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ABSTRACT

Three{dimensional simulations of turbulent and fully compressible

thermal convection in deep atmospheres are presented and analyzed in

terms of velocity power spectra, mixing{length theory, and production

of vorticity. Density contrasts across these convective layers are typi-

cally around 11. The uid model is that of an ideal gas with a constant

thermal conductivity. The Piecewise-Parabolic Method (PPM), with

thermal conductivity added in, is used to solve the uid equations of

motion. No explicit viscosity is included, and the low numerical viscosity

of PPM leads to a very low e�ective Prandtl number and very high e�ec-

tive Rayleigh number. Mesh resolutions range as high as 512�512�256,

and the corresponding e�ective large{scale Rayleigh numbers range as

high as 3:3� 1012.

Compressional e�ects lead to intensely turbulent downow lanes and

relatively laminar updrafts, especially near the top boundary. The en-

strophy contrast between downows and upows increases with mesh

resolution (and hence with decreasing viscosity), and ranges as high as

a factor of 30 in our highest resolution model. Vorticity is everywhere

preferentially aligned with the principal direction of strain associated

with the large{scale circulation. Near the top boundary, the strain �eld

associated with the largest scale of convection dominates, which leads

to a 2-D horizontal network of vortex tubes. For the same reason, both
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the upper portions of the downow lanes and the lower portions of the

updrafts contain many strong vertical vortex tubes with helicities of ran-

dom sign. The horizontal vortex tubes near the very top of the downow

lanes tend to come in counter rotating pairs, with one on each side of

the downow lane. Therefore, similar to observations of the sun, there

are upows along each side of the prominent downows in our simula-

tions. Mach numbers in these convective layers are largest in the upper,

more di�use region. There they range as high as 0.8, which signi�cantly

modi�es the pressure and gravitational force balance from that which

would apply under static conditions. This e�ect is incorporated into our

mixing{length analysis of the simulation data.

Subject headings: convection, stars:interiors, hydrodynamics, turbu-

lence, videotapes
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1. Introduction

In this paper we present a series of com-
puter simulations of compressible convection

in a three-dimensional strati�ed atmosphere

which is con�ned between two frictionless

plates. The purpose of this work is to deter-

mine the nature of such convective motions

when the viscosity of the gas is very low. Our
ultimate purpose is to study the e�ects of heat

and material transport in stellar convection

zones. As yet we have resisted the temptation

to introduce many features of stellar convec-

tion into our models which would make them
at the same time more realistic and more dif-

�cult to interpret. In this approach we have

followed the early example of Hurlburt et. al.

1984, and it was indeed these investigators
who originally suggested, more than a decade
ago, that we undertake this work. This pa-

per presents a natural extension of our ear-
lier 2-D simulations of compressible convec-
tion (Woodward et. al. 1987, Porter and

Woodward 1988, Porter and Woodward 1994)
to three dimensions. Our earlier work on 3-D

compressible convection (Porter and Wood-
ward 1989, Porter et. al. 1990, Porter et.

al. 1991, Woodward et. al. 1995, Porter

and Woodward 1996) is extended here to sim-

ulations with higher grid resolution. Simu-
lations of compressible convection by other

investigators complement the work presented
here by investigating local area models with

wider aspect ratios for the simulation volume

(Malagoli et. al. 1990, Cattaneo et. al. 1991,
and Bogdan et. al. 1993), local area mod-

els with rotation (Nordlund and Stein 1993,
Brummell et. al. 1995), models of convection

with penetration into stable layers above or

below (Singh et. al. 1994,Hurlburt et. al.
1994, Singh et. al. 1995), models of global

convection (Glatzmaier and Toomre 1995),

or by adding signi�cant e�ects not consid-

ered here, such as ionization, opacity tables,

and/or magnetic �elds (So�a and Chan 1984,

Xiong 1989, Nordlund 1985, Cattaneo 1992,

Nordlund et. al. 1992).

We simplify the problem of solar convec-

tion by neglecting the following aspects of the

problem: (1) the presence of magnetic �elds,

(2) the variation of the thermal conductiv-

ity due to radiation di�usion with the tem-
perature of the gas, (3) the changing state

of ionization of the gas, (4) the rotation of

the system, (5) the curvature of the convec-
tion zone due to the spherical geometry of
the sun, (6) the presence of a penetrable sta-

ble gaseous layer below the convection zone,

and (7) the existence of a free stellar sur-

face from which radiation escapes. With all
these simpli�cations, one might well ask if any
aspect of signi�cance to solar convection re-

mains in our simulations. We feel that in-
deed our study addresses the nature of con-
vection which takes place over several den-

sity and pressure scale heights and in a gas of
very small viscosity. By focusing our atten-

tion clearly upon these e�ects we are able to

make de�nitive statements about them and
to quantify the accuracy of those statements.

Were we to undertake simulations including

many of the neglected e�ects, we feel that it

would be most di�cult to disentangle these
many e�ects in order to understand the re-

sulting uid behavior. Our approach will be

instead to add these e�ects one by one into
our simulations so that their impact on the

results is made clear.

In this work we concentrate on trying to

resolve the hydrodynamic ows that form in
3-D thermal convection in deep atmospheres.
We seek to �nd which small scale structures

are produced and persist in thermal convec-
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tion, and we wish to �nd the e�ects that the

presence of these small scale structures have

on the larger scale ow. Perhaps the most

common treatment of the inuence of uid

turbulence on the structure of stellar con-

vective envelopes is to use an adaptation of

Mixing{Length Theory (MLT) in order to re-

late the total energy ux to the radial tem-

perature gradient (Vitense 1953 and Bohm{

Vitense 1958). Three{dimensional numerical

models of stellar convection are free of many

of the assumptions needed solve a 1-D (i.e.,

radially averaged) description of the prob-

lem and also provide complete ow informa-
tion which can be used to test the framework
and results of MLT. The assumptions under-

lying MLT can be tested quantitatively in
terms of correlations of the uctuating quan-

tities of temperature, density, and velocity.
A wide variety of these kind of statistical
measures have been made for various models

of convection in deep atmospheres in previ-
ous work (Chan and So�a 1989, Singh and
Chan 1993, Chan and So�a 1996, Kim et. al.

1996) where nonuniform meshes and a sub{
grid scale turbulence model were employed

(Chan and So�a 1986) at modest mesh reso-
lutions. The numerical simulations presented
here use uniform meshs at higher resolution

and can be used to check the validity and ro-

bustness of these previous results as well as
test MLT in new parameter regimes.

Another issue involves the form of the tur-

bulent velocity spectrum produced by convec-

tion in a deep atmosphere, which can feed
back on the transport of heat and e�ect the

vertical thermodynamic pro�le of the atmo-
sphere. Such considerations are used in the

full spectrum of turbulence (FST) modi�ca-

tion of mixing{length theory (Canuto and
Massitelli 1991, Canuto and Massitelli 1992,

Canuto et.al. 1996), which uses adaptations

of the Eddy Damped Quasi{Normal Marko-

vian approximation (EDQNM) models (Orzag

1977, Canuto et. al. 1991) and the Di-

rect Interaction Approximation (DIA) mod-

els (Kraichnan 1964, Hartke et.al. 1998) to

thermally driven convection. These models of

turbulence tend to generate a range of scales

in which energy power spectra scale as k�5=3,

characteristic of an Kolmogorov{Obukhov in-

ertial range. However, the presence of multi-

ple pressure scale heights which span a wide

range of sizes can lead to broad band buoy-

ancy driving and vitiate the assumption of an
inertial range.

In the work presented here, we use a high

resolution di�erence scheme, the Piecewise-

Parabolic Method, PPM (Woodward and Colella
1984, Colella and Woodward 1984, Wood-
ward 1986), to solve the Euler equations of

inviscid gas dynamics with very high accu-
racy. We have modi�ed the PPM scheme by
introducing an explicit thermal conduction to

drive the convection. Concentrating our at-
tention and all our grid resolution on a small

section of the deep, convectively unstable at-

mosphere, we examine the nature of an in-
tensely turbulent convection cell.

Our computations, which exhibit a wealth

of complicated and nonlinear structures, can-
not be properly analyzed without the exami-

nation of enormous quantities of data. Much

of this data is summarized in the form of color

movies of vorticity presented on the video

which accompanies this article. A wide va-
riety of hydrodynamic quantities from our

earlier simulations of compressible convection

have been presented as movies (see for exam-

ple Woodward 1988, Porter and Woodward
1989, Porter et. al. 1990, Porter et. al. 1991).

In both 2- and 3-D these movies provide us
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with an intuitive understanding that allows

us to form relevant models for the individual

constituents, as well as the overall behavior,

of our convective systems. In section 2 we

specify the convective systems that we study

in this work, and de�ne parameters that are

useful in describing the global properties of

our simulations. In section 3 we present the

results of our simulations of various convec-

tive systems computed with a range of com-

putational mesh resolutions. And in section 4

we discuss our conclusions.

2. De�nition of the Problem

We model these convective ows in terms
of an ideal, polytropic, inviscid gas. We

choose as dynamical variables the density �,
pressure P , and velocity u. The pressure can
be related to the density and an internal en-

ergy � via P = (� 1)��, where  is the adia-
batic index and has the value of 5/3. We have

a constant heat capacity at constant volume

cv, which relates the internal energy to the
temperature by � = cvT . The dynamical

variables are functions of spatial coordinates
(x; y; z) and time t. We impose a uniform
gravitational �eld, with a constant accelera-

tion due to gravity given by g pointed in the
�ẑ direction. We model radiative transfer in

terms of a constant coe�cient of heat con-

duction �. The equations of motion can be

written as

@t�+r � (�u) = 0 ; (2.1)

@tu + u � ru = �
rP
�

� gẑ ; (2.2)

@t(�E) +r � (u�E) = �r � (uP � �rT ) ;

(2.3)

where the total energy density per unit mass

is given by

E =
1

2
u2 + � + gz : (2.4)

We choose units so that the mean density �0,

the depth of the layer D � ztop � zbot, the

acceleration due to gravity g, and the heat

capacity at constant volume cv are all unity.

Boundary conditions are periodic in the two
horizontal directions, which are the coordi-

nate directions x and y in all cases except for

run c11 (see Table 1 and section 3.1 below).
We impose impenetrable and frictionless walls
for the boundaries at top and bottom. We im-

pose a heat ux FT , along the lower bound-

ary, and a temperature, Ttop, along the upper

boundary. The imposed vertical heat ux is
spatially uniform everywhere along the lower
boundary, constant in time and the same for

all of the models presented here (see Table 1).

Imposing a uniform temperature along the

top boundary which is constant in time and
has the same value for all of these models

would generate several problems for the pur-

pose of generating a series of models in con-
vective equilibrium which could be directly

compared. First, given the extremely small

values of the coe�cient of heat conduction in

these systems, the time for thermal relaxation

is far longer than any other time in these mod-
els. For example, given a �xed temperature

along the top boundary and � = 10�4 it takes
hundreds of time units for even one e-folding

relaxation time of the total energy in the sys-

tem. With � = 10�5 it takes thousands of

time units for the total energy in such a sys-

tem to relax. By contrast, the time for the

largest scales to overturn is several time units,
and the time for the largest scale convection

cells to form is a few hundred time units. The
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second problem is that in systems which Ttop
is �xed and which span several pressure scale

heights the vertical pro�les of density and

pressure depend sensitively on the tempera-

ture structure near the top boundary. How-

ever, the thermal boundary layers along the

top boundary, as well as the turbulent verti-

cal energy transport, are underresolved in the

lower resolution models presented here : sec-

tion 3.2 shows in detail how the lower pressure

scale heights, and increasingly more of the up-

permost pressure scale heights, are resolved

as mesh resolution is increased. Convection

is e�cient in the lower pressure scale heights
of our models where it drives the tempera-
ture pro�le to be nearly adiabatic. Hence, the

mean vertical pro�les of density and pressure
will be nearly identical in the lower pressure

scale heights, even for di�erent values of �,
FT , and FR=FT , provided that the total mass,
energy and depth of the systems are the same.

For the purpose of comparing systems with
di�erent mesh resolution, �, FT , and FR=FT

it is better to keep the total energy and total

mass of the systems the same than to keep
Ttop the same.

For these reasons, we specify a temper-
ature which is spatially uniform along the

top boundary at each time, but is allowed to
change with time so as to maintain a nearly

constant total energy in each model. The en-

ergy ux which exits through the top bound-

ary is entirely due to thermal conduction and

is Ftop = 2�(Tinside � Ttop)=�x, where Tinside
is the mean temperature in the layer of com-
putational cells just below the top boundary,

and �x is the width of one zone. The total

energy in the system would be constant, to

numerical roundo�, over a time step if Ftop =
FT , which leads to Ttop = Tinside � �x=(2�).
In order to �lter out temporal uctuations we

use a running time average for Tinside of the

form < Tinside > (t) =
R t
0 e

�t��

�t Tinside(�)d� .

In all of the models presented here the �lter

time, �t, is set to unity. With this prescription

the total energy does not change appreciably

and quickly settles to a nearly constant value

(see Figure 6 and related text at the end of

section 3.1).

The lowest resolution models in each se-

ries (e.g., c11, c21, and c31, see Table 1)
all start from a slightly superadiabatic hy-

drostatic vertical pro�le with small velocity

perturbations. These lowest resolution mod-
els (Nz = 32) each take a few hundred time
units for the total kinetic energy to reach its

equilibrium value, and are allowed to run for

1000 time units to allow each model to come

into complete convective equilibrium. Each
of the higher resolution models, starting with
c22 and c32 as listed in Table 1, start from a

mesh re�ned version of the �nal state of the
preceding member of the series. These higher
resolution models come into convective equi-

librium in about two turn over times, with the
mean vertical energy ux at each depth being

equal to the imposed ux, FT , along the bot-

tom (see Figures 11c and 11d and related text
in section 3.2) and the velocity spectra fully

developed and in equilibrium (see Figures 4

and 5 and related text in section 3.2).

The numerical method used is the Piece-
wise Parabolic Method, or PPM (Colella and

Woodward 1984, Woodward and Colella 1984,

Woodward 1986). It can be regarded as a

method of numerically modeling the small{

scale dissipation, just as large{eddy simula-
tions model the unresolved small{scales with

explicit transport coe�cients. A comparison
of results obtained with both a Navier{Stokes

solver and PPM for the problem of homo-

geneous turbulence in two dimensions is re-
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ported in Porter et. al. 1990 and Porter

et. al. 1992a. Convergence tests of PPM

for three dimensional turbulence is reported

in Porter et. al. 1994.

Table 1 lists the simulations reported here.
Eight runs are reported in all, each run is

identi�ed by the run name in column 1. All of

the simulations have aspect ratios of 2 by 2 by

1, with the short dimension being in the verti-

cal direction. Each mesh resolution (Nx, Ny,
Nz), column 2 of table 1, is chosen to make cu-

bical computational zones, which minimizes

anisotropies of the numerical di�usion. Each
run is carried through su�cient model time,
column 3, to allow turbulence to develop fully

and global quantities, like the total kinetic,

heat, and gravitational energies, to relax.

The imposed heat ux along the lower

boundary is also the total energy ux across

the layer, FT . Convection e�ciently mixes
most of the layer in all of these models, so the

radiative ux, FR, at most depths is directly

related to the coe�cient of heat conduction
� (shown in column 5), and the adiabatic

temperature gradient, [@T=@z]ad = ��ad =

�g=(cv). FR=FT is the fraction of the total
energy ux carried by radiation in each model

and is shown in column 6. It is instructive to

relate the ux that must be carried by con-

vection, FT � FR, to the Mach number,

Mo = (2(FT � FR)=�o)
1=3=co ; (2.5)

corresponding to the entire convective ux be-

ing carried by the kinetic energy ux, where

�o and co are the density and speed of sound
at the base of the convective layer. The Mach

number Mo for each run is shown in column

4.

We use the measures of the numerical vis-

cosity of PPM reported in Porter and Wood-

ward 1994 to estimate the e�ective large scale

Rayleigh, Ra, and Prandtl, Pr, numbers shown

in columns 7 and 8 respectively. The e�ective

shear viscosity due to the numerical dissipa-

tion of PPM on an isolated shear wave goes

as

�s =
As

4�2

"
�

�x

#3
u0� (2.6)

where � is the wavelength of the velocity wave

with amplitude u0 being numerically damped
on a mesh composed of uniform zones of size
�x. The coe�cient As depends on the advec-

tive Courant number. The advective Courant
number is about 0.14 in all the simulations
reported here, which corresponds to As = 10.

To estimate the large scale values of Ra and
Pr, we use a wavelength of unity (i.e., the

depth of the layer). The amplitude of ow
velocities on large scales is about u0 = 0:03
for runs c11, c21, c22, and c23, and is about

u0 = 0:05 for runs c31, c32, c33, and c34. The
e�ective large{scale Prandtl number for these
systems

Pr =
�s

�
; (2.7)

goes as N�3
z . For the Rayleigh number, we

need the coe�cient of thermal expansion Q =

�[@ln�=@lnT ]P , the adverse temperature gra-
dient, �, of the imposed heat ux relative to
the adverse adiabatic temperature gradient,

�ad, and an estimate of the mean temperature

in the system. For a {law gas Q = 1, and
T = 0:41 at mid depth on average in all of the

systems reported here. The adiabatic temper-

ature gradient is �ad = 0:6 for these  = 5=3

systems, and the imposed temperature gradi-
ent along the lower boundary is �B = 0:75 for

runs c11, c21, c22, and c23, and is �B = 7:5

for runs c31, c32, c33, and c34. The e�ective
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Table 1

Summary of the Numerical Simulations.

Run Nx �Ny �Nz Time Mo � FR=FT Ra Pr

c11 92� 46� 32 1000 0.021 10�4 0.80 1:577� 1010 2:319� 10�3

c21 64� 64� 32 1000 0.021 10�4 0.80 1:577� 1010 2:319� 10�3

c22 128� 128� 64 300 0.021 10�4 0.80 1:261� 1011 2:899� 10�4

c23 256� 256� 128 125 0.021 10�4 0.80 1:010� 1012 3:623� 10�5

c31 64� 64� 32 1000 0.035 10�5 0.08 4:354� 1012 3:865� 10�2

c32 128� 128� 64 200 0.035 10�5 0.08 3:483� 1013 4:831� 10�3

c33 256� 256� 128 200 0.035 10�5 0.08 2:787� 1014 6:039� 10�4

c34 512� 512� 256 46 0.035 10�5 0.08 2:229� 1015 7:549� 10�5

large{scale Rayleigh number is

Ra =
gQl4

T��s
(� � �ad) ; (2.8)

and goes as N3
z for each series of runs.

3. Results

3.1. Large{Scale Circulation

The convection simulations considered here

(see Table 1) all possess the same modest hor-

izontal to vertical aspect ratio, x:y:z = 2:2:1,
and have nearly the same vertical strati�ca-

tion, typically with 4.5 pressure scale heights

across the layer and a density contrast of
�� = 11. In every case these factors lead

to very similar large scale ows, character-
ized by a network of downow lanes near the

top boundary which merge together to form

two intersecting and perpendicular downow
lanes at mid depths, which then merge into

one large downow plume near the lower

boundary.

Horizontal structures in run c23 (see ta-
ble 1) are shown in gray scale Figures 1a-1f.

Figures 1a, 1b, and 1c, show the vertical com-
ponent of velocity at z = 0.25, 0.5, 0.9375 re-

spectively, the coordinate z is the height mea-
sured from the lower boundary in units of the

layer thickness. Lighter shades of gray indi-

cate upward velocity, darker shades represent
downows. Note the network of downow

lanes near the upper boundary (Figure 1a).
As depth increases, the number of downow

lanes decreases, and the size and turbulence of

the downow lanes increases. At z = 0:5 (Fig-
ure 1b) there are two large downow lanes,

which intersect. At z = 0:25 (Figure 1c) the

regions of downow have concentrated into
a few large and turbulent plumes. Fluctua-

tions in the temperature at the same three
depths are shown in Figures 1d through 1f.

Negative uctuations in the temperature are

seen to be fairly well correlated with down-
ows. However, the uctuations of vertical

velocity which are apparent in the broad up-
ow regions seen in Figures 1b and 1c have

no corresponding uctuations in the temper-

ature (Figures 1e and 1f).

Similarly, horizontal structures in run c34

are shown in gray scale in Figures 2a-2f. The
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horizontal sections are taken at z = 0.25, 0.5,

0.9375 These �gures show the same general

pattern of a network of downow lanes near

the top boundary (Figures 2a & 2d), which

converge to form to large downow lanes,

which are at right angles to each other, at

mid depth (Figures 2b & 2e), and a large

downow plume in the lower pressure scale

height (Figures 2c & 2f). Run c34 is repre-

sentative of higher Rayleigh and Peclet num-

bers, but nearly the same Prandtl number,

as run c23. The higher Peclet number of c34

leads to greater levels of thermal turbulence,

especially in upows (Figures 2d-2f) than in
c23 (Figures 1d-1f). However, in both sets of
runs and at all resolutions both velocity and

temperature uctuations are the strongest in
downow lanes.

At mid depths there is a tendency for re-
gions of downow to be organized into two

well de�ned lanes which not only are at right
angles to each other but also tend to be
aligned with the axes of the simulation. Here,

the downow lanes might be aligned with the
computational mesh directions, which would

correspond to a numerical artifact. Alterna-

tively, the downow lanes might be aligned
with the fundamental periodic directions of

the model, which could be an e�ect of the

modest aspect ratio of these runs. In the two

series of runs c20 to c23 and c31 to c34 the
fundamental periodic directions are exactly
the mesh directions, so there is an ambiguity

as to which potential cause is responsible for

the preferential direction of downow lanes
at mid depths. As a test, we constructed a

model where the fundamental periodic direc-
tions were at 45o to the mesh directions. This

was implemented by choosing a mesh which

was half as long in the y direction as the x

direction, imposing standard periodic bound-

aries in the x direction, but for the boundaries

in the y direction copying zones along 45o di-

agonals. For example, to generate the value

for the �eld F at a point (x; y; z) which lies

just below the lower y boundary we used

F (x; y; z) = F (x+ L; y + L; z) (3.1)

where L is the y dimension or half the x di-

mension. In such a mesh the shortest (or fun-

damental) periodic directions are at 45o to the
x or y direction. Run c11, with mesh dimen-

sions of (Nz,Ny,Nz) = (92,46,32) was run with
such a boundary, and with all other parame-

ters made to match those of run c21, which
was run on a 64�64�32 mesh (see table 1).

Figures 3a-3f show a comparison of these two

runs. Figures 3a, 3b, and 3c show the vertical
velocity from run c21 in horizontal sections at

z=0.5, 0.6875, 0.875 respectively. Figures 3d,
3e, and 3f show the vertical velocity from run
c11 at the same three depths, here the vol-

ume is replicated a factor of 2 in the y direc-
tion, with the appropriate shift in x, to show
the full convective pattern. As Figures 3a-3f

show, the downow lanes at mid depths align
themselves with the fundamental periodic di-

rections, and not the mesh directions, even in
these extremely low resolution runs. While

these downow lanes gradually move, and oc-

casionally break up and reform, Figures 3a-3f
show typical con�gurations of downow lanes

in these models. The modest aspect ratio

chosen in these simulations restricts the large

scale shape of the ow. This is a price we are

willing to pay in order to maximize the mesh
resolution across substructures, such as down-

ow lanes, in order to study the interaction of

uid turbulence and convection.

The major downow lanes forming a cross
which is aligned with the principal periodic
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directions is a robust feature for our choice

of aspect ratio, and is present over a wide

range of mesh resolutions. In fact, the large

scale ow in all of these convection models

has the same form, in some detail, indepen-

dent of mesh resolution. Power spectra of

the vertical velocity give us one measure of

the ow �eld over a range of scales. In these

vertically strati�ed models we anticipate that

there will be systematic changes with depth,

so it is appropriate to take the power spec-

tra on horizontal cuts. Figure 4a shows 2{

D Fourier power spectra of the vertical ve-

locity �eld taken on the plane at mid{layer
(z = 0:5) in the system. Here we are plotting
the average spectral energy per mode, A(uz),

as opposed to the total energy in a spheri-
cal shell, or circular annulus, in wave number

space. The three curves show the power spec-
tra for the series of runs c21, c22, and c23,
which are all identical except for their mesh

resolutions, which range from 64�64�32 to
256�256�128. Wavenumber k has units of
inverse distance and is consistent with the

unit of distance being the depth of the layer.
Since the aspect ratio is 2x2x1 the minimum

wavenumber is kmin = �. In Figure 4b, we
show the same plots for the runs c31, c32,
c33, and c34 which range in mesh resolution

from 64�64�32 to 512�512�256. In each se-
ries of runs the vertical velocity spectra agree
at each k to within the level of statistical

uctuations, independent of mesh resolution,
from k = kmin to k = kmax=16, where kmax

is the Nyquist wavenumber of the mesh in

each case. All seven spectra shown in Fig-

ures 4a and 4b have their peak amplitudes

at k = kmin and decrease strongly with k,
which is consistent with the ow being domi-

nated by a single convection cell which spans

the depth and breadth of the simulation re-

gion, as discussed above. Numerical dissi-

pation is seen to have a strong e�ect up to

wavelengths of about 10�x, where the curves

drop o� sharply. A reasonable power{law �t

to A(uz) at long wavelength is k
�8=3, which is

the power law corresponding to a Kolmogorov

inertial range spectrum in the A(uz) vs. k

plane. A k�8=3 power-law is shown in Figures

4a and 4b for comparison.

The shapes of the velocity power spectra

in the dissipation range are very similar from
one resolution to the next. In Figures 4c and

4d we compare the dissipation ranges between

the three models c21,c22,c23 (Figure 4c) and
the four models c31,c32,c33,c34 (Figure 4d)
by scaling the wavenumber by the maximum

(i.e., Nyquist) wavenumber kmax, scaling the

vertical velocity spectrum A(uz) by its value

at kmax, and then compensating each spec-
trum by (k=kmax)

�8=3 in order to remove the
overall trend for k < kmax=4. We see that the

dissipation ranges (k > kmax=4 or � < 8�x)
match quite well in both series of runs. Agree-
ment for k < kmax=4 is also remarkably good.

A Kolmogorov inertial range would be hori-
zontal in Figures 4c and 4d.

The slope of these velocity power spectra
are close to that expected for an inertial range

over more than one decade of size scales in

the case of run c34 (see Table 1), which sug-

gests that the ow is primarily driven, in the
sense of injection of energy, on only the largest

scales. In principle, these ows are driven on

scales ranging from the size of the smallest

cold drips forming in the thermal boundary

layer along the top boundary, which are as
small as a few computational mesh cells wide,

to the scale of the large downow lanes, which

can span the depth and breadth of the region

simulated. The ow is driven by buoyancy
forces, which we can measure as a function of

scale by examing the Fourier power spectra of
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the mass density � in 2-D horizontal cuts at

various heights. Figures 5a and 5b show the

total Fourier power of � for run c23 at heights

1�1=a for a =2, 8, and 64 (Figure 5a) and for
run c34 at heights 1� 1=a for a=2, 8, 32, and

128 (Figure 5b). For both runs the buoyancy

forcing, which just goes as �, is fairly broad

band, with contributions, at some height, for

1 � k=kmin � 32. The overall circulation in

these convection models ensures that velocity

perturbations driven at one height are quickly

advected to all other heights.

We can directly quantify the strength of
buoyancy driving of the kinetic energy by
examining the correlation of density uctu-

ations with vertical velocity (��uz) at each

height. When averaged over the periodic hori-

zontal extent of our models each Fourier mode
of �� couples only with the same Fourier mode
of uz, hence we can decompose the buoyancy

driving of the kinetic energy,
R
��uzdxdy =R

~�k~uz;kdkxdky, into contributions from each
scale (speci�ed by jkj). We �nd that the

peak driving at each depth within the layer
occurs at a wavelength roughly equal to the

local pressure scale height, which happens to

be is comparable to about half the distance
to the upper boundary. At each depth, and

on scales smaller than those of peak driv-

ing, the buoyancy driving of the kinetic en-

ergy scales as k�5=3dk. Since the bulk of the
buoyancy driving occurs in the lowest pres-
sure scale height, which �lls the bulk of the

volume, the buoyancy driving averaged over

the entire volume peaks at k=kmin = 4, and
also scales as k�5=3dk for larger k. Approx-

imately half of the buoyancy driving of the
kinetic energy comes from modes k=kmin � 5

and about 92% of the buoyancy driving comes
from k=kmin � 32. Pressure gradients also

contribute to the driving of the ow. How-

ever, pressure uctuations are relatively small

in these models : the power spectrum of

pressure uctuations is 20 time smaller than

that of the density uctuations for all wave-

lengths. Further, the pressure gradients seem

to be completely uncorrelated with the ve-

locity �eld at all wavelengths, so that the

injection of energy into the kinetic energy

�eld from pressure gradients is negligible com-

pared to the contributions from mass uctu-

ations. We conclude that a Kolmogorov like

velocity spectrum (i.e., k�8=3 energy per mode

in a 2-D slice scaling as k�8=3, see Figures

4a to 4d) can be present in a range of scales
where there is signi�cant driving of the kinetic
energy. For example, in run c34 the forward

energy ux at a wavenumber jkj, which is due
to the total energy input from larger scales,

is not constant but increases by almost a fac-
tor of two over the range 4 � k=kmin � 20,
while in this same range the velocity spec-

tra scale as k�8=3 per mode or equivalently as
k�5=3dk. Kolmogorov-like velocity coexisting
in a range of scale where the forward energy

ux increases signi�cantly is also seen in mod-
els of decaying, isotropic turbulence (Porter

et. al. 1998).

There is an excess (above the k�8=3 asymp-

tote at small k), or \bump", in the velocity
spectra for kmax=16 < k < kmax=4. This ex-

cess in spectral energy in the near dissipa-

tion range is also seen in 3-D numerical mod-
els of isotropic decaying turbulence (Porter

et. al. 1992a, Porter et. al. 1994, Porter
and Woodward 1996), has been identi�ed as

a potential k�1 range (Porter et. al. 1992b),

and has been observed in wind tunnel experi-
ments. As pointed out in Porter et. al. 1994,

the dissipation on the smallest scales inhibits

the usual kink instability that these vortex
tubes would otherwise experience and thus
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decreases the e�ectiveness of energy transfer

from this near dissipation range to the strong

dissipation range. The result is a attening

of the power spectrum for the solenoidal (in-

compressible) component of the velocity with,

in this near dissipation range, the solenoidal

velocity power spectra displaying an approxi-

mate k�1 power law, as �rst noted in numer-

ical simulations in Porter et. al. 1992b. Re-

analysis of the experimental data of Gagne

obtained in the wind tunnel of Modane also

indicates a k�1 behavior in the near dissipa-

tion range (Gagne 1987, and She and Jackson

1993) as well as computations in the incom-
pressible case using either �ltered data cen-
tered on vortex �laments (Jimenez et. al.

1993) or a hyperviscosity code (Borue and
Orszag 1994). The amplitude of this bump

has been found to be less for driven turbu-
lence (about 20% excess in velocity spectra)
than for decaying turbulence (about 250% ex-

cess) (Porter et. al. 1995). In these contin-
uously driven convection systems, the excess
seems to be about 40%.

As mentioned above, the horizontal scale of

convection cells (or downow lanes) decreases

as the upper boundary is approached. This
can be seen in the velocity power spectra.

Figures 5c and 5d show the average energy per

Fourier mode in the vertical velocity taken in

2-D horizontal cuts at heights 1 � 1=a for a
= 2, 4, 8, 16, 32, and 64 for each of the two
runs c23 and c34. The overall trend is for the

power spectra at a height 1�1=a to be nearly

constant up to roughly k = a=2. Recall that
k is an inverse length in units of the depth

of the layer. Hence, at a depth of 1/a below
the upper boundary, modes of wavelength 2=a

and larger are suppressed, which corresponds

to the constraint that the cross section of an
eddy must be roughly circular.

Some care is taken to ensure that all of

the power spectra discussed above, and all of

the statistical measures given in sections III.2

and III.3 below, are taken at times after each

system has come to convective equilibrium.

As discussed in section II, the temperature

along the top boundary is allowed to vary so

as to keep the total energy nearly constant.

Time histories of the total energies (Figures

6a and 6b), mean temperature along the top

boundary (Figures 6b and 6c), and mean ux

along the top boundary (Figures 6e and 6e)

from the four highest resolution models (e.g.,

c22, c23, c33, and c34 as listed in Table 1) il-
lustrate how quickly these systems come into
equilibrium. The equilibrium total energies

di�er by no more than one part in 5200, which
leads to essentially identical vertical pro�les

of density and pressure in the lower pressure
scale heights between all of these models. In
each case the mean temperatures along the

top boundary, Ttop, is seen to come to an equi-
librium value within a few turnover times, or
about 25 time units. The equilibrium values

of Ttop are seen to di�er only slightly for the
FR=FT = 0:8 cases of c22 and c23, but dif-

fer substantially for the FR=FT = 0:08 cases
of c33 and c34. These variations in the tem-
perature along the top are entirely consistent

with the constraint that the temperature pro-

�les should be nearly identical in the lowest
pressure scale heights (as they are in these

models) and that the temperature gradients
be di�erent in the upper pressure scale heights

(as they are expected to be for di�erent con-

vective uxs and di�erent mesh resolutions,
see section section 3.2). The mean energy ux

through the top boundary, Ftop, shows the
e�ects of temporal uctuations in the mean

temperature just below the top boundary. In

each case, within 25 time units of the initial
state, Ftop is seen to oscillate around the en-
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ergy ux which is imposed along the lower

boundary (i.e., FT ) and vary by no more than

a few percent from that value, indicative of

these systems being in equilibrium. Figures

11c and 11d, in section 3.2 below, show that

the total energy uxs (averaged both over

time and horizontal position) for runs c23 and

c34 are very close to the imposed ux FT at

every height within the simulation volume,

which is an even stronger indicator of con-

vective equilibrium.

3.2. Vertical Pro�les and Mixing{Length

Theory

The amplitude of convective velocities in

these models can be related to the energy ux
which we impose along the lower boundary.

Figures 7a and 7b show the mean, rms, and

extrema of the vertical component of velocity
as functions of height from runs c23 and c34
respectively. The mean (solid line) is nearly

zero everywhere, the rms uctuations about
the mean (error bars) decrease to zero at the

impenetrable boundaries, and are otherwise

roughly independent of depth away from the
boundaries. The peak downow velocities are

seen to be about 3 times larger in magnitude
than the peak upow velocities, which reects

the asymmetry between upows and down-
ows. We impose the same heat ux through

the lower boundary in these two runs. How-

ever, the coe�cient of heat conduction used
in c34 is ten times lower than that of c23.

The vertical energy ux that needs to be car-

ried by convective motions in c34 is much
larger than that of c23. Let fo be the im-

posed heat ux along the bottom boundary,
and fr = �g= be the vertical radiative en-

ergy ux for an adiabatic atmosphere. The

velocity scale, uf , derived by equating the ki-
netic energy ux which would result from a

vertical velocity of uf , given the local density

�, to the convective energy ux fo � fr, is

uf = (2(fo � fr)=�)
1=3 ; (3.2)

which is shown as the dashed curves in Fig-
ures 7a and 7b. The slight increase of uf with

height is due to the decrease of density with

height. We see that the rms vertical velocity

scales fairly well with uf between the runs c23

and c34.

The equation of hydrostatic equilibrium is
commonly assumed in models of stellar struc-

ture, because the uid velocities are assumed
to be small. However, the uid velocities dis-

cussed above reach a substantial fraction of

the local speed of sound near the top bound-
ary. Figures 8a and 8b show the rms (solid
line) and maximum (dotted line) Mach num-

bers of the uid velocity as functions of height
from runs c23 and c34, respectively. The

slight increases in Mach number near the up-

per and lower boundaries, seen in both runs,
are due to large horizontal velocities near the

boundaries. Mach numbers range as high as
0.8 in c34, and are at least a few percent at all

depths in both runs. Force balance in the ver-

tical direction, averaged both over time and
horizontal position, therefore contains a sig-

ni�cant contribution from the gradient of the

dynamic pressure, �u2z, as well as of the pres-

sure P . Denoting both a horizontal and tem-

poral average in the momentum equation by
angle brackets, we have

Fm = �Pz �G� ; (3.3)

where Fm = @z < �u2z > is the gradient of

the dynamic pressure, Pz = @z < P > is

the pressure gradient, and G� = g < � >

is the gravitational force per unit area. In or-

der to assess the relative importance of the

13



dynamic pressure term we plot �Pz=G� and

�(Pz+Fm)=G� as functions of height for each

of runs c23 and c34 in Figures 9a and 9b,

respectively. If our simulations were in per-

fect statistical equilibrium and if our process

of averaging our data over horizontal position

and time were perfect as well, then our plots

of �(Pz + Fm)=G� should be horizontal lines

at the value of unity. We �nd that the sum

�(Pz+Fm)=G� is within 0.01% of unity at all

depths more than 8 computational cells away

from the upper or lower boundaries in both

runs, while �G�=Pz (where the dynamic pres-

sure term is neglected) can vary by more than
a percent in c23, and by as much as 7% in c34,
where convective velocities are higher. From

the curves in Figure 9, one might neverthe-
less think the e�ect of the dynamic pressure

term to be quite small, but we have found it
to be signi�cant when dealing with the in-
terpretation of other small quantities, such

as the superadiabatic temperature gradient,
which play important roles in mixing{length
theories.

If we consider the dynamic pressure term

Fm as known, the vertical pro�les of density

and pressure may be derived from the verti-
cal pro�le of any one thermodynamic variable,

such as temperature or entropy. The vertical

pro�les of entropy, for runs c23 and c34 are

shown in Figures 10a and 10b. Solid lines
show the mean value, error bars the rms uc-
tuations around the mean, and dotted lines

the extrema at each height. The entropy is

nearly constant in the lower two thirds of both
runs, indicative of e�cient convection and the

layer of gas being well mixed. Entropy uctu-
ations are largest near the top boundary, and

there is a systematic decrease in entropy with

height in this region. Correspondingly, the
vertical temperature gradients are nearly adi-

abatic in the lower halves of both runs, and

there are superadiabatic temperature gradi-

ents in the upper halves. The extent to which

the temperature gradient is superadiabatic at

each height reects how strongly the convec-

tion is driven given the imposed convective

ux and the mass which is locally available

to carry it. The slight subadiabatic temper-

ature gradients in the lower portions of our

convective layers are related to the bottom

hard wall boundary conditions and will be dis-

cussed later.

Figures 11a and 11b show the mean tem-
perature gradients for runs c21-c23 and c31-
c34 as functions of depth. Over the bulk of

the convective layer, away from both the top

and the bottom walls, these temperature gra-

dients are nearly independent of grid resolu-
tion, and hence of the e�ective viscosity of the
gas. This is particularly evident if the two

highest resolution simulations are compared
in each series. As is most easily seen for the
series of runs c31-c34, in which the thermal

conductivity is very small and the bulk of the
heat ux through the layer is carried by con-

vection, the numerical viscosity has the great-

est e�ect in the upper region. We will see that
this is the region most important for compar-

isons of our results with mixing{length mod-

els. Since such comparisons are a major mo-

tivation for this study, we were driven to the
very high grid resolution of the c34 simula-
tion. From the results plotted in Figure 11b,

however, we feel that the grid resolution of

this run is su�cient for this purpose, and no
further grid re�nements are necessary in or-

der to obtain useful results. In the top half of
each model, temperature gradients are seen to

be superadiabatic. There is a subadiabatic re-

gion, 0:07 < z < 0:24, in each of the runs c21-
c23 and similarly for 0:07 < z < 0:32 in runs
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c31-c34. In each case the subadiabtic region

is within one pressure scale height of the lower

boundary and is caused by the impenetrable

wall and thermal boundary layer at that edge.

This thermal boundary layer generates very

hot and extremely buoyant elements of gas,

which continue to drive the ow even in the

presence of a slight subadiabatic region such

as is present in our models. For example,

in run c34, the the increase in entropy go-

ing down across the lower thermal boundary

layer is �ve times larger than the increase in

entropy going up across the entire subadia-

batic region. Further, the rms uctuations in
the entropy in the center of the subadiabatic
region in run c34 is three times larger than

the total increase in entropy across it. Hence,
these subadiabatic regions only slightly de-

crease, and do not reverse, the buoyancy of
typical positively buoyant elements of gas go-
ing across them. These subadiabatic regions

are consistent with the systems being in con-
vective equilibrium. Similar subadiabatic re-
gions are seen in the lowest pressure scale

height adjacent to an impenetrable boundary
by other investigators both in 2-D (Hurlburt

et. al. 1984) and in 3-D (Chan and So�a
1989) simulations of convection.

In our discussion of mixing{length ideas,

we will follow the simpli�ed treatment given

in Clayton 1968. More compressive develop-
ments of mixing{length theory can be found,

for example, in Cox and Giuli 1968 or Hansen

and Kawaler 1994, but we have found that the
additional terms which these discussions in-

troduce in the equations are generally negligi-

ble in the context of our simulations, presum-

ably because in all the runs presented here

we have chosen relatively small thermal con-
ductivities, leading to highly e�cient convec-
tion. Mixing{length theory is used to derive

the entropy strati�cation in a convectively un-

stable zone of a star by relating the excess

of the temperature gradient above its adia-

batic value, (� � �ad), to the enthalpy ux,

FE, carried by convection through the layer.

The imposed total energy ux, FT , consists of

3 contributions:

FT = FE + FK + FR ; (3.4)

The total energy ux is independent of depth

in our numerical simulations. However, the

3 terms on the right in equation (3.4) show

interesting depth dependence which mixing{
length theory attempts to capture by the rela-

tionships given below, with the coe�cients �E

and �K being constants in the theory. Here
we consider these coe�cients as functions of

depth, and possibly of the ratio FR=FT . We
then can measure the usefulness of mixing{
length theory in describing the statistically

averaged behavior of our simulations by the

accuracy to which we can approximate these
coe�cients by constants. The 3 contributions

to the total energy ux are the enthalpy ux

FE = < cp��Tuz > (3.5a)

FE = �Ecp < � > < �T 2 >1=2 < �u2z >
1=2

(3.5b)

the kinetic energy ux

FK =
1

2
< �u2uz >=

�K

2
< � >< �u2z >

3=2

(3.6)

and the radiative ux

FR = �� @z < T > (3.7)

Figures 11c and 11d show these vertical en-

ergy uxes for runs c23 and c34. In the rela-
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tions given above, these vertical energy uxes,

which have been averaged both over time

and over horizontal position, are expressed in

terms of products of averaged density, tem-

perature, and velocity uctuations. These av-

eraged uctuations must in turn be related to

the deviation of the local temperature gra-

dient from its adiabatic value if our mixing{

length analysis is to be complete.

For the purpose of comparing the scal-
ings predicted by mixing{length theory with

data from our numerical models, we eval-

uate the temperature and velocity uctua-
tions in terms of the rms uctuations of each
about its horizontal mean, which we write

as < �T 2 >1=2 and < �u2z >1=2 in equations

(3.5) and (3.6) above. Figure 12a shows val-

ues for �E and �K for each of the runs c23
(FR=FT = 0:8) and c34 (FR=FT = 0:08) as
functions of the vertical coordinate z. We see

that �E � 0:8, and �K � 1:6 for z < 0:84
For z > 0:84 �K drops o� rapidly. This is
very likely due to the presence of the upper

hard wall boundary. The tick marks along
the bottom of Figure 12a show the depths

at which the pressure P is 2, 4, 8, and 16

times that of the pressure PT along the top

boundary for both runs c23 and c34. In the

absence of a hard wall boundary, the mean
pressure at a given depth is proportional to

the total mass above that depth. Therefore,

as we go down into the unstable layer, and
P increases beyond its value PT at the top

boundary due to the weight of the gas be-
tween us and that boundary, the di�erence

between this bounded ow and one with a

free surface should diminish. We may there-
fore adopt the ratio PT=P as an estimate of

the inuence on the ow of the top hard wall
boundary condition. When the inverse of this

ratio, P=PT , is large, a mixing{length analy-

sis should be more likely to apply. Indeed, as

we can see from Figure 12, when P=PT > 4

the coe�cients �E and �K become fairly in-

dependent of depth in run c34, and match up

with the coe�cients from run c23.

In comparing our simulation data to a

mixing{length theory, we should not only ac-

count for the distortions of the data, from this

point of view, near the top boundary but from

the lower boundary as well. Our hard wall
at the bottom of the simulation domain also

makes mixing{length theory inapplicable in

that region. We have used the ratio PT=P to
estimate the importance of the upper bound-
ary condition on our results at a given depth.

To estimate the importance of the lower hard

wall boundary condition we instead measure

the height above that boundary in terms of
the local pressure scale height, �p, de�ned by

�p = �
P

@P=@z
: (3.8)

Since mixing{length theory suggests that the

scale of typical convective eddies is compa-
rable to �p, clearly the theory cannot ap-

ply when we are within this distance of a

hard wall boundary. We have noted earlier

that only in the upper portion of our simula-
tions are signi�cant superadiabatic tempera-

ture gradients observed. Mixing{length the-

ory relates statistical features of the ow, such
as the energy uxes FE and FK and the tem-

perature and velocity uctuations on which
they depend, to the superadiabatic temper-

ature gradient (� � �ad). This gradient is

assumed to drive the convection, since it is

proportional to the degree of instability of
the horizontally and temporally averaged en-

tropy strati�cation. Therefore, as we have al-

ready pointed out, a local mixing{length the-

ory cannot apply in the lower portion of our
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simulations, where this superadiabatic tem-

perature gradient is not found. This lower

30% to 40% of our simulation volume, which

is not included in Figure 12, is also within a

single pressure scale height of the hard bot-

tom boundary. Therefore we should not be

surprised that the convective motions persist

there even in the presence of a stabilizing en-

tropy strati�cation. The convective motions

in this region are driven by the vigorous con-

vection further up in the layer and by the

thermal boundary layer along lower bound-

ary. In fact, our visualizations of this convec-

tive ow, which can be viewed on the video
accompanying this paper, clearly show de-
scending plumes of turbulent cool gas extend-

ing over multiple pressure scale heights. The
inertia of these rapidly descending plumes

easily overcomes the slight stabilizing inu-
ence of the horizontally and temporally aver-
aged entropy strati�cation. We are currently

analyzing results of further convection sim-
ulations in which the convectively unstable
layer has a stable layer of gas, not a hard

wall, beneath it. It will be interesting to dis-
cover the vertical extent of applicability of

mixing{length theories in those numerical ex-
periments. That work will be presented in a
forthcoming article.

We have seen that the simple parametriza-

tions of the energy uxes given in terms of

the coe�cients �E and �K de�ned above are
indeed useful in describing our simulations,

so long as we restrict our attention to the

appropriate region of the simulation volume.
We now ask whether in this restricted region

the average temperature and velocity uctu-
ations can be equally well described by sim-

ple relations to the superadiabatic tempera-

ture gradient (� � �ad). We might expect
that the temperature uctuations would de-

pend on this quantity, which is related to the

strength at which the convection is driven, as

well as on the coe�cient of heat conduction,

which tends to reduce the amount of heat

transport which results from a given level of

vigor of the convective motions. We can es-

timate the potential importance of any such

terms in the coe�cient of heat conduction �

by comparing the convective time scale to the

the thermal relaxation time scale. A convec-

tive time scale �c is given by

�C =
�p

uf
: (3.9a)

Here, we have taken �p to be a typical size,

and uf de�ned in equation (3.2) to be a typ-
ical velocity. The time scale for thermal re-
laxation is

�r =
�2p

�T
; (3.9b)

where �T = �=(�cP ) is the thermal di�usiv-

ity. The ratio of the thermal to the convective
time scale gives us a Peclet number

Pe =
�r

�C
=
�puf

�T
: (3.9c)

Values of Pe range from 8:3 � 104 near the

bottom of run c34 to 10 near the top of run

c23. We may therefore conclude that convec-

tion is e�cient throughout all of our mod-
els, and that thermally di�usive terms may

be neglected in a mixing{length treatment.
We should point out, however, that the above

analysis does not account for the strong tur-

bulence that we observe in our convectively

unstable atmospheres. This turbulence acts

to enhance the local di�usion of heat above
the level indicated by the coe�cient of heat

conduction. This e�ect reduces the e�ciency
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of the convection signi�cantly from the esti-

mate given above, although it is possible to

consider this e�ect as a fundamental aspect

of the convection itself, at least in our regime

of extremely low viscosity and hence of highly

turbulent convection.

In the absence of any di�usive terms, the

factors which should control the amplitude of

temperature and velocity uctuations are the

local pressure scale height �p and the devia-
tion of the temperature gradient � from its

adiabatic value �ad. From simple dynamical

arguments, which amount to little more than
unit analysis, we can write

< �T 2 >1=2= �T (� � �ad)�p (3.10)

for the rms temperature uctuations, and

< �u2z >
1=2=

�u

2

�
g

T
(� � �ad)

�1=2

�p (3.11)

for the rms velocity uctuations. Given hy-
drostatic equilibrium, the adiabatic temper-

ature gradient is �ad = g
cv

. However, as we
have discussed earlier, the presence of velocity
uctuations leads to a dynamic pressure term

in the momentum ux which modi�es the adi-
abatic vertical temperature pro�le, and leads

to

�ad =
g

cv
fk (3.12)

where

fK =

 
1 +

1

g�

@

@z
(�u2z)

!
: (3.13)

The additional factor, fK, in equation (3.13)
makes our analysis slightly nonlocal, but we

have seen earlier that this is a small, yet nev-

ertheless important, e�ect.

Figure 12b shows the factors �T and �u

for runs c23 and c34 as functions of depth.

We measure the average values of �T and �u

over 0:68 < z < 0:84 for run c23 and over

0:55 < z < 0:84 for run c34. The upper

bound of z = 0:84 for both runs is chosen for

the same reasons as mentioned earlier. The

lower bounds reect the range of z over which
there is a signi�cantly superadiabatic temper-

ature gradient. These ranges of z and the cor-

responding average values of �T and �u are
shown in Figure 12b. From these averages we
get �T = 2:04 and �u = 2:70

The relations for vertical energy uxes given

in equations (3.4) through (3.7) and the re-
lations for velocity and temperature uctua-

tions given in equations (3.10) and (3.11) may

be combined to relate the total energy ux to
the temperature gradient in a form very simi-

lar to a local mixing{length model for e�cient

convection (see, for example, Clayton 1968 or
Cox and Giuli 1968)

FT = �eutk cp�

�
g

T

�1=2

(���ad)3=2�2p + �� :

(3.14a)

�eutk =

"
�E�U�T

2
� �K�

3
U

 � 1

16fK

#
(3.14b)

Here, we have combined the kinetic energy

ux with the enthalpy ux by using the def-
inition for the pressure scale height �p given

in equation (3.8) and including the dynamic

pressure into the relationship between the
pressure gradient and the density

@p

@z
= g�

 
1 +

1

g�

@

@z
(�u2z)

!
: (3.15)
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Given only an imposed total energy ux,

which is independent of depth, and the mean

density and pressure at one height (to estab-

lish units and vertical location) we can derive

a vertical pro�le for the temperature gradi-

ent by using equations (3.11), (3.14), (3.15)

and the equation of state. We calculate self-

consistent solutions to these equations itera-

tively for models c23 and c34. Iterative solu-

tions work here because the inuence of the

dynamic pressure is small in the sense that

fK � 1. We use an adiabatic atmosphere with

zero velocity uctuations for the initial iter-

ation. Solutions converge within a few iter-
ations. These mixing{length model solutions
are compared with the 3-D numerical mod-

els of c23 and c34 (see table 1) in Figure 12c.
We �nd that this local mixing{length model

works fairly well over a range of depths in each
of two numerical models with very di�erent
convective uxes. The dotted line in Figure

12c is �ad in the absence of dynamic pressure
adjustments, while the two dashed lines are
�ad for each of the two numerical simulations

(as indicated) including the e�ects of dynamic
pressure.

We note that the main e�ect of dynamic
pressure in equation (3.14) is in the (�� �ad)

term, where the deviations of � and �ad from

the value of 0.6 are both small. The enthalpy

ux and kinetic energy ux, however, are not
close to cancelling, hence the coe�cient on

the right hand side of equation (3.14) is es-

sentially une�ected by the dynamic pressure
term, and becomes

"
�E�U�T

2
� �K�

3
U

 � 1

16

#
= 1:28 : (3.16)

Using the MLT proportionality constants of

Cox and Giuli 1968 in the case of large con-

vective e�ciency the convective ux can be

written as

FC = FE+FK =
a0Q

1=2

9
p
2

g2�5=2T

p3=2
(r�rad)

3=2 ��p ;

(3.17)

where the coe�cient of thermal expansion, Q,

is unity for our polytropic gas, and � = ��p
is the e�ective "mixing{length" used in Cox

and Giuli 1968. With the choice of a0 =

9=4 used in Cox and Giuli 1968, equation
(3.17) is equivalent to equations (3.14) and

(3.16) given a ratio of mixing{length to pres-
sure scale height of � = 2:68. The e�ective
mixing{length, consistent with the numerical

models of compressible convection presented
here and the coe�cients used in Cox and Giuli
1968 scales with, and is several times larger

than, the local pressure scale height.

3.3. Convection and Turbulence

Vorticity is a useful diagnostic for iden-
tifying turbulent regions within ows which

are both three dimensional and at a high

Reynolds number. Vortex stretching insures
that the largest local rates of strain and Reynolds

stresses are associated with vortex tubes, which
therefore play an important role in the behav-

ior of turbulent ows. As we have seen in sec-

tion 3.1, our models of thermally driven com-
pressible convection in deep atmospheres gen-

erate narrow and turbulent downow lanes.
Vorticity is strong in these downow lanes.

We would like to understand how the vor-

ticity comes to be concentrated in these re-
gions. This vorticity could be generated by

the strain �elds associated with the downow

lanes, or it could simply be advected from the

upper boundary. Close to the upper bound-

ary, the baroclinic terms of the governing dy-
namical equations generate vorticity around
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drips of cold gas which form in the convec-

tively unstable thermal boundary layer there.

Compressional terms related to the mean den-

sity strati�cation also inuence to the evolu-

tion of enstrophy. In this section we charac-

terize the contribution of each of these mech-

anisms. Vorticity is a vector quantity and the

geometry of a gravitationally strati�ed con-

vective ow is far from isotropic. There are

preferred directions of vortex stretching in the

strongly anisotropic strain �elds, which leads

to to alignment of the vorticity with large-

scale convective structures, as we show below.

Figures 13a-13h show eight perspective vol-
ume rendered visualizations of the vorticity

�eld from run c34 at t = 44. Panels 13a

through 13d show four horizontal sections,

each section spans the entire horizontal ex-
tent of the model. Panel 13a shows the
top pressure scale height which spans z 2
[0:87; 1:0], panel 13b shows the second pres-
sure scale height from the top which spans
z 2 [0:68; 0:87], panel 13c shows the third

pressure scale height from the top which spans
z 2 [0:39; 0:68], and panel 13d shows the low-

est pressure scale height which spans z 2
[0:0; 0:39]. The top pressure scale height of
the model, Figure 13a, shows a network of

vortex tubes. As seen in Figures 14a and 14d,

below, these vortex tubes are associated with

small downow lanes in the thermal bound-
ary layer. Where these small downow lanes
intersect, a relatively strong downow plume

results, which penetrates into lower layers of

gas and produces turbulent vortex structures
as seen in Figure 13b. The major downow

lanes are most clearly evident in Figure 13c
where they are seen as lanes of tangled vor-

tex tubes. Only the strongest portions of the

downow lanes penetrate to the deepest scale
height shown in Figure 13d. The intersec-

tion of the major downow lanes, seen at the

upper left in Figure 2a, forms the strongest

downow plume which penetrates all the way

to the bottom of the convective layer. Pan-

els 13e through 13h show four vertical sections

for ranges of the horizontal coordinate y in the

intervals [0:0; 0:25], [0:5; 0:75], [1:0; 1:25], and

[1:5; 1:75]. The bundles of vorticity are pri-

marily associated with downow lanes. These

vertical sections show vertically oriented vor-

tex tubes extending up from the lower bound-

ary at the center of the strongest upow re-

gion. Vorticity tends to be aligned with the

direction of large scale expansion. At the base
of the upow region the ow is primarily ex-
panding in the vertical, and along the top

boundary the ow is expanding in the hori-
zontal, except in the downow lanes. Both

the vertical and horizontal sections show only
weak vorticity in the center of the upow re-
gion.

In the accompanying video we present a
movie of the time dependent vorticity �eld of

run c34 during the time interval 0 < t < 33:5,
see appendix A. The movie shows perspective

volume renderings of the magnitude of vor-

ticity, which visualizes vortex tubes and slip
surfaces. After showing the full volume of the

simulation, the movie zooms in to show de-

tail in a vertical section of the simulation's

rectangular volume. The full volume of the
simulation is four times thicker than the sub-

section shown in this sequence. Note the nu-

merous vortex tubes in the upper boundary.
Near the center of this vertical section a cas-

cade of vortex tubes is seen tumbling down,

this is a cross{section of a turbulent downow

lane. The mostly clear regions on either side

are where the gas is welling up.

Next, the movie moves to show vorticity

in the upper 1/8th of the simulation. Many
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long, horizontally oriented, and very strong

vortex tubes can be seen here. These vortex

tubes start as slip surfaces along the edges

of downow lanes of cool gas. Many small

downow lanes form along the upper bound-

ary. But the overall ow which is associated

with the largest convection cell stretches these

downow lanes into long structures. As they

stretch, these slip surfaces tend to compress

in the two directions which are orthogonal to

the stretching, and, due to conservation of an-

gular momentum, spin up into strong vortex

tubes. The vortex tubes seen here are strong

enough to form recirculation regions, which
are essentially small convection cells embed-
ded within a much larger convection cell. The

concentrated bundles of vortex tubes, toward
which the expanding patterns of vortex tubes

ow, delineate the main downow lanes of the
single large convection cell which spans the
depth of the layer. The bright dots, seen in

the views of vorticity from above, are the ends
of very strong vertically oriented vortex tubes
which terminate at the upper boundary. The

interplay and merger of these vertical gyres
is clearly seen later in the movie where the

view moves to examine vorticity in the upper
boundary seen at an inclined angle.

As mentioned above, and as seen the movie

of vorticity, there is a positive correlation be-

tween downows and enstrophy (the square of
the vorticity). We draw a more direct com-

parison of enstrophy and vertical velocity in

Figures 14a-14f. Figures 14a and 14b show
enstrophy in a horizontal section at mid depth

and a vertical section, while Figures 14c and

14d show uz in the same horizontal and verti-

cal sections. Two intersecting downow lanes

are clearly seen in 14c. A corresponding in-
creased density and strength of vortex tubes
is seen in 14a. Similarly, a section of a down-

ow lane is seen (darker shades of gray) in

14d, with the corresponding increase in en-

strophy in 14b. The downow lanes are su�-

ciently turbulent that at a given instant in

time there can be positive vertical velocity

embedded within the downows, which is seen

Figures 14c and 14d as lighter shades of gray

within the large scale downow lanes. These

small regions of counterow are often due to

very strong vortex tubes dominating the lo-

cal ow, and do not correspond to any long

lived updrafts. We can get a much cleaner,

and more representative, image of the large

scale circulation by �ltering the data. Fil-
tered vertical velocity, in the same horizon-
tal and vertical sections, is shown in Figures

14e and 14f. For these models of compressible
convection we use a Favre, or mass weighted,

�lter. Given any �eld quantity, Q, and any
�lter which produces, Q, the Favre �lter of Q
is de�ned by

eQ =
�Q

��
: (3.18)

We choose a Gaussian �lter. Since there are
systematic trends in the vertical direction, we

only �lter in the two horizontal directions.
Hence, the �lter we use is

Q(x; y; z) = (1)

N
Z Z

e�((x1�x)
2+(y1�y)2)=�2kQ(x1; y1; z)dx1dy1;

(3.19)

where �k = 2�k=L, and L is the periodic hor-

izontal width of the simulation region. We
use the Favre �ltered velocity, ~uz, �ltered at

k = 4 (as shown in Figures 14e and 14f) to

distinguish between large scale downows and

upows. As can be seen in Figure 14f the
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�ltered velocity is smooth in the vertical di-

rection, despite the fact that no �ltering was

done in the vertical.

We can quantify the correlation between

downows and enstrophy. In Figures 15a
through 15e we show the mean enstrophy

(solid curve) as a function of ~uz in �ve narrow

bands of depth ranging from the top bound-

ary shown in Figure 15a to the bottom bound-

ary shown in Figure 15e. Downows corre-
spond to ~uz < 0. The varying ranges of ~uz in

the di�erent depth intervals reect the depen-

dence of the strength of the ow with depth.
Everywhere there is a strong trend of increas-
ing enstrophy with decreasing ~uz. Away from

the vertical boundaries (Figures 15b, 15c, and

15d) the enstrophy contrast is a factor of 15

from the strongest downows to the strongest
upows. This con�rms the visual impression
given by the volume renderings of vorticity in

Figures 13a-13h and in the movies of vorticity
on the companion video to this article.

The dotted curves in Figures 15a { 15e
show the dependence on ~uz of the contribu-

tion, !2
z , to the enstrophy from the vertical

component of the vorticity. We have scaled
!2
z by a factor of three for comparison with

the total enstrophy. There is a systematic

trend for this component of the enstrophy to

be preferred in downows in the upper re-

gions (3!2
z=!

2 = 1:20) and in upows in the
lower regions (3!2

z=!
2 = 1:29). In visualiza-

tions of the vorticity, this preference shows up

as strong vertical vortex tubes at the tops of

downows (Figure 13a) and at the bottoms
of upows (see the bottom right-hand sides
of Figures 13e and 13g). Similarly, the hori-

zontal components of the vorticity contribute

preferentially to the enstrophy in upows in
the upper regions (3!2

z=!
2 = 0:40) and in

downows in the lower regions (3!2
z=!

2 =

0:71). Again, visualizations show this trend

in terms of the visually striking horizontally

oriented pairs of vortex tubes in the upper-

most regions (Figure 13a).

We can understand the correlation of en-
strophy with downows by examing the terms

in the dynamical equations which generate

vorticity. By taking the curl of the momen-

tum equation we can derive an equation for

vorticity which looks like

@t!+u�r! = rP�r
1

�
+ !�ru � (r�u)! :

(3.20)

The left hand side of this equation is the com-

moving time rate of change of the vector vor-
ticity !, the three terms on the right hand

side of this equation are the baroclinic, vortex
stretching, and divergence terms. The bario-
clinic term tells us where the convective insta-

bility generates vorticity, the vortex stretch-
ing term indicates where the strain �eld is am-
plifying vorticity, and the compressional term

shows where vorticity is being concentrated

or spread out. We can write a scalar equa-

tion for the local enstrophy, !2, by taking the
dot product of equation (3.20) with !, which

produces

d!2

dt
= B + S + C ; (3.21)

where d=dt is the commoving derivative. Here,

B is the baroclinic contribution

B = 2! � rP �r
1

�
; (3.22)

S is the vortex stretching contribution

S = 2! � ! � ru ; (3.23)
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and C is the compressional contribution to

the enstrophy

C = �2!2r � u : (3.24)

Figures 16a-16e show the stretching, compres-
sional, and baroclinic terms as functions of

the �ltered vertical velocity ~uz in the same

�ve depth ranges as used in Figures 15a-

15e. Semi{log axes are used here in order

to display the large dynamic range in the
source terms of enstrophy. Everywhere, at

all depths and independent of vertical ve-
locity, the stretching term S (solid curve)
is the strongest of the three terms. The

contribution of vortex stretching to the vor-
ticity is proportional to the vorticity itself.

Hence, as soon as any vorticity is produced,
vortex stretching quickly ampli�es it. Vor-
tex stretching is the strongest in downows,

with the contrast in S from the strongest
downows to the strongest upows being as

large as a factor of 100. The baroclinic term
B (dashed curve) is strongest near the top

boundary where, as was seen in section 3.1,

temperature gradients are the steepest and
the convective instability is the strongest.

The baroclinic term is also enhanced near

the top boundary by the low densities there.
There is also a trend for the baroclinic term

to be stronger in downows at all depths, ex-

cept along the bottom boundary. The com-

pressional term C (dotted curve) contributes

to the enstrophy in downows, where the ow
is systematically compressing, and is nega-
tive (i.e., acts to decrease the enstrophy) in

upows, where there is systematic expansion

of the uid. In these semi{log plots we plot

log10jCj, and negative values of C are indi-
cated with \x"s. Compressional e�ects sys-
tematically enhance the enstrophy in down-

ows, and diminish enstrophy in upows. The

scenario suggested by this data is consistent

with what is seen in the movies of enstro-

phy. The baroclinic term generates enstro-

phy in the very smooth ow which reaches

the upper boundary layer. Vortex stretching

quickly ampli�es the enstrophy, which is then

advected into downow lanes by the large{

scale circulation. All three terms (S, C, and

B) act to enhance the enstrophy in downow

lanes, only viscous dissipation of enstrophy,

which scales as !2, keeps the enstrophy from

exponentially increasing inde�nitely. Along

the lower boundary the large{scale circula-

tion advects the strong enstrophy at the base
of the downows into the upows. Viscous
dissipation and expansion act together to di-

minish the enstrophy in upows. Near the
top boundary the e�ects of expansion are suf-

�ciently strong to create an extremely smooth
ow near the top boundary.

The preferential alignment of vorticity with
the horizontal or vertical direction in identi-
�able regions of the ow, as seen in visual-

izations of vorticity and the trends of !2
z=!

2

with ~uz (Figures 15a{15e) can be understood

in terms of the strain �elds associated with

the large{scale circulation. As was seen in
Figures 16a{16e, the vortex stretching term

S dominates the production of enstrophy.

The stretching term is strongest for vorticity

aligned with the principal direction of strain.
Figures 17a{17e show several measures of the
rate of strain tensor Aij = @ui=@xj as func-

tions of the �ltered vertical velocity in the

same �ve depth intervals as used in Figures
15 and 16. The solid curves represent the

trace of Aij, which is the divergence of ve-
locity, and show the obvious trend of uid ex-

pansion in upows and compression in down-

ows. The dashed curve represents the ver-
tical component of the divergence A33, which
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is positive (expansion in the vertical) at the

tops of the downows and bottoms of the up-

ows, leading to maximal vortex stretching

in the vertical direction in these two regions,

and the alignment of vorticity seen in Fig-

ures 15a and 15e. The dotted curve shows the

sum of the horizontal components of the di-

vergence, which is positive (expansion in the

horizontal) at the bottoms of the downows

and tops of the upows (Figures 17a, 17b, and

17e), similarly leading to maximal stretching

in the horizontal direction in these two re-

gions, and vorticity preferentially horizontally

aligned there.

While Aij is the rate of strain of the un-

�ltered velocity, the values of Aij plotted in

Figures 17a through 17e are averages over

sizable domains and reect the large{scale
strain �eld. In fact, the trends for A33 and
A11+A22 at the tops and bottoms of up- and

down-ows, discussed above, are just what
one would get from the ow of the simplest
convection cell that may be constructed with

sinusoidal variations. The alignment of the
vorticity with the principal direction of the

large-scale strain, which we have pointed out

in relation to Figures 15 and 17, reects a gen-
eral tendency which has also been observed in

our simulations of homogeneous, compressible

turbulence (Porter et. al. 1998). If un�ltered

velocity data is used to construct the strain
�eld, then strong vorticity in turbulent ows
is preferentially aligned with the intermedi-

ate direction of the rate of strain tensor (Kerr

1987). This result is caused by the dominance
of the local strain �eld by the circulating ow

about a strong vortex tube, which sets up a
principal direction of strain right near the vor-

tex tube which is perpendicular to the direc-

tion along its length. By constructing the rate
of strain tensor from a �ltered velocity, one

which is averaged over sizable domains as we

have done here, one may remove the inuence

of the small-scale self{induced strain �elds of

individual strong vortex tubes. Using this ap-

proach in the context of a PPM simulation of

homogeneous, compressible turbulence on a

grid of 1024�1024�1024 cells, Porter et. al.

1998, showed that the local vorticity is indeed

aligned with the principal direction of strain

for the large{scale velocity �eld. This �nd-

ing, along with that reported above for our

compressible convection simulations con�rms

the expectation that vortex stretching is the

dominant mechanism for amplifying vorticity
in turbulent ows.

While thermodynamic �elds are coupled to

velocity through baroclinic (including buoy-

ancy driving) and acoustic terms, e�ects of
hysteresis, thermal di�usivity, and even shock
heating allow thermal variations to be, in

principle, independent of the velocity �eld.
Hence, measures of thermal uctuations help
diagnose the structure of compressible con-

vection. Indeed, the enthalpy ux, repre-
sented by the term FE in equations (3.5),

is just the correlation of the vertical veloc-

ity with thermal uctuations. By examining
the mean temperature variation as a func-

tion of the �ltered vertical velocity, and also

the temperature uctuations about that mean

for each �ltered vertical velocity bin, we can
identify where (relative to the large scale con-

vection cells) and on what size scales (rela-

tive to the width of the �lter) the enthalpy
ux is occurring. Figures 18a { 18e show the

trend of the relative temperature uctuations

with �ltered vertical velocity in the same �ve

depth ranges as used in Figures 15, 16, and

17. The solid line shows the average value of
�T= < T > in each velocity bin, where < T >

is the mean temperature at each depth and
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�T is the mean uctuation of the tempera-

ture from < T > in each velocity bin. The

error bars show the rms uctuations about

mean temperature (i.e., < T > +�T ) within

each velocity bin at each depth range. At all

depths, temperature uctuations are predom-

inantly hot in upows and cool in downows,

indicative of positive enthalpy ux in both

downows and upows. However, despite the

fact that the mean temperature in upows is

relatively hot at each depth, the temperature

uctuations about this relatively hot mean

are small compared to those in the downows

: the small scale thermal turbulence is rela-
tively weak in the upows compared to the
downows. This trend is seen at all depths,

except along the lower boundary, Figure 18e.
Away from the top and bottom boundaries

the local rms temperature uctuations are
typically 7 times larger in the strongest down-
ows than in the strongest upows. While

there is plenty of positive enthalpy ux in the
upows (due to the mean positive tempera-
ture uctuations in the upows, see solid lines

in Figure 18), there is { evidently { very lit-
tle small scale thermal structure in the up-

ows. Hence, we �nd that both velocity and
thermal turbulence is strongest in the down-
ow lanes, while the updrafts are relatively

smooth. Even in the strongest downows

the rms temperature uctuations are smaller
in amplitude than the average relatively cool

temperature variation associated with those
negative vertical velocity bins. Hence, en-

thalpy ux comes primarily from the largest

scale of convective motions (i.e., the mean
ow of the large convection cells which span

several pressure scale heights) as opposed to
many small and independent contributions

from the smallest scales of turbulence.

4. Conclusion

We have presented several high resolution
models of three{dimensional, compressible,

and thermally driven convection in deep at-

mospheres. Spectra of the vertical compo-

nent of the velocity in a 2-D slice at mid layer

have been compared for two series of simu-

lations covering a range of a factor of 8 in
grid resolution. These show not only conver-

gence of the results to a common spectrum

as the grid is re�ned, but they also indicate a

power-law behavior with the energy per mode

in a 2-D slice scaling as k�8=3. If isotropy is
assumed, this is consistent with energy per

mode scaling as k�11=3 for the velocity �eld in

the full 3-D volume. This power-law scaling

of velocity is consistent with a Kolmogorov
energy spectrum (i.e., k�11=3 energy per mode
or k�5=3dk energy in a spherical shell of thick-

ness dk), and holds over more than a decade
of size scales in the highest resolution model
presented here. Kolmogorov-like energy spec-

tra have also been noted by other investiga-
tors (Cattaneo et. al. 1991 and Chan and

So�a 1989). However, we �nd that about half
of the buoyancy driving of the kinetic energy

comes from the same range of scales in which

the the velocity spectra are Kolmogorov-like.
Further, the spectra of the horizontal compo-

nents of velocity are less than the that of the

vertical component by as much as a factor of

two in this same range, indicating signi�cant

anisotropy. Hence, one should be careful in

interpreting a Kolmogorov-like energy spec-
trum as the sole indicator of a Kolmogorov

inertial range, especially in models of con-

vection in deep atmospheres where there is

strong gravitational strati�cation and broad

band energy driving.

Our convection ows possess intensely tur-

bulent downow lanes and relatively laminar
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updrafts. Vorticity is everywhere preferen-

tially aligned with the strain �eld associated

with the large{scale circulation of the convec-

tion. Near the top boundary, where the strain

�eld is particularly large, the alignment of

vorticity with strain leads to very strong, hor-

izontally oriented vortex tubes. These hori-

zontal vortex tubes come in counter{rotating

pairs and are associated with downow lanes.

Comparisons of our simulations with mixing{
length theory show that for systems where ra-

diative transfer carries only 8% as well as for

systems in which it carries 80% of the total en-
ergy ux, over a factor of 8 in mesh resolution,
and at all depths su�ciently well separated

from the hard wall boundaries, the mean

temperature uctuations and vertical veloc-

ity uctuations can separately and fairly ac-
curately be related to the superadiabatic tem-
perature gradient (�r) and the local pressure
scale height (�p). Additionally, these uctu-
ations are correlated with the enthalpy and
kinetic energy uxs, which allows one to re-

late the convective energy ux (FC) to �r
and �p in a manner consistent with mixing{

length theory. From equation (3.17), which

uses proportionality constants given by Cox

and Giuli 1968, we �nd a value of � = 2:68 for

the ratio of mixing{length to the local pres-
sure scale height in the case of large convec-

tive e�ciency.

By way of comparison with previous work,

Chan and So�a 1989 used 3-D numerical sim-
ulations on computational meshes no larger

than 28�28�46 and inferred a mixing{length
ratio of � = 2:3 for the same MLT proportion-
ality constants. Chan and So�a 1989 also gen-

erated best �t relations between many combi-
nations of dynamical variables, some of which

were similar to those reported here. Remark-

ably, they found a correlation coe�cient of

0.81 between vertical velocity and tempera-

ture uctuations, essentially equivalent to our

value of �E � 0:8 in equation (3.5) if den-

sity uctuations can be ignored. Later, using

higher mesh resolution (137�137�100) with

convectively stable vertical boundaries, Chan

and So�a 1996 re-examined thier relations

between dynamical variables and found that

small to moderate adjustments of these rela-

tions could be made, but cautioned against

putting to much weight on this "�ne tuning"

because of ambiguities in the subgrid scale

model that they used. Our highest resolu-

tion 3-D models (c34 in Table 1 for example)
compliment the subgrid scale models used in
Chan and So�a 1989 and Chan and So�a 1996

by directly simulating an extended range of
turbulent scales of uid motion on regular

and cubical meshes. For the purpose of con-
structing models of stellar evolution, our sim-
ulations therefore provide both added con�-

dence in the classic mixing{length approach
and improved quantitative estimates for the
parameters involved.

The imposed energy ux and low density

near the top boundary of the models in which

the convective energy ux is dominant (runs
c31 to c34, see Table 1) lead to ows with

peak Mach numbers approaching unity in this

region. The resulting vertical dynamic pres-

sure alters the horizontally and temporally
averaged vertical pro�les of density and pres-
sure from those which would apply in a hy-

drostatic equilibrium. Although this e�ect is

small, it is important in measuring the param-
eters of a mixing{length theory, which must

describe other small quantities.

The models presented here all treat a sin-

gle convectively unstable layer with impene-
trable walls at the top and bottom, in terms

of a simple -law gas with a constant coe�-
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cient of heat conduction. The lower impene-

trable boundary causes there to be a slightly

subadiabatic temperature gradient in the low-

est pressure scale height (as is also seen by

other investigators (Hurlburt et. al. 1984 and

Chan and So�a 1989), which limits the appli-

cability of our models to the interior of stellar

convection zones, well away from the base of

the convection zone. We are currently ana-

lyzing models of convection where the lower

boundary is replaced by a convectively sta-

ble layer and the local coe�cient of heat con-

duction is derived from Kramers' opacity law.

Our analysis of MLT in these paper is also
constrained to modest values of the supera-
diabatic temperature gradient : the presence

of an impenetrable wall at the top boundary
limits our measurements to depths in which

�r � 0:01 is satis�ed. Larger values of
�r inevitably lead to large Mach numbers,
which imply large fractional pressure varia-

tions. An accurate representation of the up-
permost pressure scale heights near a stellar
surface would require a vacuum, or better still

photospheric, boundary which is free to move
and ex in response to the turbulent convec-

tive motions deeper down. We are currently
performing simulations of stellar convection
in spheroidal geometry with freely moving

photospheric boundaries.
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A. Movie

In this Appendix we describe development
and features of the vorticity �eld from run

c34 (see Table 1), a 512�512�256 local area
model of stellar convection. The accompany-
ing video shows the evolution of the magni-

tude of vorticity ! = jr � uj, over the �rst
33.5 time units of the simulation in steps of

0.125 time units, where time units are based
on the acceleration due to gravity and the

depth of the layer. This time sequence is re-

peated a total of eleven times from varying
viewpoints and showing various subregions of

the computational domain. Perspective vol-

ume rendering is used to visualize the vol-
umetric data of this 3-D numerical simula-

tion. In terms of the equilibrium rms vortic-

ity, !o, a region is rendered as transparent for
! < 1:68!o. Opacity linearly increases from

0 for ! > 1:68!o. Color ramps from blue

through green to white as the magnitude of

vorticity ramps from 1:68!o through 3:05!o
to ! >= 3:88!o.

The initial state of run c34, which is seen

at the beginning of each time sequence in the

accompanying video, is the �nal and dynam-

ically relaxed state of run c33 (see Table 1).
The parameters of run c33 are identical to

those of c34 except for mesh resolution, which
in run c33 is 1/2 in each direction of that of

run c34. Hence the fully developed vorticity

�eld in run c33 is about 1/2 in amplitude of
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that in run c34. Correspondingly, relatively

weak vorticity is seen at the beginning of each

of the 11 time sequences in terms of a mostly

transparent volume. The rms vorticity in run

c34 increases from 55% to 95% of its' equilib-

rium value over the �rst four time units of the

run.

Here, we shall choose coordinates so that

the computational volume of run c34 is (X; Y; Z)

2 ([�0:5; 0:5], [�0:5; 0:5], [�0:25; 0:25]). The
initial viewpoint is at (X; Y; Z) = (2:5; 2:0; 1:0),

which is above the top boundary and looks di-

agonally down at the computational volume.
The viewpoint moves, as the systems evolves,
to (X; Y; Z) = (0; 2;�1), which is below the

bottom boundary and looking diagonally up-

ward at a 30 degree angle. The movie then

fades back to the initial state, but now as
seen from this new point of view. The time
sequence repeats with the viewpoint staying

below the lower boundary and orbiting 90 de-
grees in the X-Y plane around the compu-
tational volume to (X; Y; Z) = (�2; 0;�1).
These �rst two time sequences show the en-
tire ow in terms of strong vorticity. This

thresholding reveils intense turbulence along

the upper boundary as well as in the down-

ow lanes and plumes. Vorticity, strong or

weak, is a fairly good tracer of the large scale
ow in these movies since commoving vortic-

ity tends to evolve on longer time scales than

it takes to be carried a signi�cant distance
through the computational volume. Many

downow lanes emanate from the top bound-
ary and merge, hierarchically, into fewer and

larger downows until they merge into a fairly

intermittent downow plume. Updrafts are
seen to be relatively clear of strong vortic-

ity except in the regions of outow along the
lower boundary from the bottom of the main

downow plume. Attempts to volume visu-

alize the weak vorticity in the updrafts yield

an opaque �eld where only the boundaries of

the volume are seen, resulting e�ectively in

visualizing vorticity on 2-D slices. See, for

comparison, Figures 14a and 14b which show

horizontal and vertical 2-D cuts of the mag-

nitude of vorticity, both weak and strong, in

terms of a linear grey scale ramp.

Next, the movie focuses on a section of a

downow lane by displaying only the subvol-
ume (X; Y; Z) 2 ([0:125; 0:375], [�0:5; 0:5],[�0:25; 0:25]),
which is a vertical slice spanning one quar-

ter of the X dimension of the computational
volume. The viewpoint moves to (-1,0,0) to
center this subvolume, and then the time se-

quence is run through three times. Again, in-

tense vorticity is seen along the top boundary

and in regions of downow, while relatively
weak vorticity is seen in updrafts.

Next the movie focuses on the turbulent
upper boundary by displaying only the sub-

volume ([-0.5,0.5 ],[-0.5,0.5],[0.1875,0.25]), which

spans the uppermost eighth of the computa-
tional volume. The viewpoint moves to (0, 0,

2) and looks straight down in order to center

this horizontal slice. The time sequence is run
through three times. Along the top boundary,

the ow is seen to converge towards the main

downow lanes. Between the downow lanes,

where the ow is expanding in the two hor-

izontal directions, pairs of vortex tubes can
be seen to form and connect into a horizontal

network.

Next the movie zooms into one quarter

of the top boundary by displaying only the

subvolume ([0,0.5],[-0.5,0],[0,0.25]), which is

an octant of the entire volume. The view-
point moves to (0.25, -0.25, 1.125) and looks

straight down in order to center this octant.

Then the time sequence is run through two
more times. This zoom-in provides a better
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view of vortex tube pairs and the formation

and evolution of vortex rings.

Next the movie shifts to view the entire top

boundary again, showing only the subvolume

([-0.5,0.5 ],[-0.5,0.5],[0.1875,0.25]) as before,
but this time from a point of view which is to

one side at (-0.6, 0.1, 0.4187) looking diago-

nally downward. The time sequence is played

through two more times from this viewpoint.

Myriad vertical vortex tubes, which terminate
on the free slip top boundary, are seen within

this horizontal slice. These gyres are seen

to converge toward the main downow lanes.
Strong stretching in the vertical at the tops of
the downow lanes aligns mainly vortex tubes

in the vertical direction, and hence with each

other. The interaction of these very strong

and nearly vertical vortex tubes takes on a
2-D character. Pairs of co-rotating tubes or-
bit around each other and frequently merge.

Occasionally, a counter-rotating pair is seen
self-propagating over a short distance.

Finally, the vorticity �eld in the entire vol-
ume is shown at a �xed time while the view

point orbits back, through about 270 degrees

in the X-Y plane, to the initial viewpoint at
(2.5,2.0,1.0).

Perspective volume rendered movies, like

the one described here, have proven to be
useful in motivating questions about, and de-

veloping diagnostics for, these intensely tur-

bulent 3-D ows. In particular, the correla-

tion of vorticity with downows and the align-

ment of vorticity with the principal direction

of strain of the mean ow were both �rst no-
ticed in volume rendered movies of the magni-

tude of vorticity, such as the one shown here.

The quantitative analyses in section 3.3 were

motivated be these visualizations.
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Fig. A1.| Horizontal sections of vertical ve-

locity (panels a, b, and c) and relative tem-

perature (panels d, e, and f) from a simulation

of compressible convection on a 256x256x128

mesh with the PPM code (run c23, Mo =

0:021, Ra = 1:010� 1012, Pr= 3:623� 10�5).

Panels a, b, and c are at horizontal levels

z=0.25, 0.5, and 0.934, respectively. Simi-

larly, panels d, e, and f are at horizontal lev-

els z=0.25, 0.5, and 0.934, respectively. Dark

shades of gray represent downows or rela-

tively cool temperature, light shades of gray

represent upows or relatively hot tempera-

ture. Note the cellular pattern of downows
near the top boundary (panels 1a and 1d),
the large-scale cellular pattern of downows

at mid depth which spans the horizontal ex-
tent of the model (panels 1b and 1d), and the

strong correlation between downows and rel-
atively cool temperatures at all depths. The
low e�ective Prandtl number in this model

leads to higher levels of turbulence in the ve-
locity �eld (see especially panels 1b and 1c)
than in the thermal �eld (panels 1e and 1f).

Fig. A2.| Horizontal sections of vertical ve-
locity (panels a, b, and c) and relative tem-

perature (panels d, e, and f) from a simulation

of compressible convection on a 512x512x256
mesh with the PPM code (run c34, Mo =

0:035, Ra= 2:229� 1015, Pr= 7:549 � 10�5).

Panels a, b, and c are at horizontal levels

z=0.25, 0.5, and 0.975, respectively. Simi-

larly, panels d, e, and f are at horizontal lev-
els z=0.25, 0.5, and 0.975, respectively. Dark

shades of gray represent downows or rela-

tively cool temperature, light shades of gray

represent upows or relatively warm temper-

ature. Note the �ne grained cellular pattern
of downows near the top boundary (panels

2a and 2d), the large-scale cellular pattern of

downows at mid depth which spans the hor-

izontal extent of the model (panels 2b and

2d), and the strong correlation between down-

ows and relatively cool temperatures at all

depths. The low e�ective Prandtl number in

this model leads to higher levels of turbulence

in the velocity �eld (see especially panels 2b

and 2c) than in the thermal �eld (panels 2e

and 2f).

Fig. A3.| Comparison of the orientation of

downow lanes between a model where the

principal horizontal periodic directions are

aligned with the mesh directions (panels a,

b, and c) to a model where the principal hor-
izontal periodic directions are at a 45o angle

to the mesh directions (panels d, e and f).

Vertical velocity is shown in horizontal sec-

tions at depths z=0.5 (panels 3a and 3d),
z=0.6875 (panels 3b and 3e), and z=0.875
(panels 3c and 3f). The two models are iden-

tical (runs c11 and c21 with Mo = 0:035,
Ra= 2:229 � 1015, Pr= 3:623 � 10�5) except
for horizontal mesh and boundaries. In both

cases, and at all depths, downow lanes tend
to align with the principal horizontal periodic

directions rather than with the mesh direc-
tions. Hence, the predominant alightment of

the large-scale downows in all of our models

(c21 through c34, see table 1) is due to our
modest choice of aspect ratio (i.e., 2� 2� 1)

for the volume of the simulation.

Fig. A4.| Vertical velocity spectra (mean
square amplitude per Fourier mode) in a hor-

izontal cut, z=0.5, from simulations of com-

pressible convection (a) for Mo = 0:21 for
three mesh resolutions (runs c21, c22, and

c23, see table 1), (b) for Mo = 0:35 for four
mesh resolutions (runs c31 through c34 see

table 1), and the same sets of vertical veloc-

ity spectra as (a) and (b) but shifted to align
dissipation ranges and compensated for the
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k�8=3 trend in panels (c) and (d). A k�8=3

power{law is shown for comparison in panels

(a) and (b).

Fig. A5.| Spectra of buoyancy forcing in

two high resolution simulations of compress-

ible convection at heights approaching the up-

per boundary. Power spectra of the mass den-

sity are shown at the three heights indicated
in run c23 (panel a) and four heights indicated

in run c34 (panel b). Signi�cant buoyancy

forcing is shown to span the entire range of

scales over which the velocity spectra in Fig-

ure 4 can be said to have converged and pos-
sess a power{law form. Velocity power spec-

tra in two high resolution simulations of com-

pressible convection at six heights approach-

ing the upper boundary as indicated in run
c23 (panel c) and run c34 (panel d). Large-
scale velocity modes are systematically sup-

pressed down to smaller and smaller length
scales as the upper boundary is approached,
consistent with the constraint that the bulk

of the velocity energy is in roughly circular
eddies or vortex tubes.

Fig. A6.| Time histories of the total en-

ergy, panels (a) and (b), the mean temper-
ature along the top, panels (c) and (d), and

the total vertical energy ux at top panels
(e) and (f), from simulations of compressible

convection with Mo = 0:21, panels (a), (c),

and (e), and with Mo = 0:35, panels (b), (d),
and (f). Only the highest two resolution mod-

els are shown for each value of Mo (i.e., runs

c22 and c23 for Mo = 0:21 and run c33 and
c34 for Mo = 0:35). The times of the lower

resolution runs are shifted so that the time
at which they are used to generate the initial

state of the next higher resolution run are at

t=0. Hence the vertical dotted lines in each
Figure represent mesh re�nement by a factor

of 2.

Fig. A7.| Vertical velocity, uz, as func-
tion of height, z in two high resolution mod-

els of compressible convection, run c23 in

panel a, and run c34 in panel b (see table 1).

The mean, rms, and extremal values at each

height are shown as a solid line, error bars,

and dotted lines, respectively. A dashed line
shows the vertical velocity, uf in equation

(3.2), derived from the demand that the entire

convective ux, (FE + FK), be carried solely

by the kinetic ux, FK. This simple form of

uf provides an overall scaling for the ampli-
tude of uctuations in the vertical velocity .

Fig. A8.| Local Mach number as function

of height, z, in two high resolution models

of compressible convection, run c23 in panel
a, and run c34 in panel b (see table 1). rms,
and maximum values at each height are shown

as solid and dotted lines, respectively. The
extreme Mach numbers approach unity near

the upper boundary, where the speed of sound

is the lowest and the mass density, which must
carry the convective ux, is also the lowest.

Fig. A9.| E�ects of convective momentum

transport on the mean atmospheric pro�le in

two high resolution models of compressible

convection. Panel a shows results for run c23,
while panel b shows results from run c34 (see

table 1). Dotted lines show the pressure gra-

dient scaled by the product g�. This ratio
would be unity for a hydrostatic atmosphere,

but is seen to vary by a few percent from
unity, especially near the upper boundary and

particularly in run c34, where Mach numbers

are larger. Solid lines show the pressure gradi-
ent with the dynamic pressure gradient term

added in, again scaled by the product g�. As
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it should be for long time-based averages over

a turbulent, but statistically steady ow, this

ratio is unity to within a fraction of a percent.

Fig. A10.| Vertical pro�le of entropy in two

high resolution models of compressible con-

vection, run c23 in panel a, and run c34 in

panel b (see table 1). The mean, rms, and
extremal values at each height are shown as

a solid line, error bars, and dotted lines, re-

spectively. Each atmosphere is seen to be

nearly adiabatic, with small uctuations, ex-

cept in the uppermost pressure scale heights,
where uctuations are larger and the mean

entropy decreases as the upper boundary is

approached. The decrease in entropy near

the upper boundary is larger in run c34 than
c23, consistent with the atmosphere carrying
a larger convective ux in c34.

Fig. A11.| Vertical pro�les of the mean tem-

perature gradients from simulations of com-
pressible convection (a) for Mo = 0:21 for

three mesh resolutions (runs c21, c22, and

c23, see table 1), (b) for Mo = 0:35 for four
mesh resolutions (runs c31 through c34 see ta-

ble 1). The slope dT=dz = -0.6 (solid straight

line) corresponds to a static adiabatic atmo-

sphere. The total FT , radiative FR, enthalpy
FE, and kinetic FK vertical energy uxes are

shown for the high resolution simulations c23

(c) and c34 (d).

Fig. A12.| Correlation coe�cients �K and

�E (see equations (3.5) and (3.6)) for the two

high resolution simulations c23 and c34 (see
table 1) are shown in (a). The coe�cients

�T and �u (see equations (3.10) and (3.11))

for the same two simulations are shown in

(b). Solid horizontal lines show the best �t

values (and the corresponding ranges of z)

of �T and �u for each of the two simula-

tions. Local mixing{length model solutions

(solid lines) for the adverse temperature gra-

dient, �, (see equation (3.14)) are compared

in (c) with measured � values (\x"s) from the

two 3-D numerical models of c23 and c34 (see

table 1). The dotted line is �ad derived in

the absence of dynamic pressure corrections,

while the two dashed lines show �ad for each of

the two numerical simulations (as indicated)

including the e�ects of dynamic pressure.

Fig. A13.| Perspective volume rendered vi-

sualizations of enstrophy (vorticity squared)
in the high resolution model of compressible

convection c34 (see table 1). Panels a, b, c,

and d show horizontal sections which span

the topmost, 2nd from the top, 3rd from the
top, and bottom pressure scale heights, re-
spectively. Panels e, f, g, and h show four

vertical slices, each of which spans the compu-
tational volume in the vertical direction and
one horizontal direction, and spans 1=8th of

the computational volume in the other hori-
zontal direction. Note the cellular pattern of

downow lanes is seen in the vorticity �eld
in the top three pressure scale heights (pan-

els a, b, and c). There is a turbulent layer

in the top few pressure scale heights, which
is driven by the superadiabatic temperature

gradient there (see Figures 10 and 11). Tur-

bulent downow lanes, surrounded by rela-

tively laminar updrafts are seen in the vertical

slices (see panels e, f, g, and h).

Fig. A14.| A visual comparison of the cor-
relation between turbulence and downdrafts

in the high resolution model of compressible
convection c34 (see table 1). Turbulence is

visualized in terms of strong enstrophy (dark

shades of gray) in a horizontal section at mid
layer (a), and in a vertical section (b), while
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downow is visualized in terms of vertical

velocity being very negative (dark shades of

gray) in the same horizontal section at mid

layer (c), and vertical section (d). The pos-

itive correlation between downow and tur-

bulence is fairly clear, however there are up-

drafts seen in the middle of downow regions,

due to the strength of the turbulence itself,

that do not correspond to the larger mean

ow. Panels (e) and (f) show �ltered vertical

velocity in the same horizontal and vertical

sections as above. the �lter is a Favre (or

mass weighted) �lter based on a Gaussian �l-

ter with a dispersion wavenumber k = 4 in
the two horizontal directions only (see eqns
(3.18) and (3.19)). The �ltered velocity is

quite smooth, even in the vertical direction
where no �ltering is done. There is still a clear

visual correlation between enstrophy (panels
14a and 14b) and �ltered vertical velocity.

Fig. A15.| Dependence of enstrophy on �l-
tered vertical velocity in �ve horizontal slices.

The �ltered vertical velocity is the same as
shown in Figures 14e and 14f, and corre-

sponds to the overall large scale ow. Each
slice is 0.0625 deep (or 1=16th the depth of

the layer). Panels a, b, c, d, and e show re-

sults for slices centered at z = 0.953 (near

the top boundary), 0.875, 0.68, 0.391, and
0.039 (near the bottom boundary), respec-

tively. Solid curves show the mean enstro-
phy, while dotted curves show three times the

mean vertical component of enstrophy. At all

depths there is a positive quantitative corre-
lation between enstrophy and �ltered vertical

velocity. The trend of increasing enstrophy is
nearly monotonic with increasing downow.

The enstrophy contrast between the strongest

downows and strongest updrafts is a factor
of ten or more at most depths. The verti-

cal component of enstrophy (dotted curves)

is enhanced in downows in the upper most

pressure scale heights as well as in updrafts

near the lower boundary.

Fig. A16.| Dependence of enstrophy pro-

duction terms on �ltered vertical velocity in

the same �ve horizontal slices as in Figures

15a-15e. Solid, dashed, and dotted lines cor-

respond to the vortex stretching, baroclinic,
and compressional terms in the enstrophy

equation (see eqns. (3.21) { (3.24)). The

Log10 of these terms is plotted here. The

vortex stretching term dominates everywhere.

All three terms are positive, and enhance the
enstrophy, in downows. The mean compres-

sional term is negative, and acts to diminish

enstrophy, in updrafts (negative values are in-

dicated with X's).

Fig. A17.| Dependence of divergence of ve-
locity on �ltered vertical velocity in the same
�ve horizontal slices as in Figures 15a-15e.

Solid, dashed, and dotted lines correspond
to total divergence of velocity, divergence of

velocity in the horizontal, and divergence of

velocity in the vertical, respectively. As ex-
pected, the total divergence of velocity (solid

curve) is positive in updrafts and negative

in downdrafts. The divergence of velocity in

the vertical (dashed line) is positive in up-
drafts along the bottom and in downows

along the top, which is consistent with the

overall convective ow. Comparison of all �ve
panels here with the corresponding ones in

Figure 16 show that the direction of vortic-

ity is aligned with the principal direction of

large{scale strain everywhere.

Fig. A18.| Dependence of relative temper-

ature uctuations on �ltered vertical velocity

in the same �ve horizontal slices as in Figures

15a-15e. Solid lines show the mean value, and
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error bars show the rms uctuations about

the local mean, of the relative temperature

uctuations. As expected, updrafts are rel-

atively warm, and downdrafts are relatively

cool. The amplitude of temperature uc-

tuations is much smaller in updrafts than

downdrafts, except along the lower boundary.

Hence, thermal turbulence, like enstrophy, is

enhanced in downows and diminished in up-

drafts.
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