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1. Introduction. 

The development of the PPM gas dynamics scheme grew out of earlier work in the mid 1970s with 
Bram van Leer on the MUSCL scheme [1-3].  At Livermore, in the late 1970s, the use of moments of the 
internal cell distributions which makes MUSCL resemble finite element schemes was abandoned for 
reasons of compatibilit with Livermore production codes.  In order to recapture the accuracy of MUSCL 
while using only cell averages as the fundamental data, PPM, the Piecewise-Parabolic Method, was 
developed in collaboration with Phil Colella [4-7].  Over the last 20 years, PPM has evolved considerably 
in order to address shortcomings of the scheme as it was laid out in [6] and [7].  PPM has also been 
extended to MHD [8-18] in collaboration with Wenlong Dai, applied extensively to the study of jets and 
supersonic shear layers [19-25] in collaboration with Karl-Heinz Winkler, Steve Hodson, Norm Zabusky, 
Jeffrey Pedelty, and Gene Bassett, used to simulate flow in disk galaxies and around stationary and 
moving objects [26-28] in collaboration with B. Kevin Edgar, applied extensively to convection and 
turbulence problems [29-56] in collaboration with David Porter, Annick Pouquet, and Igor Sytine (see later 
article in this volume), and most recently extended to multifluid gas dynamics problems.  Implicit versions 
of the method have also been worked on [59-66] in collaboration with Bruce Fryxell and Karl-Heinz 
Winkler and, later, Wenlong Dai.  A cell-based AMR version of PPM has been under development [see 
67], in collaboration with Dennis Dinge.  The PPM code has been implemented on many parallel 
computing systems, including some with thousands of processors [68-69; 54-55].  Versions of the PPM 
gas dynamics scheme have become incorporated into 3 community codes aimed at astrophysics 
applications:  FLASH [refs], ENZO [refs], and VH-1 [refs]. 

Because the several improvements and modifications to the 1984 or 1986 versions of PPM in the 
literature have not been published, we here lay out the present scheme for simple, single-fluid, ideal gas 
dynamics from start to finish.  Then selected results on homogeneous, isotropic, compressible turbulence 
in a cubical, periodic domain are briefly reviewed. 

2. Design Constraints. 

Before launching into a systematic description of the PPM algorithm, it is worthwhile to first explain 
the constraints that have influenced its design.  These are: 

1. Directional operator splitting. 

2. Robustness for problems involving very strong shocks. 

3. Contact discontinuity steepening. 

4. Minimal dissipation. 

5. Numerical errors dominated by dissipation, as opposed to dispersion. 

6. Preservation of signals, if possible, even if their shapes are modified, so long as they travel at 
roughly the right speeds. 

7. Minimal degradation of accuracy as the Courant number decreases toward 0. 

The first of these design constraints was to guarantee very high processing speeds on all CPU 
designs.  It has the side benefit of allowing the PPM scheme to employ complicated techniques to achieve 
high accuracy that would be impractical in a truly multi-dimensional implementation, especially in 3D.  
Accuracy is still limited in principle by the use of 1-D sweeps, but in practical problems errors produced by 
the use of 1-D sweeps have rarely, if ever, appeared to be important.  The demand that the scheme be 
robust in the presence of very strong shocks has produced a general orientation that dissipation, in the 
right places, times, and amounts is good rather than bad.  Early experience with Glimm’s random choice 
scheme for multidimensional compressible gas dynamics in the 1970s illustrated the error of letting the 
formal dissipation of the scheme vanish for flows containing shocks.  In low-speed turbulent flows, the 
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need for dissipation in the numerical scheme is less obvious but no less real.  Contact discontinuity 
steepening is included in PPM in order to allow multifluid problems to be treated simply through the 
addition of passively advected constitutive properties, such as the constants of an analytic representation 
of the equation of state.  The view of dissipation in PPM has already been mentioned.  Naturally, a design 
goal has always been to minimize the dissipation consistent with an accurate solution.  Nevertheless, it 
has also been a design goal that it is better to dissipate a signal than to significantly falsify its speed.  This 
has led to an intolerance for signals with very short wavelengths, such as, for example, 4 cell widths.  
However, a further design goal was to preserve those signals that could be propagated accurately, even if 
this were to require a falsification of the signal shape.  Such signals tend to move through the grid at the 
fluid velocity, since very short wavelength sound waves, with the exception of shocks, are difficult to 
propagate at the right speeds.  The final design goal, that the accuracy of the scheme should be 
maintained in the limit of very many very small time steps is achieved through special features of the 
interpolation discussed below. 

The attitude that has been taken in the PPM design toward numerical dissipation is the most 
relevant of these design constraints for the use of PPM in simulating turbulent flows.  This point will be 
discussed after the scheme has been laid out, using simulations of decaying compressible turbulence as 
illustrations. 

3. PPM Interpolation. 

The heart of any numerical scheme is its approach to interpolation.  PPM utilizes the cell averages 
of various quantities in a fairly broad stencil surrounding a cell in 3D in order to construct a picture of the 
internal structure of the cell.  Because the equations of hydrodynamics are coupled, the PPM interpolation 
of the relevant quantities is also coupled.  However, to see how the interpolation process works, it is 
easiest to consider it first for the simple case of a single variable, which we will represent by the symbol  

a .   We will represent the cell averages of  a   by  
i

a .   We write the value of  a   at the left- and right-

hand interfaces of the cells as  iLa ,   and  iRa , .   We will determine the coefficients of a parabola  

2
210
~~)~( xaxaaxa ++=   representing the distribution of the variable  a   within the cell in terms of a cell-

centered local coordinate   xxxx M ∆−= /)(~ .   Here  Mx   is the cell center and  x∆   is the cell width.  

For simplicity, we first assume a uniform grid.  (In modern AMR codes, interpolation on non-uniform grids 
is unnecessary.)  Our first task is to determine whether or not the function  )(xa   is smooth in the region 
near our grid cell.  To do this, we will essentially compare the first and third derivatives of the function in 
our cell.  This process can be formulated in several different ways, all of which boil down to essentially the 
same criterion.  We begin by determining the unique parabola that has the prescribed cell averages in our 
cell of interest and its two nearest neighbors. 

If we write 

1−
−=∆

iiiL aaa  

then we have 

( ) 2/)(;2/ 21 LRRL aaaaaa ∆−∆=∆+∆=  

Here we have dropped the subscript  i   by writing  Ra∆   for  1, +∆ iLa .   Where possible, we will try to 

eliminate confusing subscripts by such devices.  However, all our subscript indices will refer to cells, and 
none to interfaces (no half-indices will be used).  If no subscript index is given, the subscript  i   for our cell 
of interest will always be implied.  In PPM, interpolated variables are discontinuous at interfaces, which 
makes the use of index subscripts such as  2/1+i   ambiguous.  Thus,  iRa , ,  or simply  Ra ,  is not 

equivalent to  1, +iLa . 
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We will consider a function to be smooth near our grid cell if the above unique parabola, when 
extrapolated to the next nearest neighbor cells, gives a reasonable approximation to the behavior of the 
function there.  This will not be true, of course, if the third derivative of the function is sufficiently large.  
We will consider the function to be smooth in our cell of interest if the parabola in its neighbor on the left, 
when extrapolated into our cell’s neighbor on the right gives an accurate estimate of that cell’s average, 
and if also that cell’s parabola gives a good estimate of the average in our cell’s neighbor on the left.  

Writing the average of the extrapolated parabola in the neighbor cell as  
1±ii

a  and in the next nearest 

neighbor cell as  
2±ii

a ,  we find that 

)(2;)(2 1,221121,211 +−−−++
−=−−=− iiiiiiii
aaaaaaaa  

Here we have used the fact that, by construction of these parabolae,  
11 ±±

=
iii

aa .  We denote the 

fractional error in this extrapolation by  errf ,  given by 

( ) ( ) ( ) ( ){ }LLiRRierr asignaaaasignaaaf ∆+∆−∆+∆−= −+ ,(/,,(/max 1,2221,2 αα  

Here  sign   is the Fortran sign transfer function, which applies the sign of its second argument to the 
absolute value of its first argument.  We also denote a trivial value of the quantity  a   by  α .  Thus the 
term with the sign function is simply used to protect the divide operation in a Fortran program.  Of course, 
we ignore this error estimate when this difference is very small, since in that case it is of no consequence 
whether we get a “good” extrapolation or not.  To get some perspective on this measure,  errf ,  of the 

smoothness of the function  a   on our grid, it is instructive to evaluate  errf   for sine waves of 

wavelengths  xn ∆  .   For the case where   ))/(2sin()( xnxxa ∆= π ,  we have   0asa = ,   where  

0a   is the value at the center of the cell and   )2/sin()/2( xxs ∆∆= .   The higher-order coefficients of 

the interpolation parabola are given by   ))/(2cos()sin(1 xnxxsa M ∆∆= π ,  where  Mx   is the 

coordinate of the cell center, and by   02 )1)(cos( axsa −∆=  .   We therefore find that for values of  n   

ranging from  4  to  15,  our fractional error, equal simply to  )cos(1 x∆− , assumes the values:   1.00, 
0.69, 0.50, 0.38, 0.29, 0.23, 0.19, 0.16, 0.13, 0.11, 0.10, and 0.09.   If we assert that a sine wave over 14 
cells is smooth and one over 10 cells is not, then we may conclude that it is reasonable to assert that a 
function is smooth if  10.0≤errf   and it is not smooth if  20.0≥errf  .   In between these two values, we 

may treat the function as partially smooth, by taking a linear combination of a smooth and an unsmooth 
interpolation parabola.  The choice of which functions we will treat as smooth and which not comes from 
experience.  Using only cell averages, it takes five cell values to determine, for example, whether one is 
really in a shock or not, as we will later see, or, as we have just seen, whether the function is locally 
smooth or not.  Under such conditions, it is simply unreasonable to believe that one can properly treat a 
sine wave with a wavelength of only 6 cells.  There are those in the community who believe this can be 
done, but PPM assumes this is impossible without further independent information provided upon which 
the numerical scheme can operate.  Experience also shows that numerical noise, which can originate 
from a number of sources, some of which will be identified later, tends to show up principally at 
wavelengths between 4 and 8 cells.  Signals that appear at these wavelengths are thus quite possibly 
noise, and therefore deserve to be treated as if they might actually be noise.  PPM takes the view that a 
little noise is not bad, but too much is intolerable.  This view is motivated by much experience indicating 
that elimination of noise is usually accompanied by significant collateral elimination of the signal. 

In PPM, we interpolate several different functions.  Some of them, like the Riemann invariants, are 
defined only as differences (the Riemann invariants are defined by inexact differentials).  Other functions, 
like the transverse velocities, are defined by cell averages.  Some may have sharp transitions, associated 
with contact discontinuities, that deserve special treatment.  Below, we describe the most general 
algorithm, for the special case of a uniform grid.  This is the algorithm that PPM uses to interpolate a sub-
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grid structure for the Riemann invariant associated with the entropy, for which the differential form is given 
by 

2/ cdpddA −= ρ  

From this most complicated interpolation algorithm, all other, simpler forms used in PPM can be derived 
as special cases.  We will therefore describe the interpolation for the entropy Riemann invariant in detail, 
and later briefly note in which respects the other interpolations are degenerate cases of this one. 

We begin the interpolation of  dA   by defining a variable  A   derived from it by determining the 
arbitrary constant of integration such that the cell average of  A   vanishes.  Thus each cell has its own 
local scaling for  A   in which the cell average vanishes but the derivatives are correct.  This local scaling 
is much like the local, cell-centered coordinate,  x~ ,  that we use to define the interpolation parabola in a 
cell.  There is a discontinuous jump in the integration constant when we go from one cell to its neighbor.  
This jump is 

( ) ( ) 2
11

2 // LiiLLLL cppcpA
−−

−−−=∆−∆=∆ ρρρ  

For the gamma-law equation of state, we estimate  2
Lc   via 

( ) ( )[ ]ργργ //
2
1

11
2 ppc

iiL +=
−−

 

Here we see a common practice used in PPM, namely the evaluation of an estimate of the cell average of 
a function of primitive fluid state variables as the function of the cell averages.  Experience shows that 
attempts to do better than this are usually unrewarded by compensating increases in simulation accuracy.  
In the specific case of the kinetic energy, PPM does do a better job, but the effect on the flow accuracy is 
only marginal in this case, and the cost is not insignificant. 

Using the above definitions, we evaluate a fractional error estimate as follows: 

αdAA
AAAAAA

f
RL

iLLRLRiL
err +∆+∆

∆+∆−∆+∆+∆−∆
= −+ 1,2, 22

2
1

 

Here  αd   represents a trivial Riemann invariant difference that is used to protect the divide in the Fortran 
program.  We note that this error estimate is very similar to but not exactly the same as the one discussed 
earlier.  Using this error estimate, we construct a measure, Ω , varying between 0 and 1, of the roughness 
of the function near this grid cell as follows: 

( ){ }{ }1.010,0max,1min −=Ω errf  

We now construct estimates  1sA   and  1mA   of the first-order parabola coefficient, which gives the change 

of the variable across the cell.  The first,  1sA ,  applies to the parabola that has the 3 prescribed average 

values in this and the nearest neighbor cells.  The second,  1mA ,  applies to this parabola after the 

application of a monotonicity constraint.  These quantities will be used in constructing further quantities 
below.  We have already seen that   ( ) 2/1 RLs AAA ∆+∆= .   Defining a sign variable,  s ,  of absolute 

value unity to have the sign of  1sA ,  we may then compute  1mA   in the following sequence of steps: 

{ }RLm AsAsA ∆∆= ,min2~
1   ,  { }{ }111

~,min,0max
~~

msm AAssA =  

( ) 111

~~1 msm AAA Ω−+Ω=  
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(The superiority of Fortran over mathematical notation for the description of numerical algorithms is here 
becoming apparent.)  We now define two estimates,  sLA   and  mLA ,  of the value at the left-hand cell 

interface.   The first of these,  sLA ,  corresponds to an unconstrained interpolation polynomial, while  mLA   

corresponds to one that is constrained. 

( ) LsissL AAAA ∆−−= − 2
1

6
1

11,1 ,          ( ) LmimmL AAAA ∆−−= − 2
1

6
1

11,1  

We note that these interface value estimates involve the cell averages in two cells on either side of the 
interface.  The unconstrained estimate is the value of the unique cubic curve that has the prescribed 
average values in these 4 cells.  The constrained value is guaranteed to lie within the range defined by 
the cell averages adjacent to the interface.  Of course, both these values refer to the choice of integration 
constant that gives a vanishing cell average to the right of this interface (in the cell of interest, i  ).   We 
desire a linear combination of these two interface value estimates, which we will regard as a provisional 
estimate  mLsLpL AAA Ω+Ω−= )1( .  Rather than build this value  pLA   by blending the unconstrained 

and constrained estimates, we find it more useful to build blended parabola coefficients,  

111 )1( msp AAA Ω+Ω−= ,  and to form  pLA   from these.  This procedure allows us to make use of the 

coefficients  1pA   later in our contact discontinuity detection and steepening algorithm.  We now proceed 

to modify our provisional interface values  pLA   in cells where the function is not smooth.  First, we set our 

interpolation function to a constant in cells where extrema occur, unless of course the function is smooth 
there.  Thus, if   0≥pRpL AA ,   we set new provisional values, indicated by a subscript q ,  as follows:   

pLqL AA )1( Ω−= ,   pRqR AA )1( Ω−= .   Otherwise we simply set   pLqL AA =   and  pLqL AA = .   Now, 

in cells where the function is not smooth, we constrain the internal structure to be monotone.  We must 
make sure in this process not to revise the cell structure further in the cells containing extrema.  We 
therefore construct limiting values,  lLA   and  lRA ,  which we must be careful to set to  0  in cells 

containing extrema.  In the remaining cells, these values are:   pRlL AA 2−=    and   pLlR AA 2−= .   This 

reflects the fact that a parabola having zero slope at one side of the cell will assume at the opposite 
interface the negative of twice this value, so long as the cell average is zero.  If these limiting values are 
exceeded in cells where the function is not smooth, we must reset them to these limits.  Therefore we 
construct new, but still provisional, values  rLA   and  rRA   (in Fortran, of course, no new names are 
required),  which reflect this additional constraint: 

( ) ( ) qLrLlLqLrLlLqLqLqR AAotherwiseAAAthenAAAAif =Ω+Ω−=<−− ,)1(,0  

( ) ( ) qRrRlRqRrRqRlRqLqR AAotherwiseAAAthenAAAAif =Ω+Ω−=<−− ,)1(,0
From these provisional interface values, we construct provisional interpolation parabola coefficients: 

( ) 12/,3, 2021 rrrRrLrrLrRr AAAAAAAA −=+=−=  

For interpolation of sound-wave Riemann invariant differences, for which we do no contact discontinuity 
steepening, the above values are our final results.  However, for the entropy Riemann invariant 
differences, we continue as described below.  We also note that interpolation of a variable, such as the 
transverse velocity component, which is not expressed as a differential form, we may first construct 
differences of the cell averages and then proceed as outlined above. 

We wish to detect cells that are inside sharp jumps in the entropy Riemann invariant that are 
associated with contact discontinuities.  In such cells, it is inappropriate to try to fit smooth curves to 
determine the subgrid structure, since it is actually discontinuous (PPM is solving the Euler equations).  
For the purpose of computation, we will nevertheless require that the distribution inside the grid cell be a 
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parabola;  however, we may use the knowledge that the actual structure is discontinuous to construct an 
appropriate choice for this parabola.  The idea here is quite simple.  We build a test that detects cells that 
are within contact discontinuity structures.  Then we obtain estimates of the interface values for such cells 
by extrapolating to the cell interfaces presumably smoother structures from outside the cell and hence, 
hopefully, from outside the discontinuity.  Together with the prescribed cell averages, these more 
appropriate cell interface values allow us to build an improved, steeper parabola to describe the 
distribution within the cell.  Obviously, the function in such cells is not smooth, so we apply monotonicity 
constraints to the new edge values and also to this improved parabola.  This procedure works very well in 
practice.  A similar procedure can be adapted for use with other numerical schemes that employ linear 
interpolation functions for the cell structures, but it is less effective.  Apparently, the curvature provided by 
the use of parabolae allows the dimensionless constants that will be introduced below to make the 
steepening process effective for contact discontinuities without requiring that the steepening process be 
applied for marginal cases, which can occasionally turn out not to actually be contact discontinuities.  That 
is, using parabolae we are able to apply the steepening process only in unequivocal circumstances and 
thus to avoid steepening structures by mistake that should not actually be steepened. 

We begin, as with our test for function smoothness, with a measurement of the size of the third 
derivative of the function relative to its first derivative.  Reusing the symbol  s   for a different sign variable, 
we build a steepness measure  S   in a sequence of steps as follows: 

( ) ( )αdsAAAAS sssLsR 10/ 111 +−−=  

Here  s   has absolute value unity and has the same sign as  1sA   in order to protect the divide without 

altering the sign of the overall expression.  As before,  αd   is a trivial Riemann invariant difference.  We 
must take care to realize that the numerator in this expression is not necessarily zero, since the edge 
values that appear there come from cubic curves rather than the parabolae that define the  1sA   values.   

We must also take care to realize that because each cell has its own value of the integration constant for 
this Riemann invariant’s differential form, we must set   RisLsR AAA ∆+= +1, .    With those cautions, we 

see that this expression for  1S   is very similar to our measure of the lack of function smoothness, except 
that no absolute value signs appear in it.  The first expression in the numerator for the variable difference 
across the cell involves cubic interpolation, which accounts for the third derivative of the function.  From 
this we subtract  1sA ,  which removes the part that is due to the first 2 function derivatives.  To obtain  1S ,  

we divide by an estimate of the first derivative.  The lack of absolute value operations in this formula for  

1S   is caused by our desire to detect sharp jumps in the function, and to reject sudden flat spots.  Flat 

spots will correspond to negative values of  1S .   We now scale  1S   and limit it to the range from 0 to 1: 

( ){ }{ }05.020,1min,0max 12 −= SS  

To guard against applying our contact discontinuity steepening anywhere but at true sharp jumps in the 
entropy, we reset  2S   to zero where the second derivative of the function does not change sign and also 
where the amplitude of the jump is not sufficient to warrant this special treatment (we do not want to 
preserve, or worse, to amplify small numerical glitches).  Thus: 

2331,21,2 ,0,0 SSotherwiseSthenAAif isis ==≥+−  

Here we use the earlier definition of the coefficients of the parabola that has the prescribed 3 cell 
averages, writing   ( ) 2/2 LRs AAA ∆−∆= .   To eliminate trivial jumps from consideration, we form  4S : 

344 ,0, SSotherwiseSthendAAif RL ==<∆+∆ α  

Before proceeding with the steepening algorithm, we make one further test to make certain that 
steepening is appropriate.  This test makes sense for contact discontinuities, but for other variables, such 



 

Draft.  Not for Distribution. 
2/10/05 

 

7

as a fractional volume of a second fluid, it might not.  Therefore this last test is optional, but we do use it 
for the entropy.  The calling program to the interpolation routine provides two variable differences along 
with the differences  LA∆ .   If the jump is one of the type we seek to detect, the differences  B∆   will be 

very small compared with the differences  D∆ .   Both these sets of differences are cell centered and 
have the same units.  We enforce this demand by constructing our final steepness measure,  S ,  as 
follows: 

4,0,1.0/0 SSotherwiseSthenDBorDif ==≥∆∆=∆  

In previous versions of PPM, the  B∆   were pressure differences and the  D∆   were estimates of  

ρ∆2c ,  while the density was the quantity being interpolated with potential contact discontinuity 
steepening.  We still perform this additional test, although it is somewhat redundant when interpolating the 

entropy Riemann invariant, for which the differential form is just   2/ cpA ∆−∆=∆ ρ . 

With our contact discontinuity detection process complete, and all cells inside such structures 
marked by  S ,  varying from 0 to 1, we are at last ready to begin the steepening operation.  Much earlier, 

we computed constrained variable differences  1mA   across the cells.  In principle, these variable 

differences could be only partially constrained, but it is safe to assume that if our cell is in a contact 
discontinuity, the parameter  Ω   that measured the function roughness assumes the value unity in this 
and the neighboring cells.  We define cell interface values,  cLA   and  cRA ,  appropriate for a contact 

discontinuity structure by extrapolating the constrained slopes of the function in neighboring cells to the 
interfaces of our cell of interest:    2/1,1 −+∆−= imLcL AAA     and    2/1,1 +−∆= imRcR AAA  .    We 

then construct our nearly final estimates for the interface values as: 

cLrLtL ASASA +−= )1(  ,  cRrRtR ASASA +−= )1(  

We must once again apply the constraints on the implied parabola and then compute the coefficients of 
that parabola, just as before (however, hardly any cells are steepened, and hence this extra work occurs 
in a scalar loop for only these cells, which incurs hardly any additional computational cost).  These 
operations will not be repeated here.  They are just like those we performed to arrive at first  qLA   and 

then  rLA   beginning with  pLA . 

It is worthwhile to note the ways in which the above interpolation algorithm addresses the previously 
listed design constraints for PPM.  Some of the points are obvious, but others are less so.  In particular, it 
is not obvious that dissipation errors will dominate dispersion errors, although this is in fact the case.  The 
reason for this is the action of the monotonicity constraints on all short wavelength disturbances, which 
always fail our test for function smoothness.  The monotonicity constraints are nonlinear, in that they alter 
the shape of a sine wave by introducing higher frequency components through effects such as the 
clipping of extrema.  Their overall effect is strongly dissipative for very short wavelength signals, which of 
course are the ones for which the numerical scheme would otherwise introduce significant dispersion 
errors.  This dominance of dissipation over dispersion error as a design goal may seem incompatible with 
the goal of minimal dissipation.  Our task is to deliver as little dissipation as possible while still having 
dissipation overwhelm dispersion.  PPM’s use of parabolae rather than the more commonly used linear 
interpolation functions is meant to address this design goal.  The use of cubic interpolation functions to 
help define these parabolae through interpolation of cell interface values reduces dissipation errors still 
further, since not all parabolae provide equally good fits.  However, even more importantly this use of 
cubic interpolation in PPM preserves the accuracy of the scheme in the limit of vanishing Courant number.  
Since, as is common practice, we will determine a single time step value for the entire grid based upon 
Courant number limitations for the single most demanding cell, the bulk of the cells we update will have 
very small Courant numbers.  When AMR is added to the scheme, the Courant numbers used for the bulk 
of the cells are likely to become even smaller.  Therefore it is very important for the accuracy of the 
calculation to hold up in this limit.  The use of cubic interpolation of cell interface values is our way of 
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addressing this issue in PPM.  Over many years of applying PPM to a wide variety of flow problems, very 
little Courant number sensitivity has ever appeared. 

The monotonicity constraints and contact discontinuity detection and steepening algorithms 
incorporated in PPM have important consequences for the propagation of barely resolved or effectively 
unresolved signals.  Our design goal is to preserve these signals, so long as we can propagate them at 
roughly the proper speeds, rather than to destroy them through numerical diffusion processes.  The 
monotonicity constraints and, to a far greater degree, the contact discontinuity steepening in PPM have 
this effect.  They act upon passively advected signals, such as entropy variations, that can easily be 
propagated at the correct speeds.  They apply an artificial compression along with their other effects, such 
as maintaining positivity where appropriate.  This tends to maintain signal amplitude while altering signal 
shape when the signal is not adequately resolved.  As the description of the contact discontinuity 
detection algorithm shows, we take great care to apply the steepening method only where appropriate, 
since some small signals, better described as numerical glitches of various types and causes, deserve to 
be dissipated. 

4. Using the Interpolation Operators to Build a Subgrid-Scale Model for a Cell. 

The above interpolation process is quite elaborate.  Nevertheless, it is not the entire story of PPM 
interpolation.  As we remarked earlier, the equations of gas dynamics are coupled, and therefore the PPM 
interpolations of the fluid state variables are also coupled.  The goal is to come up with a complete and 
consistent picture of the internal structure of a grid cell – that is, to come up with a subgrid-scale model.  
This is not a turbulence model, but it  is  a subgrid-scale model.  This model must satisfy, for consistency, 
certain primary constraints.  First, the integrated mass, momenta, and total energy must be consistent 
with the prescribed cell averages of these quantities.  This reflects the need for the numerical scheme to 
be in strict conservation form in order to correctly capture and propagate shocks.  PPM regards the 
fundamental cell averages on which it operates to be the cell averages of density and pressure (both 
volume-weighted) and those of the 3 velocity components (all mass-weighted).  From these, PPM defines 

the mass, momenta, and total energy of a cell to be:   xm ∆=∆ ρ ,   mux ∆ ,   muy ∆ ,   muz ∆ ,   

and   ( ) muuux
p

zyx ∆+++∆
−

222

2
1

1γ
 .    Here we do not bother to include the cell widths in 

the transverse directions,  y∆   and  z∆ ,  because they cancel out of all our equations for the x-pass.  
The last expression, for the cell’s total energy, is misleading.  At the beginning of the grid cell update for a 
1-D pass, we compute the total energy of the cell in just this way.  However, once we have done this, we 
make a more accurate estimate of the cell’s kinetic energy and then revise its thermal energy, keeping 
this total constant.  We do this by using nearest neighbor cells to compute cell-centered slope estimates 
for all 3 velocity components.  We then apply the standard monotonicity constraints to these slopes.  All 
these computations are similar to the following steps, for the slope of  yu   in the  z   direction: 

( )
112

1
−+

−=∆
kykyyz uuu   , ( ) ( ) ( ){ }

11max
,min2

−+
−−=∆

kyyykyyz uusuusu  

( ){ }{ }
max

,min,0max yzyzymz uussu ∆∆=∆  

Here  s   has absolute value unity and the same sign as  yzu∆ .   We now estimate the cell’s average 

kinetic energy to be given by 
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This process captures the first correction to the average kinetic energy that arises from the internal 
structure of the velocity within the grid cell.  The method would still be second-order accurate without this 
correction, but this correction proves to be of some marginal value (relative to its implementation cost) in 
flows involving strong shear layers.  Terms of this sort make up part of some turbulence closure models, 
although one might argue that this is inappropriate, since they have nothing specifically to do with 
turbulence.  In PPM we must compute estimates for cell averages of several other quantities, and 
including terms like these for all those computations would roughly double the cost of the scheme.  This 
has been tried, and little noticeable benefit is delivered in practical problems.  Therefore only these 
velocity terms are included in PPM.  One can see why these terms are important as follows.  The velocity 
slopes can be very large in a cell, because shear layers that are stretching due to the local flow or due to 
their own instability naturally become ever thinner.  The contribution to the kinetic energy from the velocity 
slope terms can therefore be significant, and can thus have a significant effect upon the pressure (since 
the total energy is prescribed), and hence upon the dynamics.  Nevertheless, this effect upon the 
dynamics is strongly localized, so that omitting the terms, as was done in PPM for many years, only tends 
to increase by roughly 50% the numerical friction in thin, strong (roughly sonic or supersonic) shear 
layers. 

In order to propagate signals, we need to interpolate their subgrid structures.  We therefore apply 
the previously described interpolation algorithm to the 5 Riemann invariants of the Euler equations for 3-D 
compressible flow.  For the two transverse components of the velocity,  yu   and  zu ,  which are advected 

passively with the fluid velocity in the x-pass, we form differences and then apply the interpolation scheme 
described above.  We do no contact discontinuity detection or steepening for these variables, even though 
they may in fact jump at such discontinuities.  We have already discussed in detail the treatment for the 
entropy Riemann invariant.  The sound wave Riemann invariants, which we denote by  ±R ,  are defined 

by the following differential forms and their corresponding numerical approximations: 

C
dpdudR x ±=±            

( ) ( )
111

/2
−−−± +−±−=

∆
±∆=∆

iiixx
L

L
xLL CCppuu

C
puR  

Here we introduce the Lagrangian sound speed   cC ρ= ,  and we approximate its cell average as   

ργρ pcC == .    The pressure, of course, is  p ,  and only the x-component of velocity 

appears because we are describing the x-pass of the directionally split PPM algorithm.  It is disturbances 
in  +R   that propagate to the right at speed   cus x +=+   and disturbances in  −R   that propagate to the 

left at speed  cus x −=− .   We interpolate parabolae to describe the structure of these sound wave 

signals in the grid cells, using  LR±∆   in place of  LA∆   in the algorithm previously described, and of 

course performing no contact discontinuity detection or steepening.  Performing interpolations for the 
Riemann invariants attempts to uncouple the gas dynamic equations as much as possible.  However, we 
will not work in terms of these variables directly.  Instead, we will immediately go about constructing 
interpolation parabolae for the primary fluid state variables – the density, pressure, and 3 components of 
velocity – in a manner that attempts to achieve as much consistency as possible with the interpolated 
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structures of the Riemann invariant signals.  To perform our hydrodynamical cell update, we will require 
internal cell structures for all these variables as well as the total energy.  Any choice of structures for 5 
variables will imply structures for all the others, but those implied structures may not satisfy reasonable 
constraints, such as monotonicity or positivity when appropriate.  PPM attempts to achieve consistency 
between interpolated and implied structures by first interpolating constrained parabolae for the Riemann 
invariant signals, constructing the implied parabolae for the primary state variables, and then constraining 
those implied parabolae where appropriate.  In a sense this is an attempt to “have it both ways,” which is 
of course impossible.  However, experience has shown that the extra labor involved in this process 
delivers additional accuracy and robustness of a value worthy of its computational and programming cost. 

From the interpolated parabolae for the sound wave Riemann invariants, we may compute the cell 
interface values of the pressure and x-velocity as follows: 

( ) 2/LLLL RRCpp −+ −+=  ,          ( ) 2/RRRR RRCpp −+ −+=  

( ) 2/LLxxL RRuu −+ ++=  ,          ( ) 2/RRxxR RRuu −+ ++=  

We also compute a measure,  Ω ,  of the lack of smoothness of the associated functions as the maximum 
of the values found for the two sound wave Riemann invariants separately during the process of their 
interpolation:   { }

−+
ΩΩ=Ω RR ,max  .   We will use this measure  Ω   to control the application of 

constraints to our interpolation parabolae for  p   and  xu .   We first apply monotonicity constraints, 

controlled by  Ω ,  to the cell interface pressures and x-velocities obtained above.  When  1=Ω ,  we 
demand that the interface values lie within the ranges defined by the averages in adjacent cells.  We then, 
again when  1=Ω ,  demand that the parabolae defined by these constrained interface values and the 
cell averages are monotone.  These constraints are essentially the same as those described earlier for 
the interpolation of the entropy Riemann invariant, and hence they will not be stated in detail here.  Once 
the interpolation parabola for the pressure has been so derfined, we may use the interpolated interface 
values for the entropy to determine interface values for the density.  Using the maximum of the  Ω   
measures for the pressure and for the entropy, we may then constrain the interface densities and 
ultimately the parabolae that they and the cell averages define. 

At the end of this lengthy process, we have interpolation parabolae defined for the density, pressure, 
and all 3 velocity components.  The formulae presented assume uniform cell sizes, although more general 
formulae are easily derived and were presented in the description of PPM in [whatever].  We can think of 
these interpolations as occurring in a cell number variable, so that they are valid, although potentially 
somewhat less accurate, even if the cell size is smoothly varying.  Nevertheless, we must take care in 
interpreting these parabolae.  Some of the variables described by them, such as the velocity components, 
must be considered to vary according to mass fraction across each cell, since the (mass-weighted) cell 
average is associated directly with the conserved cell momentum.  For the velocities, therefore, we take 
the interpolation variable  x~   within the cell to have its origin at the center of mass and to describe 
fractions of the cell mass rather than of the cell volume.  For the pressure or the density, whose volume 
integrals are directly associated with the mass and internal energy, we must interpret  x~   as having its 
origin at the center of the cell in a volume coordinate and to describe volume fractions within the cell.  Our 
use of the uniform grid formulae therefore reflects an assumption that all interpolated quantities are 
smoothly varying in a cell fraction variable, be it a volume or a mass fraction.  We know this assumption to 
be false at contact discontinuities and slip surfaces (for some of the variables) and at shocks, but we have 
augmented our interpolation procedure to deal with these discontinuities.  The interpolation is therefore 
valid, so long as we interpret it properly. 

The process described above has enabled us to construct a subgrid-scale model for each cell.  
Since each fluid state variable varies as a simple parabola inside a cell, this subgrid-scale model cannot 
possibly describe subgrid-scale turbulent motions.  To perform that function, the model would have to be 
augmented by the addition of one or more new state variables, such as a subgrid-scale turbulent kinetic 
energy variable, which could also be given an interpolation parabola within the cell.  Nevertheless, our 
demand that the structure of a velocity component within a cell be no more complicated than a parabola, 
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and our constraints on that parabola, provide a powerful mechanism to dissipate kinetic energy of small-
scale motions unresolvable or marginally resolvable on our grid into heat.  This is one of the important 
functions of turbulence closure models, especially when incorporated into difference schemes that lack 
any other method to accomplish this very necessary dissipation.  In this respect, turbulence models can 
be used to stabilize otherwise nonlinearly unstable numerical schemes, a role that has nothing to do with 
turbulence itself and that confuses the purpose and function of a turbulence model.  As we will see later, 
with PPM we may compute turbulent flow directly from the Euler equations that govern it, and we 
accomplish the dissipation of small-scale motions through the truncation errors of our numerical scheme 
rather than from differencing an explicit viscous diffusion term.  We take the view that the details of this 
dissipation are unimportant so long as kinetic energy turning up on the smallest possible scales in our 
computation is dissipated into heat with no unphysical side effects.  We presume that in a far more 
expensive and careful simulation of all relevant physics, this same kinetic energy would be dissipated in 
any event, and the same amount of heat generated (since total energy is conserved), but the (hopefully 
unimportant) details on tiny length and time scales would differ.  The assumption here is that the kinetic 
energy that appears on scales where the numerical dissipation comes into play has arrived there due to a 
physical process, such as a turbulent cascade, that is correctly simulated in our calculation because it has 
nothing to do with molecular viscosity. 

5. The PPM Approximate Riemann Solver 

We will update the cell averages in time by applying the laws of conservation of mass, momentum, 
and total energy.  To do this, for a 1-D x-pass of the algorithm, we must compute time-averaged fluxes at 
the left- and right-hand cell interfaces of these 5 conserved quantities.  This is done with the help of an 
approximate Riemann solver.  A fundamental approximation that we make is that the solution to the 
Riemann problem for left and right states representing spatial averages over the appropriate domains of 
dependence is roughly equivalent to the average in time of the many separate Riemann problem solutions 
that each express the interaction of the specific Riemann invariant values arriving at the interface at that 
particular time.  The Riemann solver is a nonlinear operator, and we assume that its output when 
operating on the averaged inputs is equivalent to the average of the outputs from the separate, time-
varying inputs.  This assumption makes the Riemann solver relatively simple and efficient.  Our elaborate 
construction of subgrid-scale structures allows us to easily arrive at the spatial averages in the appropriate 
domains of dependence.  In the linear regime, when we have simple advection of the Riemann invariants, 
we get the full advantage of or interpolation parabolae for the Riemann invariant signals.  Experience 
shows that when variations in  ±R   are large, shocks rapidly develop, and these demand techniques only 
loosely related to concepts of formal order of accuracy. 

Here we will discuss how we handle the domain of dependence for the Riemann invariant  +R .   

The treatment for  −R   is similar, and will not be described.  We will treat the characteristic speed  

cus +=+   to be constant both in space and time within each cell for this single time step.  Accounting for 

the space and time variation of   +s   is demanded only if we desire formal third-order accuracy.  We will 
focus our discussion on the left-hand interface of our cell of interest.  We calculate a Courant number,  

L+σ ,  which applies to one or the other of the adjacent cells, depending upon the signs of  +s   in them: 

0,/;0,/ 1,1, ≤∆∆−=≥∆∆= +++−+−++ sifxtsotherwisesifxts LiiL σσ  

We note that the two possibilities listed above are not exhaustive.  In the case where  +s   is directed away 
from the interface on both sides, we will have a centered rarefaction there.  We will handle this case later.  
For the moment it will be sufficient to set  L+σ   to zero in this rare event.  The Courant condition demands 

that we control the time step  t∆   so that  L+σ   does not exceed unity.  We now estimate the spatial 

averages of the density and pressure,  
L+

ρ   and  
L

p
+

,  in the domain of dependence via: 
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We obtain  
L

p
+

  using similar formulae.  From  
L+

ρ   we may calculate a mass fraction Courant 

number,  Lm+σ .   When  01, ≥−+ is ,  we have   
1

/
−+++ =
iLLLm ρρσσ ,   and otherwise we have   

ρρσσ /
LLLm +++ = .   We can then obtain  

Lxu +
  using the same formulae as for the density or 

pressure, but with  L+σ   replaced by  Lm+σ .   Note that we choose the upwind domain of dependence in 

the case when  +R   Riemann invariant signals reach the interface from both adjacent cells.  This can 

happen if the interface is inside a shock structure, in which case the  +R   signals from the cell on the right 

will become lost in the shock transition.  Hence we take the signals from the cell on the left in this case, 
which will correspond to the proper post-shock state.  For the  −R   signals, we prefer signals from the cell 

on the right, if such signals can reach the interface from both adjacent cells.  In the case when  01, <−+ is   

and also  0>+s ,  the left-hand interface of our cell is located inside a centered rarefaction fan.  We 

desire Riemann invariant information corresponding to a vanishing characteristic speed.  We interpolate  

L+
ρ ,  

L
p

+
,  and  

Lxu +
  linearly between the two edge values, as in:   

( ) LLiRLL
pfpfp +−++

−+= 11, ,   where   ( )1,/ −++++ −= iL sssf  . 

A simple, linearized solution to the Riemann problem at the cell interface can be obtained from the 
demands that the time-averaged state at the interface have the same values of  ±R   as the domains of 
dependence which we have just determined.  At this point we desire only the time-averaged pressure and 
x-velocity at the interface, which we denote by  Lp   and  xLu .   Using the differential forms that define the 

Riemann invariants, we thus have:     ( ) 0/ =−±−
±± LLLLxxL Cppuu  .    Therefore: 

( ) ( )
LL

L
LxLxxL pp

C
uuu

−+−+
−++=

1
2
1

 

( )
LxxLLLL uuCpp

−−
−+=  

Because this is a numerical scheme, and anything can happen, we subsequently make sure that  Lp   is 
at least as big as some trivial, floor value.  This simple, linear Riemann solver suffices for almost all the 
cell interfaces, but it is not good enough for interfaces that are in strong shock structures.  For such cells, 
which are very small in number, we can do much better.  However, first we must determine which cells are 
in shock structures.  In PPM, we go to considerable lengths to identify these cells, and we will use the 
information we glean in the process to build a “smart” diffusion velocity that we will use to greatly diminish 
noise that can be generated at shocks in numerical computations. 

Experience has shown that shock detection must be done using information from all 3 dimensions.  
This fact means that the difference stencil of the PPM 1-D pass extends into the transverse dimensions.  
This explicit acknowledgement that the 1-D pass is actually part of a multi-D computation allows PPM to 
avoid a number of numerical pathologies that would otherwise occur.  Several of these have been 
discussed in the original paper laying out the design philosophy and major techniques of PPM [W&C].  
(These pathologies were dubbed “Cray instabilities,” since at the time one needed to have access to a 
Cray-1 computer in order to afford grids fine enough to observe them.)  As with the detection of function 



 

Draft.  Not for Distribution. 
2/10/05 

 

13

roughness and sudden jumps associated with contact discontinuities, detection of shocks requires the 
inspection of data from 2 cells on either side of the cell of interest.  For the case of shock detection, we 
use 2 cells on either side in each of the 3 dimensions.  Taking differences over 4 cell widths allows us to 
get a good estimate of the entire shock transition, and hence of its propagation speed.  We will need to 
know the propagation speed relative to the grid as well as the shock orientation relative to the grid in order 
to detect those situations which require diffusion at the shock, and hence to be able to construct our smart 
diffusion velocity.  Our approach is to first compute in vectorizable loops quantities that allow us to 
eliminate most candidate cells, and then to do the more involved computations determining shock 
orientation and propagation speed only for the very few cells that require this.  We will demand that to be 
considered as within a shock structure a cell must be in a region of compression and in a sudden pressure 
jump of at least 25%.  These demands will allow us to eliminate from consideration the great bulk of our 
cells. 

First, in each of the 3 dimensions, we evaluate the jump between the next nearest neighbor cell 
averages of the pressure on either side of our cell.  In this process, we also determine which of these next 
nearest neighbor cells has the lower pressure value.  We then find the largest of these pressure jumps 
and divide it by the lower pressure value in that dimension.  For our cell to be considered inside a shock, 
this ratio must exceed  0.25,  although this particular value is not critical to the successful operation of the 
scheme (a value of 0.33, for example, works well too).  The choice of  0.25  indicates a Mach number, 
which one could derive, for a shock below which no special treatment by PPM is necessary.  Setting this 
value too low is harmless, but it would cause the scheme to devote considerable unnecessary labor to 
weak disturbances.  Setting the value too high will let small, incorrect signals be generated at some 
shocks under pathological circumstances.  The choice  0.25  has served well for decades in a wide variety 
of problems.  In the same vectorizable loop, we evaluate simple difference approximations to the 
divergence of the velocity.  One of these uses differences between velocity component averages in 
nearest neighbors to our cell and the other uses differences of such averages in next nearest neighbors.  
If either of these estimates of the velocity divergence is positive, we eliminate our cell as a candidate for 
being inside a shock structure.  We mark our candidate cells, those with negative velocity divergence 
estimates and with 25% or greater pressure jumps, with a flag vector that we call  shocked .   This flag 
array vanishes everywhere but in our candidate cells, where it has the value unity. 

For the cells marked by  shocked ,  we now embark upon a complicated calculation described 
below.  First we use averages in next nearest neighbor cells to evaluate the contributions from each 
dimension to the velocity divergence estimate.  We will use weight factors,  xf ,  yf , and zf ,  for each 

dimension according to the relative size of these contributions.  Because we desire no negative weight 

factors, we define the contributions to the velocity divergence as  ( ){ }
222 ,0min

−+
−=∆

jyjyyy uuu  ,  

with similar formulae for the  x   and  z   dimensions.  We then define the weight factors as follows: 
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( ) ( ) ( )

( )
( ) ( ) ( )2

2
2

2
2

2

2
2

2
2

2
2

2
2

2
2 ,

zzyyxx

zz
z

zzyyxx

yy
y uuu

uf
uuu

u
f

∆+∆+∆
∆

=
∆+∆+∆

∆
=  

We define the remaining weight factor by subtraction:   zyx fff −−=1  .    Looking at values in next 

nearest cells in each dimension, we select the pre- and post-shock cells in each.  We then blend these 3 
pre- and 3 post-shock cell averages using the above weight factors to obtain estimates of the pre- and 
post-shock densities, pressures, and 3 velocity components.  Using the jumps across the shock in the 3 
velocity components computed from these blended values, we get the x-, y-, and z-components of a unit 
vector pointing in the direction of the velocity jump, hence in the direction normal to the shock front.  We 
now project the pre- and post-shock velocities onto this normal direction by taking the dot products of 
those velocities with the unit vector.  We also compute the pre- and post-shock Lagrangian sound speeds.  
The nonlinear Lagrangian wave speed,  W ,  for the shock is computed via:     

( )postpostpreprepost VVVppW 00000001.0/~ +−−=  
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This formula clearly involves some defenses against potential pathologies.  In multidimensional flows next 
to walls where Mach reflections of shocks can occur, some rather wild cases can arise to which our 
formulae must be insensitive.  The tilde in the formula indicates that this is a provisional value.  To force 
this wave speed estimate to be reasonable, we additionally execute the following constraints, resulting 
ultimately in our final estimate,  W : 

{ }{ }postpre CCWW ,max,~min
~~ =  ,          { }{ }postpre CCWW ,min,

~~max=  

We now compute the Eulerian shock speed,  w ,  by using the post-shock density and normal velocity: 

postpost uWw ⊥+= ρ/  

One might wonder why we need all this information about the shock.  We will use it to compute a 
diffusion speed that will determine the amount of additional dissipation that we introduce here.  As 
discussed in the original articles on PPM [W&C, C&W, W], shock representations on our grid tend to 
become too thin when the shocks move slowly relative to the grid.  Such a shock can linger near a grid 
line, and then the action of the focusing characteristics can cause the shock jump to occur mostly across 
that single cell interface.  As the shock moves so that it becomes centered on a grid cell instead, it is 
forced to have a quite different and broader numerical representation.  The slow oscillation of the shock 
structure from thicker to thinner numerical representation causes small disturbances to be emitted in all 
the characteristic families that cross the shock (i.e. in our case in the entropy and in the oppositely 
propagating sound wave Riemann invariants).  This happens in 1-D problems, but in 2- or 3-D problems 
we can get glitches caused by oversteepening of the shock structure as it crosses grid lines obliquely.  At 
each grazing intersection, a tiny shock and contact discontinuity pair can be emitted.  The solution to all 
these problems is to broaden the numerical shock representation so that it is roughly independent of 
phase relative to the grid.  The glitches and noise emission can be reduced dramatically by only a modest 
broadening of the shock.  We do this by means of a diffusion operation that will be described later.  The 
diffusion coefficient, which we evaluate as a diffusion velocity, must relate to the potential severity of the 
numerical problems for a given shock in a given cell.  We find that the diffusion coefficient needs to reflect 
two independent factors – the shock strength and the wavelength of the fundamental noise signals that it 
tends to emit.  Our diffusion velocity, which we denote by  diffu ,  has a factor equal to the negative of the 

velocity divergence in order to reflect the strength of the shock.  It also has a factor arising from the 
fundamental wavelength of noise emission.  The fundamental period for noise emission by the shock is 
the interval between grid line crossings.  The wavelength of any such signals, measured in grid cell 
widths, is then dependent upon the Riemann invariant family involved and the post-shock fluid velocity 
and sound speeds.  The longest fundamental wavelength of signal emission, measured in grid cell widths, 
will apply to the sound wave Riemann invariant, and it can be estimated as follows: 

( )
( ) prepostpost

postpost
noise cuW

cW
00000001.0/

/
++

+
=

⊥ρ
ρ

λ  

When the shock moves rapidly across the grid, this wavelength is very short, and any noise signals are 
immediately damped by the numerical scheme, if they can propagate at all.  It is only as this wavelength 
exceeds  2  that we need become concerned.  We therefore compute our diffusion velocity in the following 
steps: 

222222
)(3.0~

−+−+−+
−+−+−=

kzkzjyjyixixdiff uuuuuushockdu  

( ){ }2,0max −=Θ noiseλ  ,          ( )1/ 33 +ΘΘ=Ξ  ,          ( ) diffdiff uu ~911.0 Ξ+=  

Some aspects of these formulae may seem a bit arbitrary, and no doubt other variations might work 
equally well.  Nevertheless, the above formulation is quite serviceable, and has kept numerical glitches 
and noise at bay in PPM simulations for at least 15 years.  Changing the  0.3  to  0.5  in the formula for  
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diffu~   will roughly double the thicknesses of shocks, almost completely eliminate numerical noise, and 

reduce the overall quality of the solution by an amount comparable to coarsening the grid by a factor of 2 
in every spatial dimension and time.  Setting this constant to  0.1  will cause the noise to appear and to 
mar the solution.  The recommended value of  0.3  is thus a compromise, giving excellent results with thin 
shock structures and crisply resolved details but allowing very low level signals of numerical origin into the 
simulation at levels almost always below about 1.5% of the amplitude of the relevant, emitting shock jump.  
The smart diffusion described here, and applied at the end of the grid cell update, supersedes all  
previous formulations in the literature on PPM.  Earlier formulations went to significant lengths to avoid the 
use of any construct that could directly be interpreted as an artificial viscosity.  This was a consequence of 
a bet made with Bill Noh at Livermore.  Since his death many years ago, there has been no satisfaction 
from doing without explicit diffusion, and the present formulation, in use for about 15 years, is easily made 
compatible with other code packages. 

Now that we have identified the cells inside shock structures and computed the diffusion velocities 
to be used there, we proceed, in a scalar loop for only these cells, to apply a nonlinear Riemann solver to 
compute the fluxes at their interfaces.  A fundamental approximation we will make is to use the shock 
formulae for pressure and velocity differences across rarefaction fans.  For weak rarefactions, this 
approximation is easy to justify.  Strong rarefactions at single cell interfaces are always transient 
phenomena, with the exception of centered rarefactions attached to features in walls or solid objects.  We 
take the view that it is impossible to do a good job for these exceptional cases in any event, save to refine 
the grid there using AMR or other techniques.  We will describe the nonlinear Riemann solver for gamma-
law gases, but a generalization of it to arbitrary equations of state has been given in [W86].  We will 
perform the following operations only at those interfaces for which one of the adjacent cells is marked by 
the flag array  shocked .   We will do the first step of what could be used as an iteration.  Experience has 
shown that there is essentially no value in performing additional steps of such an iteration.  The use of a 
nonlinear Riemann solver allows us to compute a portion of the entropy jump in the shock from shock 
jump conditions rather than obtaining it from a diffusion process that smears the shock structure.  
However, the shock jump conditions that apply at a single cell interface are essentially never the proper 
ones for the shock as a whole, and as a result it is not worthwhile to take them too seriously.  A single 
nonlinear iteration therefore suffices.  We begin by computing positive-definite Lagrangian wave speeds in 
the gas immediately to the left,  LLW ,  and to the right,  RLW ,  of the contact discontinuity that initially 

forms at the interface  L .  To improve our estimate,  Lp , of the pressure at this contact discontinuity, we 

also evaluate the slopes,  ( )LLxup ∂∂ /   and  ( )RLxup ∂∂ / ,  of the tangent lines at the pressure  Lp   to the 

Hugoniot curves in the velocity-pressure plane: 
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We now compute the point of intersection of the two tangents to the Hugoniot curves, which gives us an 
improved estimate,  shkLp ,  for  Lp .   The tangent lines pass through the points  ),( LxLL pu   and  

),( LxRL pu   in the  pux −   plane.   They intersect at the point  ),( shkLshkLx pu . 
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( )[ ]{ }LLxLshkL uppp ∂∂Ψ−= /,max φ  ,          Ψ+= xLLshkLx uu  

We must now take care to handle slowly moving strong shocks properly.  From the above results for the 
pressure and x-velocity at the contact discontinuity in our Riemann problem, we can compute the Eulerian 
wave speeds,  LLw   and  RLw ,  for both the leftward and rightward facing waves: 

LLLLxLL Wuw
++

−= ρ/  ,          
LRLLxRL Wuw

−−
+= ρ/  

Using this information, we now select from the 3 possibilities our improved estimates for  xLu   and  Lp ,  

which we will adorn with primes: 

LLLxxLRLshkLx ppuuthenwanduif
−−

=′=′<< ,,00  

LLLxxLLLshkLx ppuuthenwanduif
++

=′=′>> ,,00  

shkLLshkLxxL ppuuotherwise =′=′ ,  

Getting good estimates of the nonlinear wave speeds is crucial here, although in principle the fluxes of 
mass, momentum, and total energy on either side of a stationary strong shock are identical. 

Up to this point, we have worked only with the time-averaged x-velocities and pressures at the cell 
interfaces.  Now that we know the time-averaged interface velocities, we can trace back along the fluid 
streamlines from the interfaces into the adjoining cells in order to estimate what fraction of which cell 
crosses the interface during the time step.  We may also estimate the time-averaged density at the 
interface by taking the spatial average at the beginning of the time step of this material that crosses the 
interface and compressing or expanding it  using the shock jump conditions  to the time-averaged 
pressure at the interface, which has just been computed.  In the absence of shocks, this compression or 
expansion should be adiabatic, but if a strong shock is involved, the behavior could be extremely different.  
Using the shock jump conditions will give us an acceptable result in either case.  We begin by computing 

the spatial averages,  
L0

ρ ,  
L

p
0

,  
Lyu 0

,  and  
Lzu 0

,  in essentially the same way that we 

computed similar spatial averages earlier over the domains of dependence of the  ±R   Riemann invariant 
characteristics.  Here we use the subscript  0  to denote the streamline characteristics.  The time-
averaged density at the cell interface is now: 

LL

LL
LL pp

pp

0

0
0 )1()1(

)1()1(
++′−
−+′+

=
γγ
γγ

ρρ  

6. Construction of the Time-Averaged Interface Fluxes and Application of the Conservation Laws. 

Now that we have evaluated the time averages of the fluid state variables at the cell interfaces, it is 
a simple matter to construct from them the time-averaged fluxes of the conserved quantities.  At each 
interface, we compute an advected volume,  Ldx ,  an advected mass,  Ldm ,  3 advected momenta,  

xLdµ ,  xLdµ ,  xLdµ ,  and an advected total energy,  LdE .   These are all signed quantities, with positive 

signs applying to advection to the right: 

tudx xLL ∆′=  ,          LLL dxdm ρ=  ,          tpdmud LLxLxL ∆′+′=µ  ,          LyLyL dmud =µ  

LzLzL dmud =µ  ,          ( ) ( ) ( )[ ] LLLxLxLxLL dxpdmuuudE ′
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To guard against the production of negative densities, we also demand that  Ldm   not exceed advection 
of  95%  of the upstream cell’s mass.  Our time step controls should prevent this situation, but this 
constraint provides additional code robustness. 

We now apply the conservation laws for mass, momentum, and total energy in order to arrive at 
provisional new values for the cell averages at the end of the time step for this x-pass.  We use the 
subscript  N   to denote the new time level and the superscript  )1(   to denote this first, provisional value.  
Despite our application of monotonicity constraints it is still possible in this Eulerian treatment for the new 
cell mass to be negative.  We therefore demand that the new cell mass not fall below a floor value, given 
by  x∆minρ .   The value of  minρ   is of course problem dependent, and it must be supplied by the user for 
any given run, along with trivial values for other positive definite quantities such as pressure and energy,  

minp   and  minE .   To prevent problems of negative cell masses from occurring, we will compute a cell 
mass Courant number that we will use to help control the time step.  This time step control is the Eulerian 
equivalent of the one used in Lagrangian calculations to prevent the tangling of grid cells. 

( ){ }xdmdmmm RLN ∆−+∆=∆ min
)1( ,max ρ  ,          xmNN

∆∆= /)1()1(ρ  

The cell mass Courant number we use is   ( ) )1()1( /2.0 NN mmm ∆∆−∆ ,  and we use a similar cell volume 

Courant number equal to  ( ) ( )[ ]tuuxtuu xRxLxRxL ∆′−′−∆∆′−′ /2.0  .   These Courant numbers assert 

that we do not want either the mass of the Eulerian cell or the volume of its Lagrangian counterpart to 
decrease by more than 80% in a single time step.  We usually find that if the Courant number exceeds 
unity on any time step, even though we have taken measures to see that no disasters, such as square 
roots of negative numbers, will ensue, it is best to have the computation halve the time step and try again.  
This feature is built into our PPM code, including its massively parallel versions, and occurs automatically, 
although, gratefully, very rarely. 

The provisional new cell velocities are now obtained from the momentum conservation laws: 

( ) )1()1( / NxRxLxNx mddmuu ∆−+∆= µµ  

with similar equations for  
)1(

Nyu   and  
)1(

Nzu .   Although it is optional, we usually choose to reset trivial 

cell interface and cell average velocities to zero.  This prevents the generation of underflows, and it can 
allow us in some problems to avoid doing any computational labor in cells where nothing is happening yet.  

From these new velocities, we obtain the provisional new cell kinetic energy,  
)1(

NkinE . 

( ) ( ) ( ) ⎥⎦
⎤

⎢⎣
⎡ ++=

2)1(2)1(2)1()1(

2
1

NzNyNxNkin uuuE  

Note that at this point we make only a simple estimate of the cell average of the kinetic energy.  It would 
make the scheme a great deal more complex and expensive to attempt to determine the new internal cell 
velocity structures at this stage of the calculation.  That will be done at the outset of the next 1-D pass, 
where the total energy in the cell will first be computed according to the above prescription, so that the 
total energy conservation law, stated below, will be obeyed. 

( ) )1()1( / NRLN
mdEdEmEE ∆−+∆=  ,          { })1()1(

min
)1( ,max

NkinNN
EEE −=ε  

Here we use the symbol  ε   to represent the internal energy.  We now compute the new provisional cell 
pressure from the gamma-law equation of state: 

)1()1()1( )1(
NNN

p εργ −=  
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We now have a complete set of provisional new cell averages.  These will actually be our final results for 
the overwhelming majority of the cells.  However, near slowly moving strong shocks we still need to apply 
our smart diffusion. 

7. Smart Diffusion and Reapplication of the Conservation Laws. 

The final step of the PPM 1-D pass is applied only to those cells with interfaces for which a smart 
diffusion velocity was computed earlier.  There are very few of these cells, and therefore the 
computational cost of this final step is small.  However, this step increases the numerical difference stencil 
by one cell on either side of our cell of interest.  Hence when the scheme is implemented on 
multiprocessor or cluster systems, the principal cost of this additional step of the algorithm is the 
increased quantity of data that must be communicated from one processor to another.  We reiterate that 
the smart diffusion is multidimensional.  The detection of shocks does not favor any single dimension, 
such as the dimension of the present 1-D pass, and the diffusion is applied in all directional passes, not 
just those in which the shock jump is seen as sudden.  This multidimensional character of the smart shock 
dissipation in PPM avoids multiple numerical pathologies, and the required size of the difference stencil in 
the 3 dimensions is therefore a small price to pay for this benefit.  We begin by computing diffusive fluxes 
at those cell interfaces adjacent to cells in which the diffusion velocity,  diffu ,  does not vanish.  We also 

compute a diffusion Courant number equal to double the advected cell fraction for this diffusion step. 

{ }diffidiffdiffL uuu ,max 1, −=  ,          
)1(

1, −
∆=

iNdiffLdiffLL utdm ρ  ,          
)1(

NdiffLdiffRL utdm ρ∆=  

diffRLdiffLLdiffL dmdmdm −=  ,          
)1()1(

1, NxdiffRLiNxdiffLLxdiffL udmudmd −=
−

µ  

)1()1(

1, NydiffRLiNydiffLLydiffL udmudmd −=
−

µ  ,          
)1()1(

1, NzdiffRLiNzdiffLLzdiffL udmudmd −=
−

µ  

)1()1(

1, NdiffRLiNdiffLLdiffL EdmEdmdE −=
−

 

With these fluxes, for the affected cells only, we now go through the same steps described earlier using 

the non-diffusive fluxes, applying the conservation laws to obtain the new cell averages:   
N

ρ ,  
N

p ,  

Nxu ,  
Nyu ,  and  

Nzu .   This completes the x-pass of the PPM single-fluid gas dynamics algorithm. 

The full 3-D algorithm consists of six, symmetrized 1-D sweeps, in an  x-y-z-z-y-x  sequence and 
with a constant value of the time step. 

8. PPM Code Performance and Scalability on Modern Multiprocessing Systems. 

PPM follows sound wave signals explicitly, so that all its computations, save the calculation of the 
time step value, are local.  The scheme is very computationally intensive, because it expends so much 
effort to ensure that the various special operations such as monotonicity constraints, contact discontinuity 
steepening, and special treatment of strong shocks are applied only when and where they should be.  On 
all CPUs from the Cray-1 to the modern Intel-based laptop machine or ASCI supercomputer, PPM has 
achieved excellent performance.  This is because almost all of the arithmetic can be performed in vector 
mode, and the code has always been built to perform the entire algorithm for each strip of grid cells at 
once, thoroughly exploiting modern cache-based memory systems.  On multiprocessor systems, each 
CPU updates an entire 3-D grid brick, augmented by enough extra grid cells to make either 3 or 6 1-D 
passes possible without any further information.  During this brick update, the results of the previous brick 
update are written back to global memory and a new brick of data is fetched.  Thus, even when the global 
memory is implemented on disks, all CPUs are always kept busy.  The above description has been long 
and involved, and it may therefore seem that an undue amount of computation is required by the PPM 
scheme.  Hence it is useful to quantify just how much computation is actually involved.  On a difficult flow 
problem involving many strong shocks, on the average each cell update for a 1-D pass involves  921 flops  
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and  249 vectorizable logical operations (which do not count as flops).  This work is performed at a speed 
of  1255 Mflop/s  on a 1.7 GHz Intel Pentium-M CPU working from its cache memory in a laptop machine.  
This laptop performance degrades to  954 Mflop/s  for a full 1283 3-D grid brick update, so that full 1283 
test runs can be performed overnight at a hotel.  These speeds are for 32-bit arithmetic, which is all that 
PPM ever requires.  On a 3.2 GHz Intel Pentium-4 CPU, these 32-bit rates become  1607 Mflop/s  and  
1273 Mflop/s,  respectively, while the corresponding rates for 64-bit arithmetic, which is unnecessary but 
quoted for comparison purposes with other applications, are  1132 Mflop/s  and  938 Mflop/s,  
respectively.  PPM performance has scaled essentially linearly on every multiprocessing machine on 
which the code has ever been implemented, including ASCI machines with over 6000 CPUs. 

Below, we review some results from applying the PPM gas dynamics scheme to compressible 
turbulent flow problems.  However, one can download a Windows PC version of the code from the LCSE 
Web site at the University of Minnesota and try it out for oneself.  From links on the main page at 
www.lcse.umn.edu one can download 1-D, 2-D, and 3-D test versions to play with that have been used in 
teaching and code development at the University of Minnesota.  User guides are even online for the 1-D 
and 2-D versions.  All versions online can perform either single fluid or 2-fluid simulations.  A library of 
compiled PPM code modules, PPMLIB, is also available from the LCSE Web site, although these 
modules are at present not compiled for the latest machines.  These codes, distributed in binary form from 
the LCSE Web site, are designed to run a variety of test problems that have proven useful in our code 
development at the LCSE.  The 1-D and 2-D codes run, among other things, test problems introduced in 
the original PPM papers in 1980 and 1984.  The 3-D code runs a 3-D shear layer instability problem.  Try 
them;  they’re fun.  Versions of PPM are incorporated in the community codes FLASH, ENZO, and VH-1 
for the more serious user. 
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At the left we see the 
user interface to the 1D 
PPM gas dynamics test 
program available at 
the LCSE Web site.  It 
is set up to perform by 
default the dual blast 
wave problem from the 
early PPM comparison 
with other difference 
schemes in 1984.  The 
space-time wave 
diagram at the bottom 
right can be enlarged to 
fill the entire window 
area by double clicking 
on it.  Display in this 
window of any of a 
whole list of variables 
may be generated. 

Below at the left is this 
same application, but 
the user has clicked on 
the “Sound Wave” 
button to set up a 
sound wave steepening 
test problem.  For this 
type of problem, the 
Riemann invariants are 
shown in the plotting 
windows, since these 
variables are the most 
sensitive indicators of 
shock-emitted noise, 
some of which can be 
seen at very low 
amplitude in the lower 
left-hand plotting win-
dow.  This tiny disturb-
ance is not noticeable 
at all in the space-time 
plot.  Runs of this type 
were used to help 
determine the optimal 
values of the dimen-
sionless constants in 
the PPM smart shock 
diffusion algorithm des-
cribed in the text. 

The buttons at the 
bottom of the user inter-
face form set up a 
series of test problems 
from a comparison of 
gas dynamics schemes 
carried out by Burton 
Wendroff at Los Alamos 
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The user interface to the 2-D PPM gas dynamics code is shown here in the process of computing a type 
of wind tunnel test problem originally introduced by Emery in 1967.  This test code can perform multifluid 
variations on this problem, and it can do single-fluid computations that inject smoke streams, set using the 
little text windows at the right of the form, and track them in order to visualize the flow.  Any of a large 
number of possible displays can be selected using the list-box at the bottom center of the form. 
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