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The steadily increasing power of supercomputing systems is enabling very high resolution 

simulations of compressible, turbulent flows in the high Reynolds number limit, which is of 

interest in astrophysics as well as in several other fluid dynamical applications.  This paper 

discusses two such simulations, using grids of up to 8 billion cells.  In each type of flow, 

convergence in a statistical sense is observed as the mesh is refined.  The behavior of the 

convergent sequences indicates how a subgrid-scale model of turbulence could improve the 

treatment of these flows by high-resolution Euler schemes like PPM.  The best resolved case, 

a simulation of a Richtmyer-Meshkov mixing layer in a shock tube experiment, also points 

the way toward such a subgrid-scale model.  Analysis of  the results of that simulation 

indicates a proportionality relationship between the energy transfer rate from large to small 

motions and the determinant of the deviatoric symmetric strain as well as the divergence of 

the velocity for the large-scale field. 

1 Introduction 

The dramatic improvements in supercomputing power of recent years are making 

possible simulations of fluid flows on grids of unprecedented size.  The need for all 

this grid resolution is caused by the nearly universal phenomenon of fluid turbu-

lence.  Turbulence develops out of shear instabilities, convective instabilities, and 

Rayleigh-Taylor instabilities, as well as from shock interactions with any of these.  

In the tremendously high Reynolds number flows that are found in astrophysical 

situations, turbulence seems simply to be inevitable.  Through the forward transfer 

of energy from large scale motions to small scale ones that characterizes fully 

developed turbulence, a fluid flow problem that might have seemed simple enough 

at first glance is made complex and difficult.  Because the turbulent motions on 

small scales can strongly influence the large-scale flow, it is necessary to resolve the 

turbulence, at least to some reasonable extent, on the computational grid before the 

computed results converge (in a statistical sense).  Thus it is that, more often than 
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not, turbulence drives computational fluid dynamicists to refine their grids whenever 

increased computing power allows it.  In this paper, we give examples of computa-

tions performed recently which illustrate where increased grid resolution is taking 

us.  We focus our attention on the prospect that extremely highly resolved direct 

numerical simulations of turbulent flows can guide the development of statistical 

models for representing the effects of turbulent fluid motions that must remain 

unresolved in computations on smaller grids or of more complex problems. 

2 Homogeneous, Compressible Turbulence 

Perhaps the most classic example of a grid-hungry fluid dynamics problem is that of 

homogeneous, isotropic turbulence.  Here we focus all available computational 

power on a small subdomain that could, in principle, have been extracted from of 

any of a large number of turbulent flows of interest.  If from such a simulation we 

are able to learn the correct statistical properties of compressible turbulence, we can 

use our data to help test or construct appropriate subgrid-scale models of turbulent 

motions.  When our computational grid is forced to contain an entire large-scale 

turbulent flow, we can then use such a model to make the computation practical.  In 

the section that follows, we will see an example of such a larger flow in which we 

have used an 8-billion-cell grid in order to resolve both the large-scale flow and the 

turbulent fluid motions it sets up.  In the results presented in this section, we will 

encounter signatures of the fully developed turbulence that can be recognized in a 

variety of such larger, more structured flows. 

It is difficult to formulate boundary conditions that correctly represent those for 

a small subdomain of a larger turbulent flow.  We use periodic boundary conditions 

here, but these are of course highly artificial, and therefore we must be careful not to 

over-interpret our results.  Not only are our boundary conditions problematical, but 

our initial conditions also raise important issues.  We rely on the theoretical 

expectation that, except for a small number of conserved quantities such as total 

energy, mass, and momentum, the details of our initial conditions will ultimately be 

“forgotten” as the turbulence develops, so that they will eventually become 

irrelevant.  After a long time integration, we will find that the behavior of the flow 

on the scales comparable to the periodic length of our problem domain will remain 

influenced by both our initial conditions and by our periodic boundary conditions.  

However, the flow on shorter scales should be characteristic of fully developed 

turbulence.  The flow on the very shortest scales, of course, must be affected by 

viscous dissipation and numerical discretization errors. 

We are interested in the properties of compressible turbulence in the extremely 

high Reynolds number regime;  we have no interest in the effects of viscosity, save 

upon the steady increase in the entropy of the fluid via the local dissipation of 

turbulent kinetic energy into heat.  Therefore, we use an Euler method, PPM (the 

Piecewise-Parabolic Method [1-4, 6]), in order to restrict the effects of viscous 
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dissipation [9] to the smallest 

range of short length scales that 

we are able.  A similar approach has been adopted by several other investigators 

[e.g. 15-18].  We must of course be careful to filter out the smallest-scale motions, 

which are affected by viscosity and other numerical errors, before we interpret our 

results as characterizing extremely high Reynolds number turbulence.  This 

approach is in contrast to that adopted by many researchers, who attempt to 

approximate the behavior of flow in the limit of extremely high Reynolds numbers 

with the behavior of finite Reynolds number flows, where the Reynolds numbers are 

only thousands or less.  In principle, an Euler computation gives an approximation 

to the limit of Navier-Stokes flows as the viscosity and thermal conductivity tend to 

zero.  For our gas dynamics flows, this limit should be taken with a constant Prandtl 

number of unity.  Much practical experience over decades of using Euler codes like 

PPM indicates that this intended convergence is actually realized.  However, we must 

be aware that for turbulent flows, convergence, of course, occurs only in a statistical 

sense. 

We can verify the convergence of our simulation results in this particular case 

in two ways.  First, we can compare results from a series of simulations carried out 

on different grids.  To demonstrate convergence, we look at the velocity power 

spectra, in Figure 1, obtained from these flow simulations.  We expect that as the 

grid is successively refined, the velocity power spectrum on large scales does not 

Figure 1:   A comparison of velocity 

power spectra in 5 PPM runs on pro-

gresssively finer grids, culminating in a 

grid of a billion cells.  All begin with 

identical initial states and all are shown 

at the same time, after the turbulence is 

fully developed.  As the grid is refined, 

more and more of the spectrum con-

verges to a common result.  Spectra for 

the solenoidal (incompressible) compon-

ent of velocity are shown in the top 

panel, while the spectra of the compres-

sional component are at the bottom.  The 

straight lines indicated in each panel 

show the Kolmogorov power law.  Note 

that agreement between the runs extends 

to considerably higher wavenumbers in 

the compressional spectra than in the 

solenoidal ones.  This effect, first noted 

in our earlier work at 5123 grid resolu-

tion, was confirmed in the incompressible 

limit by simulations by Orszag and 

collaborators.  A similar flattening of the 

power spectrum just above the dissipa-

tion scales has also been observed in 

data from experiments. 
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change, while that on small scales 

is altered.  The part of the spectrum that does not change on each successive grid 

refinement should, ideally, extend to twice the wavenumber each time the grid is 

refined.  That this behavior is in fact observed is shown in Figure 1, taken from [8]. 

We would also like to verify that our procedure not only converges, but that it 

converges to the high Reynolds number limit of viscous flows.  We can do this by 

comparing Navier-Stokes simulations of this same problem, carried out on a series 

of successively refined grids, with our PPM Euler simulation on the finest, billion-

cell grid.  This comparison is shown in Figure 2, also taken from [8].  (A similar 

comparison for 2-D turbulence is given in [7].)  The Navier-Stokes simulations do 

not achieve sufficiently high Reynolds numbers to unquestionably establish that they 

are converging to the same limit solution as the Euler runs.  This is because the 512
3
 

grid of the finest Navier-Stokes run has only a Reynolds number of 8000.  This 

Reynolds number has been limited by our demand that each Navier-Stokes 

simulation represent a run in which the velocity power spectrum has converged.  

This convergence has been checked, on the coarser grids where this can be done, by 

refining the grid while keeping the coefficients of viscosity and thermal conductivity 

constant and by verifying that the velocity power spectrum agrees over the entire 

range possible.  We are confident that, had we been able to afford to carry the 

sequence of Navier-Stokes simulations forward to grids of 2048
3
 or 4096

3
 cells, we 

Figure 2:  PPM Navier-Stokes simulations 

are here compared with the billion-cell 

PPM Euler simulation of Figure 1.  Again, 

decaying compressible, homogeneous turb-

ulence is being simulated on progressively 

finer grids of 643, 1283, 2563, and 5123

cells.  On each grid the smallest Navier-

Stokes dissipation coefficients are used that 

are consistent with an accurate computa-

tion.  Reynolds numbers are 500, 1260, 

3175, 8000.  All runs begin with the same 

initial condition and are shown at the same 

time, after 4 sound crossings of the princip-

al energy containing scale.  As with the 

PPM Euler runs in Figure 1, this con-

vergence study (to the infinite Reynolds 

number limit that we seek) shows that the 

compressional spectra, in the lower panel, 

are converged over a longer range in 

wavenumber than the solenoidal spectra at 

the top.  In fact, the solenoidal spectra 

display no “inertial range,” with Kolmo-

gorov’s k-5/3 power law, at all.  These 

results and those in Figure 1 indicate that 

the Euler spectra are accurate to about 4 

times higher wavenumbers than Navier-

Stokes. 
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would have been able to obtain strict agreement with the already converged portion 

of the PPM velocity power spectrum on the billion-cell grid.  At this time, such a 

demonstration is not practical. 

We can use the detailed data from the billion-cell PPM turbulence simulation to 

test the efficacy of proposed subgrid-scale turbulence models.  We can filter out the 

shortest scales affected either directly (from wavelengths of 2 ∆x to about 8 ∆x) or 
indirectly (from about 8 ∆x to about 32 ∆x) by the numerical dissipation of the PPM 

scheme.  We are then left with the energy-containing modes, from wavelengths of 

about 256 ∆x to 1024 ∆x, and the turbulent motions that these induce, from about 

256 ∆x to about 32 ∆x.  A large eddy simulation, or LES, would involve direct 

numerical computation of these long wavelength disturbances with statistical 

“subgrid-scale” modeling of the turbulence.  We can test a subgrid-scale turbulence 

model with this data by comparing the results it produces, in a statistical fashion, 

with those which our direct computation on the billion-cell grid has produced in the 

wavelength range between 256 and 32 ∆x.  If we were to identify a subgrid-scale 
model that could perform an adequate job, as measured by the above procedure, 

then we should be able to add it to our PPM Euler scheme on the billion-cell grid.  

We will discuss aspects of such a model in the next section.  Such a statistical 

turbulence model should, in the case of PPM, not be applied at the grid scale, as is 

generally advocated in the turbulence community, but instead at the scale where 

PPM’s numerical viscosity begins to damp turbulent motions.  This scale is about 8 

∆x , as can easily be verified by direct PPM simulation of individual eddies, as in 

[9], or by examination of the power spectra in Figure 1 (see especially the power 

spectra for the compressible modes). 

In earlier articles (see for example [5]) we have suggested that the flattening of 

the velocity power spectra just before the dissipation range, seen in both PPM and 

Navier-Stokes simulations (see Figs. 1 and 2), is the result of diminished forward 

transfer of energy to smaller scales.  This diminished forward energy transfer is 

caused by the lack of such smaller scales in the flow as a result of the action of the 

viscous dissipation.  Applying an eddy viscosity from a statistical model of turbu-

lence on scales around 8 ∆x in a PPM turbulence simulation should, if the eddy 

viscosity has the proper strength, alleviate the above mentioned distortion of the 

forward energy transfer and make the simulated motions more correct in the range 

from 32 ∆x to 8 ∆x , where we observe the flattening of the power spectra for the 
solenoidal modes in PPM Euler calculations.  If the turbulence model, under the 

appropriate conditions, produces a negative viscous coefficient, this should help to 

give the PPM simulated flow the slight kick needed for it to develop turbulent 

motions on the scales resolved by the grid in this same region from about 32 ∆x to 
about 8 ∆x.  Thus we can hope that a successful statistical model of turbulence 

would make the computed results of such an LES computation with PPM accurate 

right down to the dissipation range at wavelengths of about 8 ∆x for both the 
compressible and the solenoidal components of the velocity field.  We note that 
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Figure 3.   Four snap shots of the distribution 

of the magnitude of vorticity in a region of the 

billion-cell PPM simulation, showing stages in 

the transition to fully developed turbulence. 

The smallest vortex tube structures are in the 

dissipation range and have diameters of 

roughly 5 grid cells.  The transition to turbu-

lence, believe it or not, is not quite complete at 

the time of the final picture of this sequence.  

PPM Euler computations enjoy this 

accuracy in non-turbulent flow regions.  

The desired effect of an LES formula-

tion of PPM would be that this level of 

simulation accuracy would be main-

tained for the solenoidal velocity field 

within turbulent regions as well.  Such 

an LES formulation should improve the ability of the numerical scheme to compute 

correct flow behavior, so that in these regions it would match the results of a PPM 

Euler computation on a grid refined by a factor between 2 and 4 in each spatial 

dimension and time.  The enhanced resolving power in these regions of such a PPM 

LES scheme over an accurate Navier-Stokes simulation at the highest Reynolds 

number permitted by the grid would be very much greater still, as the power spectra 

in Figure 2 clearly indicate.  In this statement, we have of course assumed that an 

approximation to the infinite Reynolds number limit is desired, and not a simulation 

of the flow at any attainable finite Reynolds number.  In astrophysical calculations, 

as in many other circumstances, this is generally the case. 

In addition to providing the essential, highly resolved simulation data needed to 

validate subgrid-scale turbulence models for use in our PPM scheme, our billion-cell 

PPM Euler simulation of homogeneous, compressible turbulence gives a fascinating 

glimpse at the process of transition to fully developed turbulence.  In the sequence 

of snap shots of the distribution of the magnitude of vorticity in this flow given in 

Figure 3, we see that the vortex sheet structures that emerged from our random 

stirring of the flow on very large scales develop concentrations of vorticity in ropes 
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that become vortex tubes.  These vortex tubes in turn entwine about each other as 

the flow becomes entirely turbulent.  We note that our first billion-cell simulation of 

this type was performed in collaboration with Silicon Graphics, who in 1993 built a 

prototype cluster of multiprocessor machines expressly for attacking such very large 

computational challenges.  The simulation shown in Figure 3 was performed in 1997 

on a cluster of Origin 2000 machines from SGI at the Los Alamos National 

Laboratory.  Although we have used results of this simulation to test subgrid-scale 

turbulence model concepts, we will discuss detailed ideas for such models in the 

context of an even more highly resolved flow. 

3 Turbulent Fluid Mixing at an Unstably Accelerated Interface 

An example of a turbulent flow driven by a large-scale physical mechanism is that of 

the unstable shock-acceleration of a contact discontinuity (a sudden jump in gas 

density) in a gas.  This calculation was carried out as part of the DoE ASCI 

program’s verification and validation activity, and it was intended to simulate a 

shock tube experiment of Vetter and Sturtevant (1995) at Caltech [10].  In the 

laboratory experiment, air and sulfur hexaflouride were separated by a membrane in 

a shock tube, and a Mach 1.5 shock impinged upon this membrane, forcing it 

through an adjacent wire mesh and rupturing it.  The interface between the two gases 

is unstable when accelerated by a shock, and both the large-scale flexing of the 

membrane and the wire mesh impart perturbations that are amplified by this 

Richtmyer-Meshkov instability.  The conditions of this problem therefore provide a 

context to observe the competition and interaction of small- and large-scale 

perturbations of the interface along with the turbulence that develops. 

In Figure 4, at the top left on the next page, a thin slice through the unstable 

mixing region between the two gases is shown in a volume rendering of the entropy 

of the gas.  The entropy, after the initial shock passage, is a constant of the motion, 

with different values in each gas.  In the figure, white corresponds to the entropy of 

the pure initially denser gas, while the pure initially more diffuse gas is made 

transparent.  The regions of intermediate colors in the figure show different propor-

tions of mixing of the two fluids within the individual cells of the 1920 × 20482
 grid 

(8 billion cells).  Below this image, a volume rendering of the enstrophy, the square 

of the vorticity, is shown for the same slice.  This simulation was carried out on the 

Lawrence Livermore National Laboratory’s  large ASCI  IBM SP system using 3904 

CPUs.  A constraint of this particular supercomputing opportunity was that the 

previously tuned simplified version, sPPM [6], of our PPM [1-4] gas dynamics code 

had to be used.  This constraint limited us to a single-fluid model with a single 

gamma-law equation of state to simulate the air and sulfur hexaflouride system in 

the Caltech experiment.  We chose  γ = 1.3 and initial densities of 1.0 and 4.88 to 
represent the experiment as best we could under these constraints.  The interface 

perturbation was   0.01 × [–cos(2πx)cos(2πy) + sin(10πx)sin(10πy)].   We 

initialized the fluid interface as a smooth transition spread over a width of 5 grid 
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cells.  This initialization greatly reduc-

ed the amplitude of the high frequency 

signals that are unavoidable in any grid-

based method.  The sPPM method of 

capturing and advecting fluid interfaces 

forces smearing of these transitions 

over about 2 grid cells and resists, through its inherent numerical diffusion, 

development of very short wavelength perturbations.  By setting up the initial inter-

face so smoothly, we assured that after its shock compression it would contain only 

short wavelength perturbations that the sPPM scheme was designed to handle.  

Nevertheless, the flow is unstable, so one must be careful in interpreting the results. 

A detailed discussion of the results of this simulation will be presented else-

where [11].  As with the homogeneous turbulence simulations discussed earlier and 

our simulations of compressible convection in stars [9, 12-14], this Richtmyer-

Symmetric Strain 

(Filtered U) 

Enstrophy 

(Filtered U) 

SGS Energy Transfer 

Unfiltered Entropy 

Unfiltered Enstrophy 
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Meshkov problem demonstrates con-

vergence upon mesh refinement to a 

velocity power spectrum, in this case 

for the longitudinal velocity, shown in 

the figure at the top right on the next 

page, that demonstrates an energy-

containing range determined by the 

initial and boundary conditions of the 

problem with a short inertial range with 

Kolmogorov  k
 –5/3

  scaling.  At the 

highest wavenumbers, the numerical 

dissipation of the sPPM Euler scheme 

is at work, and there is again, just above 

this dissipation range, a short segment of the spectrum with a slope flatter than the 

Kolmogorov trend.  The 8-billion-cell grid of this calculation is so fine that it allows 

us to apply a Gaussian filter with full width at half maximum of 67.8 cells, producing 

a complex filtered flow consisting mostly of the energy-containing modes (a 128-cell 

sine wave is damped by a factor of  1/e).  We interpret the many well-resolved 

modes at scales removed by the filter as fully developed turbulence.  Using the PPM 

code, we might hope to capture the modes of the filtered fields on a grid of 256
3
 

cells.  If we can use our 8-billion-cell data to characterize the statistical effects of the 

turbulent modes beneath the 128-cell scales preserved by the filter, then an LES 

calculation on a very much coarser grid that made use of this characterization might 

succeed in producing the correct statistically averaged behavior of the mixing layer.  

With this goal in mind, we consider the rate,  FSGS ,  of forward energy transfer from 

the modes preserved by the filter to those eliminated by it. 

If we denote the filtered value of a variable, such as the density  ρ,  by an over-
bar, ρ ,  then we will denote by a tilde the result of a mass-weighted filtering, as for 

the velocity:  u
~

= ρρ /u .  With these definitions, the filter when applied to the 

equation of momentum conservation produces the following result: 

ijjijij

i puu
t

u
τρ

ρ
∂−∂−=∂+

∂

∂
)~~(

~
 

where   
jijiij

uuuu
~~

ρρτ −=   is a quantity that we call the “subgrid-scale” stress 

(considering, for our present purposes, the computed structures below the filter scale 

to be “subgrid-scale” structures in an imagined LES computation).  The filtered 

kinetic energy is now 2/
~~ 2
uK ρ= , and the equation for tK ∂∂ /

~
 that can be 

derived from the momentum equation above and the continuity equation contains a 

term  
ijji

u τ∂−
~

,   which is in turn   
ijijijij

uu ττ )~()~( ∂+∂− .   The first term in 

this second expression is the divergence of an energy flux, and the negative of the 
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second term,  ijij
u τ)~(∂− ,  we identify as the rate of kinetic energy transfer, FSGS , 

from the modes on scales larger than our filter to the “subgrid-scale” modes on 

smaller scales.  In the illustrations two pages earlier, this forward energy transfer 

rate, FSGS , is visualized along with the enstrophy (square of the vorticity for u
~

) and 

the deviatoric symmetric strain,  ∑ 












⋅∇−

∂

∂
+

∂

∂
=Π

ij

ij

i

j

j

i
u

x

u

x

u

2

2

3

2
~~

r

δ .   

Although there is a positive correlation between  FSGS  and 
2

Π ,  it is clear from 

these images that the forward energy transfer rate is both positive and negative.  

Thus if we use  Π
2
  to model  FSGS ,  we must include another factor which switches 

sign at the appropriate places in the flow.  The situation is clearest in the region of 

the largest plume in the center of the problem domain.  The “mushroom cap” at the 

top of this plume is essentially a large ring vortex, as indicated in the diagram at the 

lower right.  Near the top of the plume, the top in the diagram, there is an approxi-

mate stagnation flow, with compression in the direction along the plume and with 

expansion in the two dimensions of the plane perpendicular to this, the plane of the 

original unstable layer. The transfer of energy to small scales is large in this region.  

Here we believe that small-scale line vortices are stretched so that they tend to 

become aligned in this plane in myriad directions, which leads to their mutual 

disruption to produce even smaller-scale line vortex structures.  We have observed 

this process in great detail at the tops of rising, buoyant plumes in our earlier high-

resolution simulations of stellar convection (cf. [13,14] and particularly the movie 

looking down on the top of the simulated convective layer).  At the base of the 

vortex ring in the diagram at the right, and in the lower portion of the “mushroom 

cap” of the large, central plume in the simulated Richtmyer-Meshkov mixing layer, 

the flow compresses in two dimensions while it expands in the third, the dimension 

along the length of the plume.  Here there is 

energy transfer from the small scales to the 

large, as indicated by negative values of  FSGS  

in the volume-rendered image.  Here we 

believe that vortex tubes become aligned in 

the single stretching direction, so that they are 

likely to interact by entwining themselves 

around each other to form larger vortex tube 

structures, a process that we have also 

observed in greater detail in our stellar 

convection studies (cf. [13,14] and the portion 

of the movie that shows the conglomeration of 

vertically aligned vortex tubes in the down-

flow lanes along the edges of the convection 

cells).  This behavior of the forward energy 
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transfer rate,  FSGS ,  with its sign 

dependence on the nature of the local 

flow field, gives us the hint that this 

transfer rate, which must be central to 

any successful subgrid-scale model of 

turbulence, should be modeled in terms 

of the determinant, det(Π), of the 

deviatoric symmetric strain tensor for 

the filtered velocity field, which flips 

sign in the appropriate locations (since 

the determinant is just the product of 

the 3 eigenvalues of the matrix).  This 

yields a much better correlation than 

using  Π
2
,  as is the more usual choice.  

The correlation is improved still further by including the obvious dependence of  

FSGS  on the divergence of the filtered velocity field, which transports turbulent 

kinetic energy from larger to smaller scales by simply compressing the overall flow 

in a region.  Thus we obtain: 

)det
2

1~|~(| 22

fjifSGS uuF Π+⋅∇∂−∝ ρλ  

where  Πf  represents  Π  for the filtered velocity field, and  λf  is a filter wavelength, 

equal to 128 cells for our Gaussian filter with full width at half maximum of 67.8 

cells.  This correlation, which is excellent, is shown in the figure at the top right.  

The data from our billion-cell simulation of homogeneous, compressible turbulence, 

described in the first part of this article, supports this same model for  FSGS  with an 

equally strong correlation to that shown in the figure here, even though in that flow 

the divergence of the filtered velocity field, with an rms Mach number of about 1/3, 

tends to dominate the term in  Πf  on the right in the above relationship.  For this 

data, as described earlier, two filters are used, with full widths at half maximum of 

67.8 and 6.03 cells. 

The relation for  FSGS  given above can perhaps be used in building a  k-ε  

model of subgrid-scale turbulence.  In this case, a model for the subgrid-scale stress,  

τij ,  that produces this relation for  FSGS  is   ijijij
Ak Π+= δτ  ,  where  k,  the 

subgrid-scale turbulent kinetic energy,  τii ,  is approximated by  
22 |~| jif u∂ρλ   and 

where   )||/)(det()2/( 22
ΠΠ= ρλ fA    can be either positive or negative.    This 

suggests a mechanism for incorporating the model into the momentum and total 

energy conservation laws of a numerical scheme such as PPM while maintaining the 

scheme’s strict conservation form.  The approximation of  k,  the subgrid-scale 

turbulent kinetic energy, involving velocity changes on the scale of the filter 

demands that, in proper LES style, the larger turbulent eddies are resolved on the 

))det(
2

1~|~(| 22

fjif uu Π+⋅∇∂ρλ

SGS
F

The rate of energy transfer 

to subgrid scales is strongly 

correlated with a 

 function, below, 

of the resolved 

 fields. 
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grid, so that these velocity changes are meaningful.  In the spirit of a  k-ε  model, we 

could replace  
22 |~| jif u∂ρλ   by  k  in the relation for  FSGS  and use the resulting 

form for  FSGS  as the time rate of change of  k  in a frame moving with the velocities  

ju
~

,  that is, with the resolved velocity field in the LES calculation.  A further term, 

related to the ε of a k-ε model, representing the decay of  k  due to viscous 

dissipation on scales well below that of the grid would also have to be included.  We 

would then have a dynamical partial differential equation for  k  to solve along with 

the conservation laws for mass, momentum, and total energy.  Constructing such a 

subgrid-scale model of turbulence for use with the PPM gas dynamics scheme is a 

subject of future work. 
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