pu and

),(LxRL pu in the pux − plane. They intersect at the point),(shkLshkLx pu .

() LLLLLxxLL Wppuu /
++

−−= , () RLLLLxxRL Wppuu /
−−

−+=

() ()
() ()RLxLLx

RLxxLLxRL

upup
upuu
∂∂+∂∂
∂∂−

=Ψ
//

/

Draft. Not for Distribution.
2/10/05

16

()[]{ }LLxLshkL uppp ∂∂Ψ−= /,max φ , Ψ+= xLLshkLx uu

We must now take care to handle slowly moving strong shocks properly. From the above results for the
pressure and x-velocity at the contact discontinuity in our Riemann problem, we can compute the Eulerian
wave speeds, LLw and RLw , for both the leftward and rightward facing waves:

LLLLxLL Wuw
++

−= ρ/ ,
LRLLxRL Wuw

−−
+= ρ/

Using this information, we now select from the 3 possibilities our improved estimates for xLu and Lp ,

which we will adorn with primes:

LLLxxLRLshkLx ppuuthenwanduif
−−

=′=′<< ,,00

LLLxxLLLshkLx ppuuthenwanduif
++

=′=′>> ,,00

shkLLshkLxxL ppuuotherwise =′=′ ,

Getting good estimates of the nonlinear wave speeds is crucial here, although in principle the fluxes of
mass, momentum, and total energy on either side of a stationary strong shock are identical.

Up to this point, we have worked only with the time-averaged x-velocities and pressures at the cell
interfaces. Now that we know the time-averaged interface velocities, we can trace back along the fluid
streamlines from the interfaces into the adjoining cells in order to estimate what fraction of which cell
crosses the interface during the time step. We may also estimate the time-averaged density at the
interface by taking the spatial average at the beginning of the time step of this material that crosses the
interface and compressing or expanding it using the shock jump conditions to the time-averaged
pressure at the interface, which has just been computed. In the absence of shocks, this compression or
expansion should be adiabatic, but if a strong shock is involved, the behavior could be extremely different.
Using the shock jump conditions will give us an acceptable result in either case. We begin by computing

the spatial averages,
L0

ρ ,
L

p
0

,
Lyu 0

, and
Lzu 0

, in essentially the same way that we

computed similar spatial averages earlier over the domains of dependence of the ±R Riemann invariant
characteristics. Here we use the subscript 0 to denote the streamline characteristics. The time-
averaged density at the cell interface is now:

LL

LL
LL pp

pp

0

0
0)1()1(

)1()1(
++′−
−+′+

=
γγ
γγ

ρρ

6. Construction of the Time-Averaged Interface Fluxes and Application of the Conservation Laws.

Now that we have evaluated the time averages of the fluid state variables at the cell interfaces, it is
a simple matter to construct from them the time-averaged fluxes of the conserved quantities. At each
interface, we compute an advected volume, Ldx , an advected mass, Ldm , 3 advected momenta,

xLdµ , xLdµ , xLdµ , and an advected total energy, LdE . These are all signed quantities, with positive

signs applying to advection to the right:

tudx xLL ∆′= , LLL dxdm ρ= , tpdmud LLxLxL ∆′+′=µ , LyLyL dmud =µ

LzLzL dmud =µ , () () ()[] LLLxLxLxLL dxpdmuuudE ′
−

+′+′+′=
12

1 222

γ
γ

Draft. Not for Distribution.
2/10/05

17

To guard against the production of negative densities, we also demand that Ldm not exceed advection
of 95% of the upstream cell’s mass. Our time step controls should prevent this situation, but this
constraint provides additional code robustness.

We now apply the conservation laws for mass, momentum, and total energy in order to arrive at
provisional new values for the cell averages at the end of the time step for this x-pass. We use the
subscript N to denote the new time level and the superscript)1(to denote this first, provisional value.
Despite our application of monotonicity constraints it is still possible in this Eulerian treatment for the new
cell mass to be negative. We therefore demand that the new cell mass not fall below a floor value, given
by x∆minρ . The value of minρ is of course problem dependent, and it must be supplied by the user for
any given run, along with trivial values for other positive definite quantities such as pressure and energy,

minp and minE . To prevent problems of negative cell masses from occurring, we will compute a cell
mass Courant number that we will use to help control the time step. This time step control is the Eulerian
equivalent of the one used in Lagrangian calculations to prevent the tangling of grid cells.

(){ }xdmdmmm RLN ∆−+∆=∆ min
)1(,max ρ , xmNN

∆∆= /)1()1(ρ

The cell mass Courant number we use is ())1()1(/2.0 NN mmm ∆∆−∆ , and we use a similar cell volume

Courant number equal to () ()[]tuuxtuu xRxLxRxL ∆′−′−∆∆′−′ /2.0 . These Courant numbers assert

that we do not want either the mass of the Eulerian cell or the volume of its Lagrangian counterpart to
decrease by more than 80% in a single time step. We usually find that if the Courant number exceeds
unity on any time step, even though we have taken measures to see that no disasters, such as square
roots of negative numbers, will ensue, it is best to have the computation halve the time step and try again.
This feature is built into our PPM code, including its massively parallel versions, and occurs automatically,
although, gratefully, very rarely.

The provisional new cell velocities are now obtained from the momentum conservation laws:

())1()1(/ NxRxLxNx mddmuu ∆−+∆= µµ

with similar equations for
)1(

Nyu and
)1(

Nzu . Although it is optional, we usually choose to reset trivial

cell interface and cell average velocities to zero. This prevents the generation of underflows, and it can
allow us in some problems to avoid doing any computational labor in cells where nothing is happening yet.

From these new velocities, we obtain the provisional new cell kinetic energy,
)1(

NkinE .

() () () ⎥⎦
⎤

⎢⎣
⎡ ++=

2)1(2)1(2)1()1(

2
1

NzNyNxNkin uuuE

Note that at this point we make only a simple estimate of the cell average of the kinetic energy. It would
make the scheme a great deal more complex and expensive to attempt to determine the new internal cell
velocity structures at this stage of the calculation. That will be done at the outset of the next 1-D pass,
where the total energy in the cell will first be computed according to the above prescription, so that the
total energy conservation law, stated below, will be obeyed.

())1()1(/ NRLN
mdEdEmEE ∆−+∆= , { })1()1(

min
)1(,max

NkinNN
EEE −=ε

Here we use the symbol ε to represent the internal energy. We now compute the new provisional cell
pressure from the gamma-law equation of state:

)1()1()1()1(
NNN

p εργ −=

Draft. Not for Distribution.
2/10/05

18

We now have a complete set of provisional new cell averages. These will actually be our final results for
the overwhelming majority of the cells. However, near slowly moving strong shocks we still need to apply
our smart diffusion.

7. Smart Diffusion and Reapplication of the Conservation Laws.

The final step of the PPM 1-D pass is applied only to those cells with interfaces for which a smart
diffusion velocity was computed earlier. There are very few of these cells, and therefore the
computational cost of this final step is small. However, this step increases the numerical difference stencil
by one cell on either side of our cell of interest. Hence when the scheme is implemented on
multiprocessor or cluster systems, the principal cost of this additional step of the algorithm is the
increased quantity of data that must be communicated from one processor to another. We reiterate that
the smart diffusion is multidimensional. The detection of shocks does not favor any single dimension,
such as the dimension of the present 1-D pass, and the diffusion is applied in all directional passes, not
just those in which the shock jump is seen as sudden. This multidimensional character of the smart shock
dissipation in PPM avoids multiple numerical pathologies, and the required size of the difference stencil in
the 3 dimensions is therefore a small price to pay for this benefit. We begin by computing diffusive fluxes
at those cell interfaces adjacent to cells in which the diffusion velocity, diffu , does not vanish. We also

compute a diffusion Courant number equal to double the advected cell fraction for this diffusion step.

{ }diffidiffdiffL uuu ,max 1, −= ,
)1(

1, −
∆=

iNdiffLdiffLL utdm ρ ,
)1(

NdiffLdiffRL utdm ρ∆=

diffRLdiffLLdiffL dmdmdm −= ,
)1()1(

1, NxdiffRLiNxdiffLLxdiffL udmudmd −=
−

µ

)1()1(

1, NydiffRLiNydiffLLydiffL udmudmd −=
−

µ ,
)1()1(

1, NzdiffRLiNzdiffLLzdiffL udmudmd −=
−

µ

)1()1(

1, NdiffRLiNdiffLLdiffL EdmEdmdE −=
−

With these fluxes, for the affected cells only, we now go through the same steps described earlier using

the non-diffusive fluxes, applying the conservation laws to obtain the new cell averages:
N

ρ ,
N

p ,

Nxu ,
Nyu , and

Nzu . This completes the x-pass of the PPM single-fluid gas dynamics algorithm.

The full 3-D algorithm consists of six, symmetrized 1-D sweeps, in an x-y-z-z-y-x sequence and
with a constant value of the time step.

8. PPM Code Performance and Scalability on Modern Multiprocessing Systems.

PPM follows sound wave signals explicitly, so that all its computations, save the calculation of the
time step value, are local. The scheme is very computationally intensive, because it expends so much
effort to ensure that the various special operations such as monotonicity constraints, contact discontinuity
steepening, and special treatment of strong shocks are applied only when and where they should be. On
all CPUs from the Cray-1 to the modern Intel-based laptop machine or ASCI supercomputer, PPM has
achieved excellent performance. This is because almost all of the arithmetic can be performed in vector
mode, and the code has always been built to perform the entire algorithm for each strip of grid cells at
once, thoroughly exploiting modern cache-based memory systems. On multiprocessor systems, each
CPU updates an entire 3-D grid brick, augmented by enough extra grid cells to make either 3 or 6 1-D
passes possible without any further information. During this brick update, the results of the previous brick
update are written back to global memory and a new brick of data is fetched. Thus, even when the global
memory is implemented on disks, all CPUs are always kept busy. The above description has been long
and involved, and it may therefore seem that an undue amount of computation is required by the PPM
scheme. Hence it is useful to quantify just how much computation is actually involved. On a difficult flow
problem involving many strong shocks, on the average each cell update for a 1-D pass involves 921 flops

Draft. Not for Distribution.
2/10/05

19

and 249 vectorizable logical operations (which do not count as flops). This work is performed at a speed
of 1255 Mflop/s on a 1.7 GHz Intel Pentium-M CPU working from its cache memory in a laptop machine.
This laptop performance degrades to 954 Mflop/s for a full 1283 3-D grid brick update, so that full 1283
test runs can be performed overnight at a hotel. These speeds are for 32-bit arithmetic, which is all that
PPM ever requires. On a 3.2 GHz Intel Pentium-4 CPU, these 32-bit rates become 1607 Mflop/s and
1273 Mflop/s, respectively, while the corresponding rates for 64-bit arithmetic, which is unnecessary but
quoted for comparison purposes with other applications, are 1132 Mflop/s and 938 Mflop/s,
respectively. PPM performance has scaled essentially linearly on every multiprocessing machine on
which the code has ever been implemented, including ASCI machines with over 6000 CPUs.

Below, we review some results from applying the PPM gas dynamics scheme to compressible
turbulent flow problems. However, one can download a Windows PC version of the code from the LCSE
Web site at the University of Minnesota and try it out for oneself. From links on the main page at
www.lcse.umn.edu one can download 1-D, 2-D, and 3-D test versions to play with that have been used in
teaching and code development at the University of Minnesota. User guides are even online for the 1-D
and 2-D versions. All versions online can perform either single fluid or 2-fluid simulations. A library of
compiled PPM code modules, PPMLIB, is also available from the LCSE Web site, although these
modules are at present not compiled for the latest machines. These codes, distributed in binary form from
the LCSE Web site, are designed to run a variety of test problems that have proven useful in our code
development at the LCSE. The 1-D and 2-D codes run, among other things, test problems introduced in
the original PPM papers in 1980 and 1984. The 3-D code runs a 3-D shear layer instability problem. Try
them; they’re fun. Versions of PPM are incorporated in the community codes FLASH, ENZO, and VH-1
for the more serious user.

Draft. Not for Distribution.
2/10/05

20

At the left we see the
user interface to the 1D
PPM gas dynamics test
program available at
the LCSE Web site. It
is set up to perform by
default the dual blast
wave problem from the
early PPM comparison
with other difference
schemes in 1984. The
space-time wave
diagram at the bottom
right can be enlarged to
fill the entire window
area by double clicking
on it. Display in this
window of any of a
whole list of variables
may be generated.

Below at the left is this
same application, but
the user has clicked on
the “Sound Wave”
button to set up a
sound wave steepening
test problem. For this
type of problem, the
Riemann invariants are
shown in the plotting
windows, since these
variables are the most
sensitive indicators of
shock-emitted noise,
some of which can be
seen at very low
amplitude in the lower
left-hand plotting win-
dow. This tiny disturb-
ance is not noticeable
at all in the space-time
plot. Runs of this type
were used to help
determine the optimal
values of the dimen-
sionless constants in
the PPM smart shock
diffusion algorithm des-
cribed in the text.

The buttons at the
bottom of the user inter-
face form set up a
series of test problems
from a comparison of
gas dynamics schemes
carried out by Burton
Wendroff at Los Alamos

Draft. Not for Distribution.
2/10/05

21

The user interface to the 2-D PPM gas dynamics code is shown here in the process of computing a type
of wind tunnel test problem originally introduced by Emery in 1967. This test code can perform multifluid
variations on this problem, and it can do single-fluid computations that inject smoke streams, set using the
little text windows at the right of the form, and track them in order to visualize the flow. Any of a large
number of possible displays can be selected using the list-box at the bottom center of the form.

9. References.

1. van Leer, B., J. Comput. Phys., 32, 101 (1979).

2. van Leer, B., and P. R. Woodward, “The MUSCL Code for Compressible Flow: Philosophy and
Results,” Proc. of the TICOM Conf., March, 1979.

3. van Leer, B., and P. R. Woodward, Proc. Internat. Conf. Comput. Meth. Nonlinear Mech.,
edited by J. T. Oden (Amsterdam:North-Holland), p. 234.

4. Woodward, P. R., and P. Colella, “High-Resolution Difference Schemes for Compressible Gas
Dynamics,” Lecture Notes in Phys. 141, 434 (1981).

5. Woodward, P. R., and P. Colella, “The Numerical Simulation of Two-Dimensional Fluid Flow
with Strong Shocks,” J. Comput. Phys. 54, 115-173 (1984).

6. Colella, P., and P. R. Woodward, “The Piecewise-Parabolic Method (PPM) for Gas Dynamical
Simulations,” J. Comput. Phys. 54, 174-201 (1984).

7. Woodward, P. R., “Numerical Methods for Astrophysicists,” in Astrophysical Radiation
Hydrodynamics, eds. K.-H. Winkler and M. L. Norman, Reidel, 1986, pp. 245-326.

8. Wenlong Dai and P. R. Woodward, “An Approximate Riemann Solver for Ideal
Magnetohydrodynamics,” Journal Computational Physics 111, 354-372 (1994).

Draft. Not for Distribution.
2/10/05

22

9. Wenlong Dai and P. R. Woodward, “Extension of the Piecewise-Parabolic Method to
Multidimensional Ideal Magnetohydrodynamics,” Journal of Computational Physics 115, 485-
514 (1994).

10. Wenlong Dai and P. R. Woodward, “Structures of Reconnection Layers based on the Ideal
Magnetohydrodynamic Equations,” J. Plasma Physics 51, 381-398, (1994).

11. Wenlong Dai and P. R. Woodward, “Interactions between Magnetohydrodynamical Shocks
and Denser Clouds,” Astrophysical Journal 436, 776-783 (1994).

12. Wenlong Dai and P. R. Woodward, “Interactions between Magnetohydrodynamical
Discontinuities,” Phys. Plasmas 1, 3662 (1994).

13. W. Dai and P. R. Woodward, “A Simple Riemann Solver and High-Order Godunov Schemes
for Hyperbolic Systems of Conservation Laws,” Journal of Computational Physics 121, 51
(1995).

14. Dai, Wenlong, and P. R. Woodward, “A High-Order Godunov Scheme for Ideal
Magnetohydrodynamics Equations Based on a Nonlinear Riemann Solver,” in Proceedings of
the Fifth International Conf. On Hyperbolic Problems: Theory, Numerics, Applications, pp.
293-299, eds. J. Glimm, M. J. Graham, J. W. Grove, and B. J. Plohr, World Scientific (1996).

15. Wenlong Dai and P. R. Woodward, “A High-Order Godunov-Type Scheme for Shock
Interactions in Ideal Magnetohydrodynamics,” SIAM Journal on Scientific Computing 18, 957-
981 (1997).

16. Dai, Wenlong, and P. R. Woodward, “A Simple Finite Difference Scheme for Multidimensional
Magnetohydrodynamical Equations,” Journal of Computational Physics 142, 331-369 (1998).

17. Dai, Wenlong, and P. R. Woodward, “On the Divergence-Free Condition and Conservation
Laws in Numerical Simulations for Supersonic Magnetohydrodynamical Flows,” Astrophysical
J., 493 (1998).

18. Wenlong Dai and P. R. Woodward, “Second Order Godunov Schemes for 2D and 3D MHD
Equations and Divergence-Free Condition,” in Barriers and Challenges in Computational
Fluid Dynamics, eds. V. Venkatakrishnan, M. D. Salas, and S. R. Chakravarthy, Kluwer
Academic Publishers, pp. 283-297 (1998).

19. Woodward, P. R., “Simulation of the Kelvin-Helmholtz Instability of a Supersonic Slip Surface
with the Piecewise-Parabolic Method (PPM),” in Numerical Methods for the Euler Equations of
Fluid Dynamics, eds. Angrand, Dervieux, Desideri, and Glowinski, SIAM, 1985.

20. Woodward, P. R., “Simulations of Supersonic Jet Instability using the Piecewise-Parabolic
Method (PPM),” in High Speed Computing, Scientific Applications and Algorithm Design, R.
B. Wilhelmson, editor, Univ. of Illinois Press, 1988.

21. Woodward, P. R., D. H. Porter, M. Ondrechen, J. Pedelty, K.-H. Winkler, J. W. Chalmers, S.
W. Hodson, and N. J. Zabusky, “Simulations of Unstable Fluid Flow Using the Piecewise-
Parabolic Method (PPM),” in Science and Engineering on Cray Supercomputers, published by
Cray Research, Inc., Minneapolis, 1987.

22. Winkler, K.-H., J. W. Chalmers, S. W. Hodson, P. R. Woodward, and N. J. Zabusky, “A
Numerical Laboratory,” Physics Today, Oct., 1987.

23. Pedelty, J. A., and P. R. Woodward, “Numerical Simulations of the Nonlinear Kink Modes in
Linearly Stable Supersonic Slip Surfaces,” J. Fluid Mech., 225, 101-120 (1991).

24. Bassett, G. M., and P. R. Woodward, “Numerical Simulation of Nonlinear Kink Instabilities of
Supersonic Shear Layers,” Journal of Fluid Mechanics 284, 323-340 (Feb. 10, 1995).

25. Bassett, G. M., and P. R. Woodward, “Simulation of the Instability of Mach 2 and Mach 4
Gaseous Jets in 2 and 3 Dimensions,” Astrophysical Journal 441, (March 10, 1995).

26. Edgar, B. K., “,” Ph.D. thesis, University of Minnesota.

27. Edgar, B. K., and P. R. Woodward, “Diffraction of a Shock Wave by a Wedge: Comparison of
PPM Simulations with Experiment,” AIAA Paper 91-0696, and Video Journal of Engineering
Research, 3, 25-33+cover illustration (1993).

Draft. Not for Distribution.
2/10/05

23

28. Edgar, B. K., Woodward, P. R., and Anderson, S. E., PPM code library, with documentation
and examples, available at www.lcse.umn.edu/PPMlib.

29. Porter, D. H., A. Pouquet, and P. R. Woodward, “Supersonic Homogeneous Turbulence,”
Lecture Notes in Physics, 392, 105-125 (1991).

30. Porter, D. H., A. Pouquet, and P. R. Woodward, “A Numerical Study of Supersonic
Turbulence,” Theoretical and Computational Fluid Dynamics, 4, 13-49 (1992).

31. Porter, D. H., A. Pouquet, and P. R. Woodward, “Three-Dimensional Supersonic
Homogeneous Turbulence: A Numerical Study,” Phys. Rev. Lett., 68, 3156-3159 (1992).

32. Porter, D. H., A. Pouquet, and P. R. Woodward, “Kolmogorov-Like Spectra in Decaying Three-
Dimensional Supersonic Flows,” Phys. Fluids A, 6, 2133-2142 (1994).

33. Woodward, P. R., “Superfine Grids for Turbulent Flows,” IEEE Computational Science &
Engineering, Vol. 1, No. 4, pp. 4-5+cover illustration, (December, 1994).

34. Woodward, P. R., D. H. Porter, B. K. Edgar, S. E. Anderson, and G. Bassett, “Parallel
Computation of Turbulent Fluid Flow,” Proc. Parallel CFD ’94 Conference, Kyoto, Japan, May,
1994; published in Computing Applications Mathematics, Vol. 14, no. 1, pp 97-105 (1995).

35. Porter, D. H., A. Pouquet, and P. R. Woodward, “Compressible Flows and Vortex Stretching,”
in Small-Scale Structures in Three-Dimensional Hydrodynamic and MHD Turbulence, ed. A.
Pouquet, M. Meniguzi, & P-L. Sulem, Springer Verlag, p. 51-58 (1995).

36. Dannevik, W. P., A. M. Dimits, R. H. Cohen, D. Eliason, O. Schilling, D. H. Porter and P. R.
Woodward, “Three-Dimensional Compressible Rayleigh-Taylor Simulation on the ASCI Blue-
Pacific ID System,” VHS Video (1996), LLNL Report UCRL-MI-125449.

37. Mirin, A. A., R. H. Cohen, W. P. Dannevik, A. M. Dimits, D. E. Eliason, D. H. Porter, O.
Schilling and P. R. Woodward, “Three-Dimensional Simulations of Compressible Turbulence
on High-Performance Computing Systems,” Eighth SIAM Conference on Parallel Processing
for Scientific Computing, Minneapolis (1997), LLNL Report UCRL-JC-125949.

38. Schilling, O., R. H. Cohen, W. P. Dannevik, A. M. Dimits, D. E. Eliason, A. A. Mirin, D. H.
Porter and P. R. Woodward, “Three-Dimensional High-Resolution Simulations of
Compressible Rayleigh-Taylor Instability and Turbulent Mixing,” Sixth Int’l. Workshop on the
Physics of Compressible Turbulent Mixing, Marseille, France (1997), LLNL Report UCRL-JC-
125308.

39. Cohen, R. H., W. P. Dannevik, A. M. Dimits, D. E. Eliason, A. A. Mirin, D. H. Porter, O.
Schilling, and P. R. Woodward, “Three-dimensional high-resolution simulations of the
Richtmyer-Meshkov mixing and shock-turbulence interaction,” in Proc. Of the 6th International
Workshop on the Physics of Compressible Turbulent Mixing, Marseille, France, 18-21 June,
1997, pp. 128-133. LLNL Report UCRL-JC-125309.

40. Cohen, R. H., A. M. Dimits, A. A. Mirin, W. P. Dannevik, R. G. Eastman, D. E. Eliason, O.
Schilling, D. H. Porter and P. R. Woodward, “Three-Dimensional PPM Simulations of Re-
shocked Richtmyer-Meshkov Instability,” VHS Video (1997), LLNL Report UCRL-MI-128783.

41. Woodward, P. R., D. H. Porter, B. K. Edgar, W. Dai, G. Bassett, S. E. Anderson, “Application
of Monotonicity-Preserving Godunov Schemes to Compressible Flow Simulation,”
Proceedings of the Godunov Conference, Univ. of Michigan, Ann Arbor, May, 1997.

42. Porter, D. H., P. R. Woodward, and A. Pouquet, “Inertial Range Structures in Decaying
Turbulent Flows,” Physics of Fluids 10, 237-245 (1998).

43. Porter, D. H., A. Pouquet, and P. R. Woodward, “Intermittency in Compressible Flows,” Proc.
Seventh European Turbulence Conference, St. Jean C. F., France, July, 1998, ed. Uriel
Frisch.

44. Mirin, A. A., R. H. Cohen, B. C. Curtis, W. P. Dannevik, A. M. Dimits, M. A. Duchaineau, D. E.
Eliason, D. R. Schikore, S. E. Anderson, D. H. Porter, P. R. Woodward, L. J. Shieh, and S. W.
White, “Very High Resolution Simulation of Compressible Turbulence on the IBM-SP
System,” the IEEE’s 1999 Gordon Bell Award was conferred in the performance category for
this work; also available as Lawrence Livermore National Laboratory Report UCRL-MI-
134237, July, 1999.

Draft. Not for Distribution.
2/10/05

24

45. Porter, D. H., A. Pouquet, I. Sytine, and P. R. Woodward, “Turbulence in Compressible
Flows,” Physica A 263, 263-270 (1999).

46. Sytine, I. V., D. H. Porter, P. R. Woodward, S. W. Hodson, and K.-H. Winkler 2000,
“Convergence Tests for Piecewise Parabolic Method and Navier-Stokes Solutions for
Homogeneous Compressible Turbulence,” J. Comput. Phys., 158, 225-238 (2000).

47. Cohen, R. H., W. P. Dannevik, A. M. Dimits, D. E. Eliason, A. A. Mirin, Y. Zhou, D. H. Porter,
and P. R. Woodward, “Three-Dimensional Simulation of a Richtmyer-Meshkov Instability with
a Two-Scale Initial Perturbation,” Physics of Fluids, 14, 3692-3709 (2002); also available as
LLNL Preprint UCRL-JC-144836 (2000).

48. Vetter, M., and Sturtevant, B., 1995. “Experiments on the Richtmyer-Meshkov Instability of an
Air/SF6 Interface,” Shock Waves, 4, 247-252.

49. Porter, D. H., Pouquet, A., and Woodward, P. R., “Measures of Intermittency in Driven
Supersonic Flows,” Pysical Review E 66, 026301 (2002).

50. Porter, D. H., and P. R., Woodward, “3-D Simulations of Turbulent Compressible Convection,”
Astrophysical Journal Suppl. 127, 159-187 (2000); available at www.lcse.umn.edu/conv3d.

51. Porter, D. H., P. R. Woodward, and M. L. Jacobs, “Convection in Slab and Spheroidal
Geometries,” Proc. 14th International Florida Workshop in Nonlinear Astronomy and Physics:
Astrophysical Turbulence and Convection, Univ. of Florida, Feb., 1999; in Annals of the New
York Academy of Sciences 898, 1-20 (2000); available at www.lcse.umn.edu/convsph.

52. Woodward, P. R., D. H. Porter, I. Sytine, S. E. Anderson, A. A. Mirin, B. C. Curtis, R. H.
Cohen, W. P. Dannevik, A. M. Dimits, D. E. Eliason, K.-H. Winkler, and S. W. Hodson, “Very
High Resolution Simulations of Compressible, Turbulent Flows,” in Computational Fluid
Dynamics, Proc. of the 4th UNAM Supercomputing Conference, Mexico City, June, 2000,
edited by E. Ramos, G. Cisneros, R. Fernández-Flores, A. Santillan-González, World
Scientific (2001); available at www.lcse.umn.edu/mexico.

53. Woodward, P. R., Porter, D. H., and Jacobs, M., “3-D Simulations of Turbulent, Compressible
Stellar Convection,” Proc. 3-D Stellar Evolution Workshop, Univ. of Calif. Davis I.G.P.P., July,
2002; also available at www.lcse.umn.edu/3Dstars.

54. Woodward, P. R., Anderson, S. E., Porter, D. H., and Iyer, A., “Cluster Computing in the
SHMOD Framework on the NSF TeraGrid,” LCSE internal report, April, 2004, available on the
Web at www.lcse.umn.edu/turb2048.

55. Porter, D. H., P. R. Woodward, and A. Iyer, “Initial experiences with grid-based volume visual-
ization of fluid flow simulations on PC clusters,” accepted for publ. in Proc. Visualization and
Data Analysis 2005 (VDA2005), San Jose, CA, Jan., 2005.

56. LCSE movies from a variety of turbulent fluid flow simulations can be downloaded and/or
viewed at www.lcse.umn.edu/MOVIES.

57. Yokokawa, M., Itakura, K., Uno, A., Ishihara, T., and Kaneda, Y., “16.4 Tflops Direct
Numerical Simulation of Turbulence by a Fourier Spectral Method on the Earth Simulator,”
Proc. Supercomputing 2002, Baltimore, Nov., 2002.

58. http://www.lcse.umn.edu and links from this main page.

59. Fryxell, B., P. R. Woodward, P. Colella, and K.-H. Winkler, “An Implicit-Explicit Extension of
the PPM Scheme for Lagrangian Hydrodynamics in One Dimension,” J. Comput. Phys. 63,
283 (1986).

60. Dai, Wenlong, and P. R. Woodward, “A High-Order Iterative Implicit-Explicit Hybrid Scheme
for 2-D Hydrodynamics,” in Numerical Methods for Fluid Dynamics V, pp. 377-383, eds. K. W.
Morton and M. J. Baines, Oxford Science Publications (1995).

61. Dai, Wenlong, and P. R. Woodward, “Iterative Implementation of an Implicit-Explicit Hybrid
Scheme for Hydrodynamics,” Journal of Computational Physics 124, 217-229 (1996).

62. Dai, Wenlong, and P. R. Woodward, “A Second-Order Iterative Implicit-Explicit Hybrid Scheme
for Hyperbolic Systems of Conservation Laws,” Journal of Computational Physics 128, 181-
196 (1996).

Draft. Not for Distribution.
2/10/05

25

63. Dai, Wenlong, and P. R. Woodward, “Numerical Simulations for Nonlinear Heat Transfer in a
System of Multimaterials,” Journal of Computational Physics 139, 58-78 (1998).

64. Dai, Wenlong, and P. R. Woodward, “Numerical Simulations for Radiation Hydrodynamics. I.
Diffusion Limit,” Journal of Computational Physics 141, 182-207 (1998).

65. Dai, Wenlong, and P. R. Woodward, “Numerical Simulations for Radiation Hydrodynamics II.
Transport Limit,” Journal of Computational Physics 157, 199-233 (2000).

66. Dai, Wenlong, and P. R. Woodward, “Implicit-Explicit Hybrid Schemes for Radiation
Hydrodynamics Suitable for Distributed Computer Systems,” in Parallel Computational Fluid
Dynamics, Elsevier, Eds. Keyes, Ecer, Satofuka, Fox, and Periaux, p. 179-187 (2000).

67. Dinge, D., and P. R. Woodward, “A Parallel Cell-by-Cell AMR Method for the PPM
Hydrodynamics Code,” International J. Modern Phys. C, 14, 1-24 (2003).

68. Anderson, S. E., P. R. Woodward, and D. H. Porter 1995, “A Simplified 3-D PPM
Implementation for the Clustered SMP Architecture, a Parallel Programming Template,” 3-D
sPPM template code, and associated materials, available at www.lcse.umn.edu/research/-
sppm (the LCSE Web site).

69. Woodward, P. R., and S. E. Anderson, “Portable Petaflop/s Programming: Applying
Distributed Computing Methodology to the Grid Within a Single Machine Room,” Proc. of the
8th IEEE International Conference on High Performance Distributed Computing, Redondo
Beach, Calif., Aug., 1999; available at www.lcse.umn.edu/HPDC8.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 2400
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 2400
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

