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Abstract 

The feasibility of accurate simulations of Richtmyer-Meshkov and Rayleigh-Taylor instab-
ilities in idealized test problems motivated by inertial confinement fusion (ICF) applications 
has been studied using a hydrodynamics code based on the Piecewise-Parabolic Method 
(PPM) and the Piecewise-Parabolic Boltzmann (PPB) scheme for multifluid volume fraction 
advection.  Test problems producing radial convergence factors of about 6, as measured with 
the 50% mixing contour, were adapted from those studied by Youngs.  Gamma-law gases 
with gamma values of 5/3 and perfectly cylindrical and spherical outer boundary conditions 
were employed in both 2-D and 3-D studies.  Convergence under grid refinement and sym-
metry preservation tests indicate that at sufficiently high grid resolutions accurate numerical 
treatments of these idealized, hydrodynamics-only problems are possible on moving Cartes-
ian meshes.  The simulations are made practical as well by code restructuring techniques tar-
geting today’s multi- and many-core computing devices.  Results are presented for spherical 
cases with two- and three-mode initial perturbations using grids of 41603 and 105603 cells 
computed on the NSF’s Blue Waters sustained petascale system at NCSA at the University 
of Illinois. 

 
Background and Motivation 
Accurately simulating the radial compression by an order of magnitude or more of an inertial 
confinement fusion (ICF) capsule and the lighter fuel it confines is challenging because of 
the multiple hydrodynamic instabilities that come into play at the capsule surfaces.  Numer-
ical schemes that exploit the simplicity of a Cartesian mesh can benefit from relative coding 
ease as well as a potential for very high execution speed.  However, the natural topology of 
the mesh does not reflect the symmetries of the ICF problem.  Numerical schemes designed 
to address this defect by using grids that capture the spherical symmetry of the initial state 
more closely have a different set of challenges to deal with in producing accurate simulations 
at affordable cost.  In this work, we explore the potential for the Cartesian approach to over-
come its natural limitations on this type of problem by the use of very fine grids.  This 
approach is made practical by structuring the code implementation to exploit the grid topol-
ogy to produce very high performance on today’s multi- and many-core computing devices.  
The grid is also made to move radially inward in a homologous fashion, in order to capture 
the most basic aspect of the problem, if not its spherical topology.  In this initial study, no 
adaptive mesh refinement (AMR) is introduced.  Thus our study can be understood as pro-
viding an underestimate of the potential for Cartesian Eulerian approaches to accurately sim-
ulate ICF hydrodynamics in the simplified, idealized test problems described below.  This 
study is a follow-on to a 2-D study presented in [1]. 
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We find that the various grid imprint effects familiar to investigators attempting to apply 
Cartesian mesh codes to the study of problems with unstable multifluid interfaces in a spher-
ical or cylindrical basic geometry can be almost completely eliminated.  There are two key 
points that qualify this conclusion.  First, one must have a very fine grid, and, second, one 
must introduce at unstable multifluid interfaces very small amplitude and very high frequen-
cy perturbations in the initial state.  These two requirements work together, because of course 
it is impossible to accurately follow the necessary small and high frequency disturbances 
without a fine grid.  The fundamental role played by the fine grid demands that the simula-
tion code must achieve a high fraction of the computing system’s peak performance.  We 
discuss a set of code design and implementation practices that we believe can assure this.  
For our PPM code, we achieve 12% of the peak performance of the processors we use on 
NSF’s Blue Waters petascale computing system when running at scale in 32-bit mode (which 
we find entirely adequate) and sustaining 1.5 Pflop/s overall performance.  On Intel-based 
CPU processor cores, the performance this code achieves is between 40% and 80% higher as 
a fraction of the peak performance, depending upon the processor type.  We set out in this 
article how we achieve this code performance, because we believe that it is critical in 
enabling accurate simulations of spherical problems with Cartesian meshes.  We are 
convinced that our methods can be adapted to other codes embodying other numerical 
approaches, although we have not yet demonstrated that by performing such an adaptation. 

In this article, we present comparisons of results from two different versions of an ICF test 
problem.  One does and one does not include the very small and high frequency initial pert-
urbation at the unstable multifluid interfaces.  Our intent is to illustrate the dramatic impact 
of such additional perturbations upon the simulation results.  These arise only because the 
multifluid interfaces are physically unstable.  We introduce additional disturbances just 
below the limit of visual detectability in the initial state.  Consequently, the resulting behav-
ior is, we believe, behavior whose appearance one would be unlikely to rule out in a real 
laboratory experiment.  We argue that adding such disturbances in the initial state is thus 
good practice.  It gives us a means of more accurately determining the consequences of the 
interface instability in the real world.  Although in a world of simulation we might rule out 
such disturbances, in the real world this would most likely be impossible. 

We discuss our numerical methods briefly, since there is of course also some dependence of 
our results upon these details.  Although we have tried to use very accurate numerical meth-
ods, we do not believe that it is the accuracy of our particular methods that delivers the great-
est benefits in simulating our ICF flows.  We have studied that issue in 2D, and our results 
are reported in [1].  The present study can be viewed as an extension to 3D of that earlier 
work using our PPM code.  Due to computational cost in 3D, we have not performed our test 
problems here with more than just one code. 

In this study, we have not included any of the small physical effects, such as viscosity, heat 
conduction, or surface tension (not present at our gas-gas interfaces), that might play a role in 
sufficiently small physical systems.  Our focus is instead on the capability of the numerical 
methods to produce accurate results free from obvious imprints of the Cartesian grid that 
might arise from purely numerical effects in our ICF problems.  Once that capability is estab-
lished, it is clear that the regularizing terms of these small physical effects could be added to 
the governing equations and approximated by the numerical method.  Once added, in prob-
lems that require them, these effects can only, in our experience, make the simulation easier 
to perform with high accuracy.  Thus we believe that if we can eliminate the issue of grid 
imprint effects in the present study, we need not be concerned about it in problems where 
small physical effects tend to regularize the solution still further. 
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ICF Hydrodynamics Test Problems 
We have adapted our ICF test problems from that introduced by Youngs in 2008 [2].  Work 
with a similar ICF test problem has also been reported by Thomas and Kares [42].   A spher-
ical shell of gas with gamma 5/3 and density unity extends from radius 1.0 to 1.2.  This shell 
and the uniform, gamma 5/3 gas of density 0.01 it encloses are initially at a constant pressure 
of 0.1.  Outside the initial spherical shell is a uniform gas with gamma 5/3, density 0.1, and 
pressure 160.  The outer gas extends initially to a radius of 1.4, beyond which we apply an 
outer boundary condition.  Thus initially: 

ݎ ൏ ߩ    :1.0 ൌ 0.01, ݌ ൌ 0.1, ݑ ൌ 0  1.0 ൏ ݎ ൏ ߩ   :1.2 ൌ 1.0, ݌ ൌ 0.1, ݑ ൌ 0 

1.2 ൏ ݎ ൏ ߩ  :1.4 ൌ 0.1, ݌ ൌ 160, ݑ ൌ 0 1.4 ൏ ߩ  :ݎ ൌ ݌   ,0.1 ൌ 160, ௥ݑ  ൌ െ9.75 ݎ 

In all these regions, the gas has a gamma-law equation of state with  ߛ ൌ 5/3.  Our problem 
domain is  -1.5 < x, y, z < 1.5,  and  ur  is the radial component of velocity. 

At each radius where the initial state changes suddenly, we smooth this transition out over a 
smearing distance δ.  If sin and sout are fluid state variables inside and outside of the transition 
zone in radius in the initial state, then within this zone the state variable value is given by:  
 s = (1-f) sin + f sout , where the blending fraction f is given by:   f = [ 1 + sin(π(r-rt)/δ)] / 2 
when  |(r-rt)| < δ/2.  Here  rt  is the transition radius.  Our intent is to choose δ so that perturb-
ations of the transition due to the numerical representation on a grid are reduced.  Thus δ 
scales with the grid cell size, ∆x.  In the results reported here, we use  δ = 12 ∆x.  This smear-
ing at the computational microscale in the initial state is especially important at the inner and 
outer surfaces of the dense shell, where our PPB multifluid fractional volume advection tech-
nique, described below and in [3-6], is applied.  PPB uses 10 moments of the subcell distrib-
ution of the fractional volume of the dense shell fluid to describe the transition from shell to 
inner or outer gas as a smooth transition.  This numerical treatment of the unstable contact 
discontinuities in the ICF test problem complements the more standard smearing of shock 
transitions to reduce unphysical oscillations in the state behind the shock (see for example 
the discussion in [7] for this procedure in PPM).  This sort of numerical smearing at the grid 
scale is essential if we aspire to produce results that are essentially independent of our choice 
of grid topology.  We note that both surfaces of the dense shell will be struck by very strong 
shocks before anything else happens to them.  The shocks will compress our initial struct-
ures, smeared over 12 grid cell widths, into much thinner structures, smeared only over 3 
grid cell widths. 

Each grid line, in x, y, or z, has a constant inward velocity given by its initial location, and 
this velocity is constant in time for that grid line.  This grid line velocity is given by:  
 ugx = – 9.75 xinitial with similar expressions for y and z. 

Outside the radius on our moving grid that was initially at a radius of 1.4, i.e. outside  
rbdry = 1.4 (1 – 9.75 t),  we impose an inward flow at the local grid velocity with a density of 
0.1 and pressure    p = 160 (0.1/160)10 (t – 0.05),   with  p = 160  when  t < 0.05.  Because nearly 
the entire compression occurs before time 0.05, this ultimate reduction of the outer pressure 
is unimportant.  The initial strong shock enters the enclosed light gas at around time 0.015, 
triggering the Richtmyer-Meshkov instability (see Fig. 8), and it hits the origin around time 
0.0342.  Strong deceleration of the dense shell begins a bit before time 0.04, triggering the 
Rayleigh-Taylor instability of the inner shell surface.  With these initial base states and 
boundary conditions, we have done multiple problems distinguished by the mode numbers 
and amplitudes of the perturbations applied to the inner and outer surfaces of the initial dense 
shell. 
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Problem 1:   The inner surface of the dense shell is perturbed by displacing the surface 
according to the sum of 2 spherical harmonic modes, Ylm, where the mode numbers (l,m) are 
(81,39) and (74,36).  Mode (81,39) is given an amplitude at the equator equal to 2% of its 
azimuthal wavelength at the equator (y = 0), and mode (74,36) is given half this amplitude.  
This produces a modulation of mode (81,39) with 3 wavelengths at the equator, in each of 
which precisely 13 wavelengths of the higher mode are enclosed (see Fig. 1a).  The behavior 
of the inner shell surface in each of these 3 modulation lobes should therefore be statistically 
identical at the equator.  Since modes 3 and 39 are not compatible with any natural mode of 
the Cartesian mesh, numerical artifacts arising from mesh imprints should stand out clearly 
in the simulation results.  In particular, growth of mode 4 at the equator is a clear signal of 
inadequate mesh resolution.  Also, perturbations of the shell surfaces that arise at the points 
of the compass, where the unstable shell surface crosses grid planes at glancing angles, will 
also stand out clearly if present.  We have therefore chosen our initial disturbance so that we 
can detect flaws in the numerical treatment at a glance. 

Problem 2.   The inner surface of the dense shell is perturbed as in problem 1, but now the 
amplitudes of modes (81,39) and (74,36) at the equator and radius unity are increased to 5% 
and 2.5% of the azimuthal wavelength of mode (81,39) there.  Also, mode (65×11, 31×11) is 
added at 4.252% of its much smaller azimuthal wavelength at the equator and radius unity.  
This additional, high-mode perturbation is added to the inner shell surface displacement and 
also to the displacement of the outer shell surface, at 5 times smaller amplitude, where it is 
the only applied initial perturbation. 

The high-mode perturbation in problem 2 serves two purposes.  First, it applies a very high 
frequency perturbation at nearly a visually imperceptible initial amplitude, and thus serves to 
generate more realistic behavior.  The displacement amplitude is 0.0001567 at the equator, 
which is so small that we presume that it would be very difficult to detect in a real laboratory 
experiment.  The idea here is that any real experiment in a laboratory could not avoid having 
such tiny perturbations, although they would not be expected to consist of just a single mode.  
By putting in just one such high frequency mode, we will be able to judge whether or not the 

Figure 1a.  The density distribution is shown at the left for the ICF test problem #1 at t = 
0.0025. The initial disturbance of the inner shell surface, unchanged since t = 0, is evident.  
A slice through the equator and down through 7/26 of the problem domain is shown.  The 
initial disturbance is thus sliced obliquely at the back, so it is far more easily seen.  At the 
equator, it is clear that this disturbance amplitude is  very small.  A zoomed-in view of a 
section of the density distribution in a very thin equatorial slice is shown for Problem 1 at  t 
= 0.0025 (center) and for Problem 2 at  t = 0 (right).  The very high-order mode is just per-
ceptible on the inner surface for Problem 2.  At the outer surface, where it is 5 times smaller, 
it is essentially imperceptible, as it involves displacements of only 0.55 grid cell widths from 
a circle 4224 grid cells in radius. 
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numerical scheme follows the small-scale dynamics correctly, at least in regard to the 
obvious symmetries of this high-order mode. 

The second function served by this high-order mode is to give the simulation something non-
trivial to follow at the outer boundary of the dense shell, which is highly unstable during the 
compression of the shell.  The real behavior of this unstable disturbance should overwhelm 
any behavior that is generated purely by numerical effects, as illustrated in Figure 1b.  The 
character of the spherical harmonics Ylm when m/l is about 1/2 guarantees that the disturb-
ance will very nearly vanish in amplitude in a fairly broad region near each pole.  In the polar 
regions, we will therefore find that our simulations reveal the behavior that would apply in 
the case where there were essentially no perturbations at all of the spherical inner and outer 
capsule surfaces.  By comparing the simulated behavior in these regions with that at lower 
latitudes, we will easily see the impact of this tiny initial perturbation of the outer surface, as 
well as of the impact of the imprint of the inner surface perturbation that is caused by waves 
communicating that disturbance to the outer shell surface.  Such waves can be seen in the 
right-hand images in Figure 1b just as they are striking the outer surface of the shell. 

In Problem 2, we use a perturbation of the inner shell surface that is 2.5 times larger than in 
Problem 1.  This causes more mixing of the dense shell gas with the enclosed lighter gas.  
We do this in order to obtain a larger turbulent mixing region, because we wish to use the 
results of the simulation of this problem as a direct numerical simulation (DNS) experiment 
that can help to validate statistical models of turbulent mixing in large eddy simulations 

Figure 1b.  The negative divergence of velocity is shown at times 0.0125, 0.015, and 0.020 
(from left to right) for Problem 1 (top) and for Problem 2 (bottom) near the inner surface of 
the dense shell in a thin equatorial slice.  At the far right, the vorticity magnitude is shown at 
time 0.020.  For Problem 1 spurious sound waves have been introduced near the midplane of 
the images, because precisely here the thin numerical representation of the strong incident 
shock is tangent to the planes of the Cartesian grid.  The very high-order mode in Problem 2 
has introduced a nearly imperceptible signal in the initial state that overwhelms any spurious 
beat frequencies between the strong shock representation and the grid planes in this 
problem.  Thus Problem 1 has a slight numerical glitch, clearly of very little importance yet 
still visible, while in Problem 2 such features are entirely absent.  At the cost of introducing a 
high-order mode at an amplitude that would not be detectable in a laboratory experiment, we 
have essentially eliminated in Problem 2 the grid imprint phenomenon that we observe in 
Problem 1.  The 41603 grid of the Problem 1 simulation shown here has 223.4 grid cell widths 
to cover the distance between the crests of the principal sinusoidal signal in these images, 
while the 105603 grid of the Problem 2 simulation that is shown here uses 567 grid cell 
widths to span this same distance.
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(LES).  The larger initial perturbation ultimately gives us significantly more of the problem 
domain that is useful for this model validation purpose. 

Finally, the high-order mode displacement of the inner shell surface, at 5 times the amplitude 
used on the much more unstable outer surface, is useful in very slightly breaking symmetries 
of the other two, lower-order modes. Again, we expect this to produce a more realistic simu-
lation.  We can judge the success of this approach by comparing the results with those for 
Problem 1, where no such high-order perturbation is applied to either the inner or the outer 
surface of the shell.  To be accurately followed, the very small length and time scales that are 
introduced into this problem by our high-order mode demand a very fine grid.  We can there-
fore gauge the accuracy of the calculation by observing the behavior of this very high 
frequency mode of very small initial amplitude.  If it is treated faithfully, we can then hope 
that the much larger and longer-wavelength disturbances are treated even more accurately. 

The scheme of this work is that Problem 1 exposes both successes and difficulties of the 
Cartesian approach to this sort of ICF problem, and Problem 2 illustrates a means of resolv-
ing these difficulties without giving up the advantages of the Cartesian approach.  Our prim-
ary focus in this article is on the behavior of the numerical scheme on these demanding prob-
lems.  Comparison of the simulation results with statistical models of turbulent, compressible 
mixing will be presented in a later article. 

A primary conclusion of this work is to confirm our ability to produce very accurate simula-
tions for these problems at acceptable cost, with few if any problems that need human atten-
tion during the course of even the very largest simulations now feasible.  Because these sim-
ulations are made practical by the rather unusual code implementation techniques that we 
have devised, these are also described along with the numerical methods.  The largest simu-
lation presented here has a grid of over a trillion cells.  It was run on the NSF’s Blue Waters 
machine at 1.5 petaflop/s, sustained.  These two test problems do not benefit appreciably 
from adaptive meshes, save for the grid motion that roughly follows the compression of the 
dense shell.  A uniform, moving Cartesian mesh is excellent at capturing all necessary 
details.  A huge advantage of such a mesh is that it lends itself easily to very efficient and 
accurate computation at extreme scale.  It is for this reason that the highly scalable imple-
mentation of our PPM code is as important to describe as its embedded numerical algo-
rithms.  Using nearly every node of the Blue Waters machine at NCSA, and counting all disk 
I/O and messaging time against the code performance, our PPM code runs at 12% of the 
doubled peak performance of this portion of the machine in 32-bit mode.  It is this fact, more 
than any other aspect of the computations presented here, that makes the Cartesian grid 
approach to ICF problems practical.  This performance is achieved in large part through 
automated code transformations that boost the code performance on the multi-core CPUs of 
the machine.  We therefore briefly outline these code transformations here as well. 

Symmetry Preservation 
We have designed our ICF test problems to expose to immediate view any symmetry break-
ing that arises purely from the numerical scheme.  In simulating the ICF process, it is 
especially important that symmetry breaking be physical and not numerical in origin.  In 
order to compress the fuel inside the spherical capsule enough so that it can burn, the near 
spherical symmetry of the initial state needs to be very accurately maintained, except of 
course for departures generated by the initial perturbations of the unstable multi-material 
interfaces. 

In this work, we take the view that some very small level of initial disturbances is unavoid-
able in the real world, even though these disturbances can be avoided in principle in a world 
of simulation.  In our simulations, and in any simulations for that matter, computation with 
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finite precision and on a grid, however fine and however oriented, will introduce 
perturbations of the flow with trivial amplitudes and with very high frequencies.  These will 
be amplified by the physical instabilities of the flow.  They will ultimately produce a chaotic 
flow at the microscale in those regions where the flow is unstable.  We believe this behavior 
to be benign, because it simulates real behavior, at least after the chaotic flow is established.  
In a real experiment, such chaotic flow must also develop, and, we believe, in the same 
locations.  However, the real chaos will develop out of different initial perturbations that are 
fundamentally unknowable, but whose details are equally fundamentally unimportant. 

For this reason, we do not attempt to remove every sort of “bad behavior” of the numerical 
scheme by adding to the problem regularizing terms representing gross overestimates of 
those processes that regulate the microscale in real flows, but on length and time scales well 
beyond our ability to capture on our grid.  One may envision two sequences of simulations 
representing each type of numerical approach – both, hopefully, convergent.  One sequence 
would add in regularizing terms sufficient to damp out all questionable numerical behaviors 
on each grid.  It would then progressively refine the grid while simultaneously reducing the 
size of these regularizing terms until the simulated flow converges in an appropriate statis-
tical sense.  The other sequence would use features of the numerical scheme to regularize the 
computation on each grid. These features of the scheme need not explicitly model any known 
physical processes, but they must act on progressively finer length and time scales as the grid 
is progressively refined.  They must also allow the simulated flow to converge in the same 
appropriate statistical sense used in the first convergent sequence. 

It is very difficult and costly to demonstrate that both these sequences converge, and that 
both converge to the same result.  An attempt at such a demonstration in a very much simpler 
problem can be found in [8].  An entire book has been devoted to this issue, to which we 
refer the curious reader [9].  In this paper, we take the view that the second sequence discuss-
ed here is the more rapidly convergent one, although we have not demonstrated this.  We 
also assume that it converges to the “right answer” appropriate to the limit in which all regu-
larizing phenomena operate on scales much smaller than our ability to resolve in a practical  
simulation.  We could of course have bugs in our code, although we have worked tirelessly 
to root these out. For this reason, we have stated our test problems clearly, so that other in-
vestigators can check our results using other codes, which, if they have bugs, must then 
surely have other bugs.  If their converged results agree with ours, we may conclude that this 
common converged result is most likely correct. 

The above philosophical ansatz motivates us to distinguish between acceptable and unaccept-
able perturbations of the flow that are introduced through our numerical treatment.  Perturba-
tions that are undeniably small in scale compared to important features of the flow will be 
judged acceptable if their immediate effects are also small and unimportant.  Because of the 
physical phenomenon of turbulence, the ultimate effects of these perturbations will indeed be 
important;  they will lead to the development of chaotic flow at the microscale in the simula-
tion.  For the reasons stated earlier, this we judge to be a benign effect, helping our simula-
tion to correspond more closely to the reality of fluid behavior which we all see around us. 

We do find some perturbations of numerical origin unacceptable.  These have length and 
time scales that are comparable to those that are important in the developing flow.  They 
have the potential to profoundly influence the outcome of the numerical experiment through 
the unstable growth of features that cannot represent the action of any conceivable physical 
process operating statistically on only a microscale.  We have designed our test problems 1 
and 2 to make such unacceptable flow features of numerical origin immediately recogniz-
able.  We will indeed see them, and they will be unmistakable.  A major goal of this work is 
to explore means of either eliminating these numerical artifacts or of rendering their effects 
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upon the simulated flow unimportant. 

Numerical Methods Used 
Our PPM code incorporates a version of the 
original Piecewise-Parabolic Method (PPM) 
[10,7,11,3] that has been described in [12].  This 
PPM scheme differs from the original one by 
elaborately interpolating the Riemann invariant 
distributions inside each grid cell, then from 
these distributions it constructs the implied 
distributions of the physical variables – 
pressure, density, and velocity.  Constraints are 
applied to the Riemann invariants, and then to 
the physical variables in order to arrive at 
distributions of each that are consistent.  Our 
ICF problems are very violent, and therefore 
some fine points of interpolation procedure 
described in [12] are ineffective.  However, we 
introduce a special, parabola-based interpolation 
and advection scheme, the Piecewise-Parabolic 
Boltzmann (PPB) method, to handle the very 
difficult task of tracking the mixing fraction of 
dense shell gas with the background lighter gas 
both outside and inside the ICF capsule.  We 
thus rely upon the well-known properties of the 
PPM scheme to handle the gas dynamics of 
strong shocks interacting with complex flows, 
while we call upon a far more accurate advec-
tion scheme to handle the behavior of the un-
stable multifluid regions.  Results of this com-
bination of numerical techniques applied to less 
violent, slow-flow, Rayleigh-Taylor problems 
are reported in [13-15].  Results for such prob-
lems in the context of stellar evolution are 
reported in [5,16,17]. 

The Piecewise-Parabolic Boltzmann method 
(PPB) is derived from van Leer’s advection 
Scheme VI [18].  Van Leer did not develop a 
constraint technique for his Scheme VI, nor did 
he extend it to multiple dimensions.  Both these 
additions were made in the early 1980s (see 
[3]).  Our version of PPB also adds improved 
constraints upon the interpolation parabolae.  
These recognize that interpolated values of the 
mixing fraction (the fraction of the local gas 
volume occupied by the dense shell fluid) at 
cell interfaces should be 0 or 1 if one of the 
cells meeting at this interface has 0 or 1 for its 
cell-averaged mixing fraction.  Forcing this value at the interface helps to maintain the 
thinness of multifluid boundaries.  We also demand that the interpolated mixing fraction 

Figure 2.  Illustration of the 
resolving power of PPB (see text). 
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remain within the physically allowable range of 0 to 1.  No other constraints on the 
interpolated mixing fraction are applied. 

Our version of PPB used in this study is identical to that contained in the XRAGE code 
release of 2005.  It has been described in [13] and in [3-6].  Here we only list a few of the 
aspects of PPB multifluid advection that bear directly upon the results of this study.  In 
Figure 2, we take from [13] an illustration of the remarkable resolving power of PPB advec-
tion in a (2-D) swirling flow of a type encountered in turbulent mixing regions.  The top 
image in Figure 2 shows the initial, smooth state realized on a fine grid of 10242 cells, while 
the image below it shows the result of advecting this scalar field with a swirling velocity 
field using PPB on this same grid.  At the bottom is the result of performing this same prob-
lem calculation on a coarse grid of just 162 cells.  Inside each cell of this coarse grid, the 
internal structure determined by PPB’s 6 moments in 2D is displayed. 

The key advantage of PPB advection is its incorporation of sub-cell information that is inde-
pendent of any information contained in other grid cells.  This information is updated by the 
scheme on every time step.  It consists of 10 lower-order moments of the fractional volume 
variable, f, the fraction of the local volume occupied by the dense shell fluid: 

ۄ௡ݖ෤௠̃ݕ෤௟ݔ݂ۃ ൌ ම ݖ̃݀ ෤ݕ݀ ෤ݔ݀ ௡ݖ෤௠̃ݕ෤௟ݔ݂
ଵ/ଶ

ିଵ/ଶ
 

Here the centered and scaled Cartesian coordinates,  ݔ෤, ݕ෤, ̃ݖ, are used in order to make the 
PPB advection scheme perform well using 32-bit rather than 64-bit arithmetic.  They place 
the origin of each cell’s private Cartesian coordinate system at the center of the cell, and they 
scale the coordinate to unit cell width in each dimension.  The resulting logically cubical grid 
cells correspond nicely to the actual grid cells we use in this study, since those are also cubic-
al and Cartesian, although our moving grid makes their widths and center locations depend-
ent upon time.  Use of these private cell-centered coordinates forces us to perform a little 
more arithmetic in each time step update, but this is well worth its cost due to the doubled 
speed we achieve with 32-bit precision. 

Our PPB scheme updates the first 10 moments, with  lmn = {000, 100, 010, 001, 200, 110, 
101, 020, 011, 002}.  The updates are performed in 1-D passes, along with the PPM hydro-
dynamic computation.  The procedure is described in detail in the LCSE internal report avail-
able on the Web at [4].  In the x-pass, for example, moments  lmn = {000, 100, 200}  are 
used to construct, then constrain, then advect a function  ݂ሺݔ෤ሻ  using a distribution of the 
advection velocity in the x-dimension that is constant on streamlines and that varies linearly 
across each cell at the time level half-way through the time step.  At each cell interface half-
way through the time step, this linear velocity distribution assumes the time-and-space-aver-
aged values at that interface that is computed according to the PPM gas dynamics scheme.  
Values of  ݂ሺݔ෤ሻ  that have been interpolated and constrained are then transported without 
change by this 1-D velocity field during the time step, and new values of the 3 moments 
involved are determined by integration over the resulting distribution within each cell.  From 
the 2 moments  lmn = {010, 110},  we construct, but need not constrain, and then advect a 
function  ௬݂෤ ሺݔ෤ሻ  in a similar fashion, with a similar procedure for a function  ௭݂෤ሺݔ෤ሻ.  Still 
simpler functions  ௫݂෤௬෤ ሺݔ෤ሻ, ௫݂෤௭෤ሺݔ෤ሻ, ௬݂෤௭෤ሺݔ෤ሻ, ௬݂෤௬෤ ሺݔ෤ሻ, ௭݂෤௭෤ሺݔ෤ሻ  are constructed and advected.  
Advection of the last two is more complicated than may immediately be apparent, because of 
the interdependence of the second- and zeroth-order moments, given our definitions of them.  
1-D passes are very well-suited to this advection scheme, and are extremely efficient.  Con-
straints need only be applied in each pass to the single function  ݂ሺݔ෤ሻ,  where x is the direc-
tion of the pass.  This affords an enormous simplification. 
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Once we have computed the time-and-space averaged velocities at the grid cell interfaces, we 
perform the PPB advection computation to obtain the new values of the 10 moments of  f  
without reference to the values of any other variables.  This computation gives us advected 
volumes of the two fluids, but not advected masses.  We obtain volumes of the two gases 
within the cells at the beginning of the time step that cross the cell interfaces into neighboring 
cells.  To convert these advected volumes into advected masses, needed for strict mass con-
servation, we must introduce interpolations of the individual fluid densities as functions of 
cell volume coordinates at the beginning of the time step.  We find these interpolation parab-
olae using our standard PPM procedure. 

Here we invoke an important assumption.  We assume strict pressure and temperature equi-
librium inside each cell.  This implies that the two fluids, capsule and fuel in this case, must 
have at each point in the cell a ratio of their densities that is given by that of their mean 
molecular weights – which we assume is constant over the entire duration of the problem.  In 
both our test problems, we take this ratio to be 100.  The pressure and temperature equilib-
rium assumption permits us to derive the individual densities of the two fluids given only the 
averaged density of the mixture plus the mixing fraction,  f.   This is a huge simplification, 
because we need not store densities and internal energies for each fluid.  When we interp-
olate a parabola to represent the variation of the density of one of the fluids across a cell, this 
implies such a parabola for the other fluid.  Together with our moments for the distribution 
of the mixing fraction,  f,  we can derive the implied distribution of density for the mixture.  
Because careful interpolation is very expensive, this represents a great saving in computa-
tional labor.  There is still another advantage.  Our equilibrium assumption means that even 
in a cell containing no gas of one type, a reasonable average density for that gas is implied.  
Consequently, we have no need to interpolate gas density across a discontinuity at a multi-
fluid boundary:  the density of each gas is well-behaved across such a boundary.  It is instead 
the mixing fraction,  f,  that jumps suddenly across this boundary.  However, we have for  f  
our very much more accurate PPB description, with its 10 moments in each cell. This allows, 
as a practical matter, a smooth description of  f  across a multifluid boundary that is only 
about 2 grid cells thick.  This representation is prevented from becoming too sharp, which 
would introduce numerical oscillations or glitches, because it is forced to consist of a parab-
ola extending all the way across each grid cell.  Our interpolated distribution of  f  is there-
fore very sharp – only a couple of grid cells in thickness – and at the same time very smooth, 
because it is defined by parabolae in these cells that are determined by subcell information 
that is operationally equivalent, as a rule of thumb, to a two- or three-fold grid refinement for 
PPM (cf. [4]) for just this single, all-important variable. 

In slow-flow, Rayleigh-Taylor instability problems (cf. [13-15]), we find that the elaborate 
approach of the PPB scheme is sufficient to essentially eliminate the appearance of certain 
bad behaviors familiar to us from the PPM advection scheme when applied to multifluid 
problems (cf. for example, [19,20]).  PPB advection, with its formal fifth-order accuracy, is 
capable of moving multifluid interfaces with very detailed structure great distances through 
the mesh with no noticeable diffusion.  This behavior is possible, because PPB consistently 
treats the internal structure of the multifluid interface transition from 0 to 1 in the mixing 
fraction,  f, as a smooth transition.  Unlike PPM advection, it does not switch between funda-
mentally different interpolation strategies dynamically.  Switching strategies in this way can 
cause PPM to introduce small glitches, which can later become amplified by a physical 
instability to form large glitches.  We have been using multifluid PPM+PPB for Rayleigh-
Taylor problems in the weakly compressible regime since 2004, and find it very much super-
ior to PPM alone for these problems, as the results reported in [21] and later in [13] attest.  In 
2010, Almgren et al. reported similar experience with high-order advection and Rayleigh-
Taylor problems using their CASTRO code [22].  This experience, we find, does not carry 
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over to the much more violent ICF problems considered here.  This can be seen in 2-D for 
both our code and for CASTRO in our earlier code comparison work reported in [1].  We 
find that the interaction of strong shocks, as they are handled in PPM, with our very carefully 
treated multifluid interfaces produce familiar sorts of glitches, whose causes were explained 
decades ago in [7].  We will address these issues after first reviewing the observed behavior 
of our PPM code on our two test problems. 

ICF Test Problem #2 Behavior 
To give an idea of the fluid flow in our ICF test problems, defined above, we begin by show-
ing our best approximation to this flow, beginning from the initial conditions of Problem 2.  
After gaining a general understanding of the flow in this way, we will discuss in detail 
specific challenges, and techniques for addressing them, that these problems involve.  We 
have attacked our Problem 2 using a grid of 105603 cells, which move homologously inward 
at roughly the same rate as the outer shell boundary, as described in the definition of this test 
problem.  Each of the views in Figs. 3-7 has a diameter of just about 2.8 ሺ1 െ  ሻ, theݐ 9.75

Figure 3.  Density (left), magnitude of vorticity (top-right), and negative divergence of 
velocity (bottom-right) in a slice of thickness 3/44 through the equatorial plane for Problem 
2 at t = 0.025833 and 0.0325  (105603 grid).  See text for discussion. 
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width of the active simulated region inside our inflowing boundary gas.  The entire calcula-
tion required less than 41 hours of computation on the portion of the NCSA Blue Waters 
machine that does not contain GPU accelerators.  This computation time was accomplished 
in stages of roughly 6 hours each over the course of 2 weeks around Christmas, 2012.  Our 
PPM code sustained 1.5 Pflop/s performance in 32-bit mode, which precision is entirely 
adequate for this very demanding problem, because of the careful design of the numerical 
methods involved. 

This computation, with over one trillion cells, is intended to establish to the best of our 
present ability the detailed nature of the solution to our Problem 2.  We therefore hope that 
its very fine grid is more than adequate.  We can afford this luxury because the Blue Waters 
machine is so powerful that even this trillion cell grid does not cause the machine any partic-
ular difficulty. 

Figure 5.  Density in a slice through the equatorial plane (left) and a longitudinal plane 
(right) for Problem 2 at t = 0.045 (top) and 0.048333 (bottom) on a 105603 grid.  The mixing 
region at the inner dense shell surface is becoming turbulent due to the action of secondary 
shear instabilities during this time interval.  A second reflected shock from the origin begins 
to impinge on the mixing region at time 0.045 and has passed through it by t = 0.048333. 

Figure 4.  Density in a slice through the equatorial plane (left) and a longitudinal plane 
(right) for Problem 2 at t = 0.0375 and 0.0425  (105603 grid).  See text for discussion.  Images 
showing the positions of shock waves more clearly appear in Figures 8 and 9.  The principal 
shock reflects from the origin at time 0.0342.  In the images at the top, its reflection can be 
seen propagating outward a little more than half way to the inner surface of the dense shell.  
In the images at the bottom, this reflected shock is working its way into the dense shell gas. 
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We will not waste space by showing more than a portion of the imploding shell at early 
times.  A far more complete set of images from this simulation, rendered at full resolution, is 
available for viewing on the Web at www.lcse.umn.edu/ICF2012.  Because the visualization 
data for each snapshot of this flow consists of 7 subdirectories of 1331 files each, totaling in 
aggregate 16.5 TB, we restrict ourselves in this early report to volume-rendered views 
through thin slabs of the problem domain oriented in planes perpendicular to the Y-axis, the 
axis joining the two poles of the capsule, and the Z-axis, which lies in the equatorial plane.  
Views of the whole of such slabs have the plane sliced through the origin in the foreground 
and are 1/44 of the domain thick, a distance of 3/44 times the grid compression factor at the 
time.  This is the thickness of one of the 1331×64 cubical subdomains that are updated by 
individual CPU dies, each containing 8 CPU cores attached directly to a local shared mem-
ory.  Thus this particular slab thickness is preferred, given the layout of this computation. 

Figure 5.  Density in a slice through the equatorial plane (left) and a longitudinal plane 
(right) for Problem 2 at t = 0.045 (top) and 0.048333 (bottom) on a 105603 grid.  The mixing 
region at the inner dense shell surface is becoming turbulent due to the action of secondary 
shear instabilities during this time interval.  A second reflected shock from the origin begins 
to impinge on the mixing region at time 0.045 and has passed through it by t = 0.048333.  In 
the images at the bottom, a different color map is used to bring out detail in the dense shell. 



 

  NECDC 2012 Proceedings 14 

We use perspective volume rendering, with a choice of opacity that emphasizes the near surf-
ace of the slab while still giving an impression of the deeper layers.  As in traditional mech-
anical drawing, we attempt to give a sense of the full 3-D aspect by using our two orthogonal 
slices.  Better representations, for which we do not have sufficient space here, can be found 
on the Web site listed earlier.  We use color maps that are nonlinear.  These are not intended 
to be quantitative;  instead they are meant to give a clear impression of the flow features as 
distinct from any numerical values of specific flow variables. 

Generally, a progression of colors with increasing variable value is used, starting with dark 
blue and proceeding to aqua, white, yellow, red, and darker red.  A quantitative analysis of 
the simulation data will be given in a later article.  The details of flow features, nevertheless, 
are very revealing of both numerical successes and problems, as our discussion below should 
make clear.  We can also use images of this sort to visually confirm convergence or lack of 
convergence upon grid refinement.  Such visual tests are not at all casual; they are generally 
much harder to pass than quantitative comparison of various combinations of variables 
averaged over surfaces or other subdomains of the problem. 

Figure 6.  Density in a slice through the equatorial plane (left) and a longitudinal plane 
(right) for Problem 2 at t = 0.0508333 and 0.05333  (105603 grid).  See text for discussion. 
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It is customary in discussing problems like those studied here to present a line plot tracing 
the paths in radius as a function of time of the primary shocks and multifluid interfaces in 
this problem.  This type of plot, however, assumes that the fluid behavior is nearly spherical-
ly symmetric.  In the cases studied here, such spherical symmetry does not obtain, and as a 
result such a plot would be misleading.  Our code automatically generates profiles at its grid 
resolution of many quantities averaged over spherical surfaces.  Extracting shock and mater-
ial interface locations from these profiles, however, is quite difficult, with the exception of 
the single, initial strong shock that can be seen in Figures 8 and 9 followed by a wealth of 
weaker shocks that travel on transverse and intersecting paths.  The images of the density in 
equatorial and longitudinal slices in Figs. 3-7 clearly show how misleading average density 
values on spheres are in giving an impression of the degree of material interface spreading 
due to the developing mixing layer in these problems. 

Figure 7.  Density in a slice through the equatorial plane (left) and a longitudinal plane 
(right) for Problem 2 at t = 0.055833 and 0.060833  (105603 grid).  Between times 0.055 and 
0.055833, the capsule has reached its greatest compression.  See text for discussion. 
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To give a better impression of the timing and spatial paths of the primary shock waves in 
Problem 2, we show in Figures 8 and 9 images of the negative divergence of velocity in 
equatorial and longitudinal slices at different times.  In Figure 1b, we show extreme close-up 
views that reveal the complexity of the primary shock interaction with the initial perturbation 
of the inner surface of the dense shell and the subsequent focusing of the shock on the origin, 
at just about time 0.0342 (just after the time of the image at the top-left in Figure 8).  Strong 
shock waves appear as red lines in these images.  In Figure 9, we show longitudinal slices. 

Figure 8.  Views in equatorial slices for Problem 2 at  t = 0.034167 (top-left), 0.038333 (top-
right), 0.0425 (bottom-left), and 0.049167 (bottom-right).  The negative divergence of velocity 
is shown in close-up views.  The grid resolution is 105603.  The initial strong shock is shown 
just about to reflect at the origin (top-left) and after this reflection (top-right), when the 3 
shock caustics are just striking the Richtmyer-Meshkov fingers from the inner surface of the 
dense shell.  At the bottom-left, we see the first strong shock reflection from the inner 
surface of the dense shell approaching the origin.  At the bottom right, a second such 
reverberation is approaching the origin once more.  A second outward propagating shock 
wave front can be seen about to overtake the one from the initial shock that was reflected at 
the origin.   The initial passage of the strong shock over the inner surface of the dense shell 
is shown in extreme close-up views in Figure 1b.  See text for discussion. 
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The strong curvature of the shock fronts as they are just emerging from the inner surface of 
the dense shell in the center-left views in Figure 1b gives rise to the laterally propagating 
waves that can be seen forming complex patterns behind the advancing main shock front at 
the top in Figures 8 and 9.  The curvature of the very strong rarefaction wave rushing back 
into the dense shell after the shock emerges from the inner surface, seen at the center-right in 
Figure 1b, imprints on the outer surface of the shell a pattern matching the imposed spherical 
harmonic modes at the inner surface.  In Problem 2, this imprint from these rarefactions on 
the outer surface causes the prominent, dense spikes that develop on the outer surface from 

Figure 9.  Views in longitudinal slices, along the “prime meridian,” for Problem 2 at 
t = 0.0275 (top-left), 0.034167 (top-right), 0.040833 (bottom-left), and 0.0425 (bottom-right).  
The negative divergence of velocity is shown.  The grid resolution is 105603.  The images at 
the top show the initial strong shock after emerging from the dense shell being focused as 
it begins to converge on the origin (top-left) and just before it reaches the origin (top-right).  
At the bottom-left, we see the reflection of this shock impinging upon the fingers of the 
dense shell that have formed from the Richtmyer-Meshkov instability.  At the bottom-right, 
the reflected shock has reached the main body of the dense shell, and a powerful and 
complex reverberation of shock waves is again focusing upon the origin.  The dense shell is 
decelerated by multiple shock reverberations in quick succession, each producing further 
Richtmyer-Meshkov instabilities amidst the Rayleigh-Taylor instability of the mixing region. 
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its continued Rayleigh-Taylor instability.  In Figures 8 and 9, the non-spherical nature of the 
strong reverberating waves in the light gas inside the dense shell is evident.  At late times, 
there are so many waves propagating in all directions in this gas that it is difficult to identify 
individual reverberations. 

The initial phase of the ICF capsule implosion is shown in Figure 10.  Here we contrast 
results  for Problems 1 and 2 in calculations with nearly equal grid resolutions of 41603 and 
48003 cells, respectively.  In Problem 1, there is no initial perturbation of the outer shell surf-
ace, yet a characteristic pattern of ripples emerges there by time 0.0225, at the far right in the 
figure.  This perturbation has a characteristic wavelength equal to the distance from one grid 
plane crossing of the shell surface to the next.  As the very thin numerical representation of 
the multifluid interface changes from being centered upon a grid line to being centered on a 
grid cell, its detailed internal representation changes subtly and inevitably.  The physical 
instability of the interface amplifies this subtle disturbance where its fundamental wave-
length, measured in grid cell widths, is long enough to be followed without significant damp-
ing by the numerical scheme.  These ripples of numerical origin appear wherever the thin 
surface of the capsule is tangent to the grid planes.  Such ripples appear also, but less strong-
ly, where it is tangent to diagonal planes of grid cells.  These ripples are akin to the false, 
very weak sound waves that can be emitted by strong shocks whose representation is too thin 
for a given mesh.  The shock phenomenon was identified early in the development of the 
PPM scheme (cf. [7]), and it has been effectively eliminated by the “smart” strong shock 
dissipation that is used in the version of PPM in our code (cf. [23], the more complete, Web 
version of [12]).  These numerical artifacts mar the outer surface of the capsule in Problem 1.  
They are immediately recognizable and are easily identified as numerical rather than physical 
effects.  However, the comparison in Figure 10 makes it quite clear that these effects, un-
sightly as they may seem, are of little dynamical importance.  We will discuss this important 
issue in more detail later. 

Figure 10.  In both rows of images, we show a zoomed-in view of the density distribution in 
a small region in a very thin slice of the problem domain at the equator at problem times 
0.0025, 0.0050, 0.0125, 0.0150, and 0.0225.  A simulation of Problem 1 is shown in the top 
row, carried out on a grid of 41603 cells.  A simulation of Problem 2 is shown in the bottom 
row, on a grid of 48003 cells.  Despite the almost imperceptibly small initial amplitude of the 
high frequency mode in Problem 2 (it involves a displacement of the interface radius by just 
1.6 parts in 12,000), by time 0.0025 it has been amplified considerably by the Richtmyer-
Meshkov and  Rayleigh-Taylor instability of the outer surface of the dense shell.  The 
denser, shocked fluid of the shell shows up as red in the first 4 images.  The shock emerges 
into the 100-times lighter gas inside the shell in the fourth image, amplifying the initial 
disturbance of the otherwise stable inner surface of the shell visibly in the fifth image.  The 
high-frequency disturbance in Problem 2 has rather little effect upon the behavior of the 
inner shell surface, but it has a dramatic impact upon the behavior of the outer surface, 
which is far more unstable at these early problem times.
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In Figure 10, we can see that the initial development consists of a strong shock propagating 
into the dense shell material, compressing it by nearly the maximum factor allowed by the 
gamma-5/3 equation of state, namely a factor of 4.  The shock compression of the dense shell 
excites the Richtmyer-Meshkov instability on both the outer surface and on the inner one.  
Because mixing of capsule and fuel gases at the inner surface is most important for inertial 
confinement fusion, we have placed our more significant perturbation on the inner surface.  
The perturbation of the outer surface in Problem 2 is trivial;  we smear the initial representa-
tion of the multifluid interface over 12 grid cell widths, and we displace the interface, on our 
105603 grid, by only 0.55 grid cell widths.  We resolve the wavelength of this trivial disturb-
ance with 77.8 cells, which is sufficient to give quite a good treatment of the development of 
this instability, despite its trivial initial amplitude.  This development gives us a measure of 
the thickness of the mixing region at the outer surface that is essentially unavoidable in a 3-D 
world.  This unstable mode is amplified continually by the Rayleigh-Taylor instability, since 
the acceleration of the multifluid interface is from the lighter to the denser fluid.  The behav-
ior of our code in treating Rayleigh-Taylor problems in slab geometry has been studied in 
depth, and has been reported in [13-15].  78 cells per wavelength should give quite a good 

Figure 11.  Close-up views of density in a slice through the equatorial plane for Problem 2 at 
t = 0.025833, 0.03, 0.0325, and 0.035  (105603 grid).  See text for discussion. 
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representation, although convergence for the single-mode Rayleigh-Taylor problem at late 
times was seen only at 128 cells per wavelength, and then in a statistical sense of ensemble 
behavior, as reported in [14]. 

The development of the instability of the outer capsule surface in Problem 2 is shown in 
Figure 11.  We focus on the section of an equatorial slice where the amplitude of the perturb-
ation of the inner surface is largest, so that its imprint upon the outer surface will be greatest.  
This is the region at the left in the left-hand images in Figures 3-7.  In the 4 images in Figure 
11, we see the progression of the instability from a highly ordered state at the top-left, 
through development of disorder near the surface through interaction with waves arriving 
from the more strongly perturbed inner surface, to complete disorder. 

This disorder involves of course nonlinear interaction with myriad tiny disturbances of num-
erical origin at the microscale defined by the computational grid.  As stated earlier, we regard 
these interactions as benign.  They provide a path to the chaos that would certainly apply in 
any attempt to realize this situation in a real laboratory experiment.  The particular modes 
introduced at the microscale, and the details of their amplification through the physical 
instability, we take to be unimportant.  This view is bolstered by the lack of any obvious 
falsifications of the chaotic flow clearly arising from our grid. Only the two, small, sym-
metrically shaped and placed modes at the center-right jump out to the practiced eye.  These 
are falsifications resulting from too much symmetry imposed on the flow along the special, 
bisecting grid line of each image.  The reader may judge for him- or herself how much this 
aspect of the result in this tiny region mars the overall simulation. 

The flow shown in Figure 11 involves instability at a large density ratio, in this case a factor 
of ten.  (On the inner surface of the capsule, this ratio is 100 initially).  This is fairly demand-
ing for numerical simulation.  We have described the care with which we treat the multifluid 
interface, and we believe that this helps to make accurate handling of this high density ratio 
feasible.  In support of this belief, we offer the comparison between simulations of Problem 2 
with our PPM code running on grids of 105603, shown in Figure 11, and 48003 cells, in Fig-
ure 12.  On the coarser grid, we have only 39 cells per disturbance wavelength, which is not 
sufficient for convergence according to our earlier Rayleigh-Taylor studies [14].  From com-
paring Figs. 11 and 12, it is clear that this detailed aspect of the simulation has not converged 
at the 48003 grid resolution. Nevertheless, the changes upon grid refinement are not dramatic, 

Figure 12.  Close-up views of density in a slice through the equatorial plane for Problem 2 at 
t = 0.03 and 0.035  (48003 grid).  See text for discussion. 
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which helps to build confidence in the solution on the finer grid. 

The behavior of the inner surface of the ICF capsule is both more important and more inter-
esting.  The very high-order mode introduced at the inner surface in problem 2 has so short a 
time scale for amplification by the Richtmyer-Meshkov instability that this amplification is 
missed entirely by the time interval of 0.0025 that we used between output dumps near the 
beginning of this calculation.  The last 2 images at the bottom right in Figure 10 give the best 
view of the growth of this mode following passage of the initial strong shock through the 
inner capsule surface.  This growth has caused an array of closely spaced little jets of capsule 
material to develop, but it is already clear in Figure 10 that this process has had little impact 
upon the development of the longer-wavelength perturbations.  These little jets of denser gas 
do not assume nearly the prominence of those growing from 5-times-smaller initial perturba-
tions on the continuously unstable outer surface.  This is no doubt due to the Rayleigh-Taylor 
stability of the inner surface during the initial implosion of the capsule. 

The Richtmyer-Meshkov instability has the nature of a one-time-only deposition of vorticity 
to the multifluid interface.  The refraction of the shock wave as it passes over the perturbed 
interface sets up velocity differences that lead to a continued, but essentially coasting growth 
of the initial disturbance.  Secondary shear instabilities do develop, but the Rayleigh-Taylor 
stability of this inner shell surface during the implosion keeps the flow relatively orderly 
here.  This is clearly seen in Figure 3, where the modulated mode 39 disturbance is seen to 
grow steadily without the development of chaotic behavior on length scales commensurate 
with it. 

The light fuel gas enclosed by the capsule exhibits during this stage of the compression an 
elaborate and highly ordered pattern of shock waves and shear layers.  These are seen at the 
right in Figure 3, well resolved on our trillion-cell grid.  Their mode-3 modulation, arising 
from the interaction of the imposed modes 39 and 36, is clear.  There is no breaking of this 
pattern along the vertical and horizontal grid axes, as we would expect to find at low grid 
resolution.  There is also a marked absence of glitches in the near perfectly round outer edge 
of the hair-like Rayleigh-Taylor tendrils or in the associated features in the vorticity and vel-
ocity divergence images at the right in the figure.  We presume that this lack of glitches is the 
result of the physical behavior we simulate for the imposed high-order mode overwhelming 
the numerical scheme’s tendency to introduce false modes at the grid-plane-crossing frequ-
ency of the dense shell surface.  The disparity in the amplitudes of these two phenomena, one 
real and one false, is evident in comparing the ripple sizes in the top and bottom rows of 
images in Figure 10. 

The elaborate patterns of shocks and shear layers revealed in Figure 3 would surely trigger 
the automated grid refinement strategies of most AMR schemes.  For this reason, our simula-
tions would be very difficult to make more efficient by the introduction of AMR.  The up-
dating of undisturbed cells in the shell interior at the beginning of the problem and in the 
boundary region throughout the problem are a price we pay for our uniform Cartesian grid.  
However, AMR also has a price in the overhead involved with grid refinement and derefine-
ment as well as in dealing with the load imbalances that develop and must be handled 
dynamically.  We suspect that in this particular problem either approach – our uniform grid 
or the AMR grid – has about the same overall cost. However, our uniform grid approach has 
an immensely lower programming cost. 

In Figure 4, we see the interaction of the perturbed inner shell surface with the very strong 
shock that is reflected from the origin.  This shock can be seen propagating outward in the 
light gas at the top in Figure 4.  It is clearly almost perfectly round, despite the mode-3 mod-
ulation of the complex pattern of shocks and shear layers through which it is moving.  The 
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inner capsule surface is anything but round at this point.  Its mode-3 modulation is distinct in 
the equatorial plane (at the top left in Fig. 4), and the associated modulation in latitude is also 
distinct in the image at the top right.  The interaction of this shock with the inner surface of 
the dense shell in the equatorial plane is shown in a series of close-up views in Figure 13.  
We will discuss these in more detail a bit later. 

The image at the top right in Figure 4, supplemented by the close-up views in Figure 14, 
gives us a nice direct comparison between the simulated behavior of the perturbed shell 
surface and of the essentially unperturbed polar regions.  Near the poles, the initial perturba-
tion amplitudes were orders of magnitude smaller, because of the character of the spherical 
harmonics.  At the inner shell surface, we see almost no disturbances in these polar regions, 
save tiny glitches exactly at the poles that arise from the confluence of both physical and grid 
symmetry there.  These glitches and small disturbances are insignificant in comparison with 
the results of the growth of our imposed perturbations at lower latitudes.  We presume that 
this near absence of numerically generated disturbances at the inner surface results from the 
physical stability of the acceleration there, once the strong shock has passed through it. 

Figure 13.  Close-up views of density in a slice through the equatorial plane for Problem 2 at 
t = 0.040833, 0.0425, 0.045, 0.046667, and 0.055  (105603 grid).  See text for discussion. 
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The situation at the outer shell surface in the polar regions is similar, except that disturbances 
of numerical origin there have been amplified by the Rayleigh-Taylor instability.  We have 
the usual polar jets and fountains, viewed close up in Figure 14.  On this very fine grid they 
are really quite small.  All along the outer shell surface in the polar regions we have develop-
ment of many high frequency unstable modes.  These have been generated by numerical 
effects, and they exhibit little organization beyond the microscale of the calculation. They 
give us a measure of the minimum level of interface spreading that we could reasonably 
expect to find in any realization of this implosion process in a laboratory.  One could in fact 
argue, as we have earlier, that the much greater interface spreading found at lower latitudes is 
more reasonable to expect in the real world.  In any case, we see that the interface spreading 
resulting from our imposed high-order mode on the outer surface is very much greater than 

Figure 14.  Close-up views of density in a longitudinal slice of thickness 3/44 for Problem 2 
at t = 0.035  (105603 grid).  See text for discussion. 
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the minimum spreading that the numerical scheme can deliver on this grid, as measured by 
the spreading that it has delivered in the polar regions. 

Our conclusions about the role of the high-order mode in this problem are reinforced by the 
results shown in Figure 15.  Here we compare, at the same problem times, the density 
distributions in a slice through the “prime meridian” (with z = 0) near the equator.  The 2.5 
times larger initial amplitude of the longer-wavelength disturbances make the imprints of 
these modes on the outer surface much stronger in the images at the right, from Problem 2. 
However, asking the numerical method to follow the development of the high-order mode, 
introduced with truly trivial amplitude at the outer shell surface, has clearly eliminated the 

Figure 15.  Close-up views of density in a longitudinal slice through the “prime meridian” 
with z = 0 for Problems 1 (left, 41603 grid) and 2 (right, 105603 grid) at  t = 0.035 (top) and 
0.050 (bottom).  The addition of the high-order spherical harmonic disturbance has 
effectively eliminated the appearance of numerically-generated “fountain” features where 
the dense shell surface is tangent to the planes of the grid.  These features, seen at the left, 
have been overwhelmed by the behavior of the high-order mode, which would be essentially 
undetectable in the initial state of a corresponding real laboratory experiment.  However, 
neither behavior has an appreciable influence upon the behavior of the inner shell surface 
over the course of the simulation. 
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tendency of the code to produce the “axis fountain” seen in Problem 1, where no such high-
order perturbation was applied. 

Here we note that in all our figures we slice the problem domain at the locations that reveal 
the worst numerical behaviors – the precise equatorial plane and longitudinal grid planes 
passing through the origin.  Axis fountains and similar numerical artifacts seen more in Prob-
lem 1 than in Problem 2 are of very limited extent in the third dimension out of the plane of 
the image, especially on our finer grids.  We should also note that in 3-D these numerical 
artifacts have far less influence on the dynamics, even on coarse grids, than they do in 2D.  
This is because their influence scales as the ratio of their area on the surface to the area of the 
entire spherical surface.  Their lateral extent on the surface is always the same when meas-
ured in grid cell widths.  Thus, with each grid refinement by a factor of 2 in 3D, the influence 
of these unwanted features declines by a factor of 4, while in 2D it declines by only a factor 
of 2. 

The results from Problem 1 shown at the left in Figure 15 clearly display behaviors of num-
erical rather than physical origin that mar the simulation’s representation of the outer surface 
of the ICF capsule.  The disturbance of the inner surface of the dense shell is very cleanly 
simulated, as we see at the top-left in Figure 15.  However, the imprint of this disturbance on 
the outer shell surface is confused by numerical artifacts to some extent at both of the times 
shown at the left in Figure 15.  The images at the left and right in Figure 15 are not precisely 
comparable, because at the left, in Problem 1, we use perturbations of the inner capsule 
surface that are 2.5 times smaller than at the right, in Problem 2.  Nevertheless, it is clear that 
the average location, the 50-50 mixing contour, in both simulations is pretty much at the 
same location, if we average over a distance comparable to the Rayleigh-Taylor spike 
spacing.  The channels between these spikes of dense gas are longer in Problem 2, so that the 
light external fluid has bored deeper into the capsule material in this problem.  The action of 
the Rayleigh-Taylor instability has allowed the outer gas to penetrate further in Problem 2 by 
pushing the dense gas aside rather than having to accelerate its mass inward. 

In Problem 1 we have numerically generated features at the outer surface that are prominent 
only at the points of the compass.  Even though our comparison with Problem 2 shows that 
these features do not spread the interface more than would be unavoidable in a real-world 
experiment, their location at only specific points can allow the outer gas to drill into the cap-
sule material with increasing efficiency at these special locations.  This does not happen 
appreciably in Problem 1 when it is run on a grid of 41603 resolution, or even at half this 
resolution.  However, this is a potential failure mode for such simulations on Cartesian mesh-
es at low grid resolutions. 

Introducing the high-order mode at the outer surface of the capsule in Problem 2 replaces 
numerically generated features that are amplified by the physical instability with real features 
that are so amplified.  These are evenly spread across the surface so that no special points 
form deeply penetrating channels into the capsule gas.  Except of course those that form at 
the latitudes where all our spherical harmonic disturbances in these problems rapidly tend 
toward zero in approaching the poles.  These channels are clearly evident in Figure 4 in the 
longitudinal slice views at the right.  They are real features, not numerically generated ones.  
They arise from our exclusive use in these problems of spherical harmonic modes Ylm for 
which m/l is roughly 1/2.  We would not expect to see them in a laboratory experiment, 
because it would be impossible to produce initial disturbances that consisted exclusively of 
these special modes. 

We thus see that the problem with the numerical treatment on our moving Cartesian grid of 
the outer shell surface in Problem 1 is that relatively isolated Rayleigh-Taylor modes are 
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introduced  by the numerical treatment at special locations.  These mess up the behavior at 
this surface that would happen in an idealized, but impossible world.  The results of Problem 
2 suggest that, overall, this messy behavior is less disturbing than the unstable behavior at the 
interface that would actually happen in any real experiment.  Nevertheless, the real behavior 
would be highly unlikely to single out the special surface locations selected by the numerical 
scheme.  By introducing a tiny disturbance at the microscale defined by the grid, in Problem 
2, we do away with the special role played in the numerical treatment by those surface loca-
tions that happen to be tangent to planes of the grid.  The resulting behavior is far more real-
istic.  In particular, symmetry breaking by axis fountains and other numerical artifacts is 
almost completely eliminated.  Overall, we have more spreading of the mixing layer at the 
outer surface, but we argue that this spreading would be unavoidable in any real experiment.  
Thus not only do our simulation results appear more realistic, we suggest that they actually 
are more realistic. 

Our solution to the problem of Cartesian grid artifacts at unstable multifluid interfaces 
requires a scale separation between the imposed perturbations whose growth we wish to 
predict and the tiny perturbations, presumed undetectable in a physical experiment, that we 
introduce to regularize the code’s numerical behavior.  This scale separation is impossible 
without a fine grid, and that of course has been impossible in 3D until quite recently for these 
demanding problems.  However, this demand for a scale separation between effects under 
study and unwanted effects that must necessarily come into play has a direct correspondence 
in laboratory experiments. As an example, we cite the single-mode Richtmyer-Meshkov 
experiments of Jacobs et al. (cf. for example [24]), where a diffused initial boundary between 
gases and a relatively large initial perturbation from rocking the apparatus were used to 
control unwanted features.  Wall phenomena quite reminiscent of our numerical axis features 
nevertheless occurred.  The initial spreading of the multifluid interface in these lab experi-
ments was also helpful, in much the same way that our numerically spread initial interfaces 
are in the present study.  In the lab, the size of the experiment had to be many times the 
smeared thickness of the initial interface, and the size of the initial perturbation had to be 
measurable despite this interface smearing.  These considerations are familiar from the 
design of numerical experiments. 

In figures 4-7 we see, in global slice views, the development of the mixing layer at the inner 
dense shell surface as it is struck by shocks reflected from the origin.  The first such shock 
brings in its wake the Rayleigh-Taylor instability of this surface.  The secondary shear in-
stabilities, as well as the effects of the many reverberating local shock waves, ultimately lead 
to chaos.  Close-up views of this process are shown in Figure 13, where we see equatorial 
slices in the region of maximum initial perturbation amplitude.  The first reflected shock is 
seen roughly half-way through the mixing layer in the image at the top-left in Figure 13.  It is 
laterally compressing the jets of dense fluid from the original Richtmyer-Meshkov instability 
of this surface.  In the image at top-center, the shock has just reached the ends of the chan-
nels separating the dense fluid jets, and it has compressed these jets into thin tendrils, all 
pointing toward the origin.  The directions of the jets are highly ordered, but small wiggles 
and bends along their lengths make each such jet individually distinct.  These wiggles are 
amplified readily by shear instabilities, so that by the time of the top-right image in the 
figure, the identity of the jets is nearly lost.  Later, in the image at the lower-left, only the 
bases of the jets can be discerned.  In the final image at the lower-right we truly have a well-
mixed fluid that is nevertheless confined to a single, well-defined plume. 

The single plume at the bottom-right in Figure 13 arises from mode 3 at the equator.  We did 
not introduce this mode directly; it has developed from nonlinear interaction of modes 39 and 
36, helped along by a wealth of small-scale modes.  This flow is chaotic, of course, but the 
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mode-3 plume that ultimately forms looks simple enough that its emergence should be com-
pletely predictable, even in this amazingly complex context.  To make such a prediction at 
less cost than this trillion-cell computation (which cost is nevertheless affordable, but not 
every day), we would require a statistical model of the mixing process.  Many investigators 
have come up with such models (see for example [25-28]), and one use for the output data of 
the simulations reported here is to compare that data with the predictions of such models. 

Although one might not want to undertake a trillion-cell calculation every day, even on an 
exascale computing system, we assume that one would want to undertake 3-D rather than 
2-D simulations of processes such as are studied here.  In such calculations, one would be 
able to afford to capture the larger modes with reasonable accuracy;  it would be simulating 
the effects of the many smaller-scale modes that would be challenging.  This is the task of a 
closure model designed for use in a large-eddy simulation (LES).  We have saved from our 
simulations averages over briquettes of 43 cells of the following variables and variable 
products:  ݂, ݂ሺ1 െ ݂ሻ, ܸ   ,ߩ ൌ 1 ⁄ߩ , ,݌ ௫ݑߩ

ଶ, ௬ݑߩ
ଶ, ௭ݑߩ

ଶ, ,௫ݑߩ ,௬ݑߩ ,௭ݑߩ ,௬ݑ௫ݑߩ
,௭ݑ௫ݑߩ ,௭ݑ௬ݑߩ ,௫ݑܪߩ ,௬ݑܪߩ ,௭ݑܪߩ െ׏ሬሬԦ · uሬԦ, ൫׏ሬሬԦ ൈ ሬሬԦ׏ሬԦ൯௫,   ൫ݑ ൈ ሬሬԦ׏ሬԦ൯௬,   ൫ݑ ൈ ,ሬԦ൯௭ݑ ݌߲ ܸ ⁄ݔ߲ ,
݌߲ ܸ ⁄ݕ߲ , ݌߲ ܸ ⁄ݖ߲ .     Here, by H we denote the enthalpy per unit mass, 

ܪ ൌ ሺߛ ሺߛ െ 1ሻ⁄ ሻሺ݌ ⁄ߩ ሻ ൅ ሺ1 2⁄ ሻሺݑ௫
ଶ ൅ ௫ݑ

ଶ ൅ ௭ݑ
ଶሻ 

Our trillion-cell simulation gives us a 26403 grid of such briquette-averages for each of these 
variables, and we have saved averages of  f  over briquettes of just 23 cells,  because we 
compute it effectively at double resolution, due to PPB’s 10 moments per grid cell. 

We used data of this type in the past to construct and validate models of the statistical behav-
ior of single-fluid, compressible turbulence (cf. [29-31]).  In that work, we formed moving 
averages of such variable combinations over cubes of 323 cells.  Within each such averaging 
bin, we constructed approximations to the 10 lowest-order moments of each variable com-
bination, based upon the 83 participating briquette averages.  Using these 10-moment-deter-
mined 3-D quadratic forms to represent the result of an idealized numerical method comput-
ing on a grid 32 times coarser than our original grid in each dimension, we evaluated the 
appropriateness of various closure assumptions that might be applied to such a numerical 
computation.  The result was the subgrid-scale turbulence model reported in [29-31].  We 
believe that an extension of this procedure to our more complicated multi-fluid flows report-
ed here should be useful in validating turbulence models that have been proposed for multi-
fluid flows like these in an LES type of computation. 

Convergence under Grid Refinement 
We have referred in the above discussion at more than one point to simulations of these ICF 
test problems on coarser grids.  Here we make a limited set of direct comparisons in order to 
establish the degree to which the simulations presented above have converged.  In Figure 16, 
we show equatorial slices for both Problem 1 and Problem 2 from computations with differ-
ent grid resolutions.  These have been imaged in the same way, so that for each problem, the 
two computations can be directly compared.  For both problems, convergence of the behav-
ior inside the outer surface of the dense shell is very good.  This is remarkable given the 
complexity of these flows, but from our earlier code comparison study in 2D [1] it is not 
unexpected at these grid resolutions.  The computation at the top left, on its 20483 grid, took 
9 hours on the Minnesota Supercomputing Institute’s 1024-CPU machine.  A calculation of 
this scale could be performed without comment at any leading university in the country, and 
at any national lab.  The simulations at bottom left and top right in Figure 16, with their 
41603 and 48003 grids, took 8 and 12 hours, respectively, on small fractions (< 1/6) of the 
NSF’s Blue Waters machine.  A year ago, these would have been very large calculations, but 
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they are dwarfed by the simulation at the bottom right, with its 105603 grid.  Today, this is a 
big calculation, but in two or three years it will no longer seem so. 

The behavior of the outer surface of the dense shell, as shown in Figure 16, has not converg-
ed for either calculation of Problem 1.  If our interest is focused instead on the behavior of 
the inner regions, this is of no consequence.  Failure to converge in Problem 1 on the correct 
outer surface behavior does not, apparently, affect the behavior of the inner regions.  In Prob-
lem 2, we do achieve a high measure of convergence at the outer shell surface, in a statistical 
sense of course.  The points of the compass are very slightly evident in the far outer fringes 
of the mixing region at the outer shell surface in the lower-resolution run at the top right in 
Figure 16.  However, the falsification of this part of the flow is minor, and the densities (and 
hence the material mass) involved is trivial.  The extent of this outer mixing region is never-
theless the same in both runs at the right in Figure 16, and hence the coarser grid still gives a 

Figure 16.  Views of density in equatorial slices for Problems 1 (left) & 2 (right) at t = 0.0525 
(left) and 0.050 (right).  The grid resolutions are 20483 (top left) and 41603 (bottom left) for 
Problem 1, and 48003 (top right) and 105603 (bottom right) for Problem 2.  It has taken longer 
in Problem 1 for the mixing region at the inner surface of the dense shell to reach the size of 
that shown at the right for Problem 2.  This is due to the smaller initial perturbation intro-
duced in Problem 1.   See text for discussion. 
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good prediction of the extent of mixing here, although not quite so good a prediction of its 
detailed structure in the far outer region. 

In comparing the runs at bottom left and top right in Figure 16, which were performed on 
grids of comparable resolution and at comparable computational cost, we see that the addi-
tion of the very high-order mode in Problem 2 delivers dramatically improved results.  It is 
true that the initial perturbation amplitude on the inner shell surface was 2.5 times larger in 
Problem 2, but we do not believe that this has played a major role in producing such good re-
sults at the outer surface.  As evidence we note the close similarity of the inner flow struct-
ures that is seen for Problems 1 and 2 in Figure 16, which we find by displaying results for 
the two problems at slightly different times. 

To clarify this issue, we performed an additional mid-sized run, with a grid of 53763 cells, in 
the style of Problem 2.  In this new run, we used the amplitudes of the mode (81,39) and 

Figure 17.  Views of density in equatorial slices for Problems 1 (left) & modified 2 (right) at 
t = 0.0525.  The grid resolutions are 20483 (top left) and 41603 (bottom left) for Problem 1, 
and 26883 (top right) and 53763 (bottom right) for the modified Problem 2.  In this 
comparison, the lower-mode perturbations of the inner shell surfaces are identical.  See text 
for discussion. 
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(74,36) perturbations of the inner surface of the dense shell that are used in Problem 1.  We 
also experimented with adding a range of very high frequency and small amplitude modes to 
both the inner and outer shell surfaces, in the style of Problem 2.  In addition to the mode 
(65×11, 31×11) used in Problem 2, we introduced modes  (65×m, 31×m),  where  m = 
5,…,10.  The idea was to give the outer mixing region that develops several high-order 
modes that can interact in order to arrive more rapidly at a chaotic result.  Nevertheless, each 
new mode is a harmonic of mode (65,31), so that that mode’s periodicity will show up and 
allow us to verify that all these modes are being treated accurately by the numerical scheme.  
The overall amplitude of the sum of all these mode amplitudes was set for both the inner and 
the outer dense shell surface at 1% of the equatorial wavelength of mode (65×11, 31×11).  
This new disturbance therefore is essentially visually undetectable, like the high-order mode 
disturbance in Problem 2 on the outer shell surface.  The individual mode amplitudes were 

Figure 18.  Views of density in equatorial slices for Problems 1 (left) & 2 (right) at t = 0.0475 
(left) and 0.045 (right).  The grid resolutions are 20483 (top left) and 41603 (bottom left) for 
Problem 1, and 48003 (top right) and 105603 (bottom right) for Problem 2.  It has taken longer 
in Problem 1 for the mixing region at the inner surface of the dense shell to reach the size of 
that shown at the right for Problem 2.  This is due to the smaller initial perturbation intro-
duced in Problem 1.   See text for discussion. 
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taken in the ratio of their equatorial wavelengths, and they were introduced with alternating 
signs. 

A comparison of this new run, which we will call Problem 3, with the results for Problem 1 
is shown in Figure 17.  For Problem 3, on the right in the figure, we have two different grid 
resolutions, 26883 and 53763 cells.  The larger of these runs took only 6 hours running on 
456,192 cores of Blue Waters.  The code ran 10% slower than expected, presumably because 
the portion of the machine incorporating GPUs was being upgraded, so that the toroidal 
communications network of the machine “had a big hole in it.”  Our high-order perturbations 
in Problem 3 reach down to half the wavelength of the one we add in Problem 2.  In aggre-
gate, they also emphasize periodicity at a 5-times-lower frequency still.  Thus the high-order 
modes produce 31 fingers extending outward from the outer shell surface, rather than the 39 
we would expect from the imprint on this surface of the low-mode perturbations of the inner 
surface.  Nevertheless, the behavior of the inner-surface mixing region appears to be essen-
tially the same in all four runs shown in Figure 15.  Overall convergence for the two runs of 
Problem 3 at the right in this figure is also quite good. 

Figures 16 and 17 show results near the end of each computation when the capsule is close to 
its smallest size.  The general flow convergence these images establish does not imply that 
details of the mixing regions or of the gradual transition from well-separated dense spikes to 
well-mixed fluid that is chronicled in Figure 13 has converged. To address this issue, we 
show close-up views like those in Figure 13 for the 4 runs of Figure 16 at times near the 
middle of the transition to a well-mixed layer.  These can be seen in Figure 18.  Again, we 
show Problem 1 results at a slightly later time, to account for the smaller initial perturbation 
used in that case.  Because these mixing regions are in the process of becoming chaotic, we 
cannot expect individual features to correspond precisely.  Nevertheless, we can see that the 
correspondence is remarkably good for both pairs of runs.  The finer grids do of course deliv-
er more detail, but the positions, thicknesses and rough internal structures of these mixing 
regions are very similar.  Our trillion-cell grid at the bottom right for Problem 2 represents a 
one-time experiment that establishes that the more affordable smaller grids may be used with 
confidence to make predictive statements about this type of flow.  We need not reestablish 
this confidence level with each lower resolution experiment, but we must establish it at least 
once.  The trillion-cell run additionally provides us with an exceptional data set against 
which we can compare the assumptions and predictions of subgrid-scale models of turbulent, 
compressible mixing, as we have mentioned earlier. 

In our trillion-cell run, we used relatively large initial perturbations in order to produce a 
large mixing region in which we can gather statistical data for use in testing and developing 
subgrid-scale models of turbulent compressible mixing.  For inertial confinement fusion 
(ICF) such large mixing regions are not desired outcomes.  The question therefore arises 
whether using our code, our grids, and our technique of introducing initially undetectable 
perturbations to regularize the simulated flow behavior, we can accurately address problems 
in which the initial perturbations of interest are much smaller.  To address this question, we 
ran our Problem 3, described above, with the perturbations in modes (81,39) and (74,36) at 
the inner shell surface reduced by a factor of 4 to 0.5%.  We will call this Problem 4.  These 
perturbations are detectable, but very small.  We also reduced the amplitudes of all our high-
order mode perturbations by a factor of 2, also to 0.5%.  The result of this experiment is 
shown in Figure 19. 

The results shown in Figure 19, for a run on a 53763 grid, clearly demonstrate that our PPM 
code successfully follows this much smaller perturbation’s growth with a near total absence 
of numerical artifacts arising from its Cartesian grid.  We note that the poles of the sphere are 
special due to the nature of the perturbations and the symmetries of this problem.  They will 
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be special in any set of coordinates.  Our Cartesian coordinate system most likely empha- 
sizes this specialness of the poles far less than would, for example, spherical polar coordin-
ates.  Thus we suggest that the features at the poles are not numerical artifacts.  We can test 
this assertion by rotating the initial state, so that its poles no longer line up with the coordin-
ate axes.  We plan to carry out this experiment in the near future, but our present opportunity 
in the Blue Waters friendly user access period has expired. 

In Figure 20, we show the results for Problem 4 at later times.  In this simulation, we have 
initial perturbations that are 10 times smaller than those we impose in Problem 2.  Because 

Figure 19.  Views in longitudinal slices, along the “prime meridian,” for Problem 4 at 
t = 0 (top-left) and 0.035.  The density is shown in the top images, the vorticity magnitude at 
the bottom-left, and the negative divergence of velocity at the bottom-right.  The grid 
resolution is 53763.  Here we see that our PPM code can easily handle initial perturbations 
with amplitudes as low as 0.5% of their equatorial wavelengths across a range of wave-
numbers.  Numerical artifacts that one might expect in a Cartesian grid computation of this 
sort are essentially completely absent, save for the polar jets that would occur, we suggest, 
in any system of coordinates.  Similar features at the equatorial crossings, where the un-
stable shell surface is also tangent to the grid planes, are notable for their complete 
absence.  The image at the top-left, showing the initial state, should make clear that the 
initial perturbations we follow in this problem are extremely small.   See text for discussion. 
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the flow is highly nonlinear, we cannot, however, expect our final mixing region to be ten 
times smaller.  In Figure 20, we see the flow in longitudinal section at the time when the 
strong shock reflected from the origin first strikes the inner surface of the dense shell and 
again at the time when the shell reaches about its maximum compression.  The Richtmyer-
Meshkov fingers are much smaller than in Problem 2 when the reflected shock from the orig-
in first strikes them.  We must therefore wait a little longer for the mixing region to grow, but 
grow it does.  By comparing the simulated behavior near the poles with that near the equator 
in Figure 20, we can get an idea of how much further we might be able to reduce the initial 
amplitude of our perturbation on this 53763 grid and still be able to compute the perturbation 
unpolluted by signals of numerical origin. 

Figure 20.  Views in longitudinal slices, along the “prime meridian,” for Problem 4 at 
t = 0.040 (top-left) and 0.055.  The density is shown in the top images and the negative 
divergence of velocity at the bottom.  The grid resolution is 53763.  Here we see that our 
PPM code can easily handle initial perturbations with amplitudes as low as 0.5% of their 
equatorial wavelengths across a range of wavenumbers.  At the left, we see that the strong 
shock reflected from the origin is just beginning to interact with the unstable inner surface 
of the dense shell.  At the right, this interaction has produced a sizable mixing region 
dominated by the mode-3 difference frequency between the two initial modes. 
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PPM Code Implementation 
It is often thought that the primary challenge of achieving high performance on petascale 
computing systems is that of identifying and exposing sufficient computational parallelism.  
However, in this work we have used a moving, uniform, Cartesian grid of immense scale.  
Exposing parallelism, although nontrivial, is not really challenging in this case.  Instead, we 
find that the most difficult task is finding ways to coax modern multicore processors into 
delivering a reasonable fraction, between 10% and 30%, of their rated peak performance.  
Our PPM code achieves 12% of the peak 32-bit performance of the AMD Interlagos CPUs in 
the Blue Waters machine even in a full-system run.  We include all sources of run time, not 
only CPU time, in the denominator of our petaflop/sec measurements, so that when the code 
reports 12% of peak rated performance, it must be running considerably faster on each CPU 
core.  On Intel-Nehalem processor cores, roughly twice this fraction of rated peak perform-
ance is achieved by our code.  We cannot definitively explain this observation, but suspect 
that it is related to the different numbers of words per CPU clock tick that can be transferred 
between the L1 data cache and the registers on the two different CPU cores.  That this could 
be the rate-limiting feature of a computing platform for our code means that: 

1)  We must have completely overcome the limitation of memory bandwidth between each 
CPU core and its locally attached main memory. 

2)  We must have completely overlapped MPI messaging with computation. 

3)  We must have completely overlapped all disk I/O with computation. 

We are quite convinced that, at a 95% level of confidence, all three of these assertions are 
true, at least on the Blue Waters machine running 87,846 MPI processes on 21,962 nodes, 
with 702,784 cores.  Analysis of the code implementation and performance reveals that while 
running at this aggregate rate on the Blue Waters system, all that is required to make asser-
tion #1 true is that the locally attached memory supply to each of the 8 cores it must feed a 
continuous bandwidth of 259 MB/sec, which is essentially nothing for a modern CPU.  For 
assertion #2 to be valid, the half-duplex bandwidth supplied continuously to each network 
node (running four MPI processes) must be at least 99 MB/sec, which is also essentially 
nothing in today’s world, but is nevertheless nontrivial on a toroidal network of the scale of 
that on the Blue Waters machine.  We know from the logs produced by the code that all disk 
I/O is fully overlapped with computation.  For this to be true requires that the machine 
provide to each of our code’s 1331 I/O processes a continuous effective disk bandwidth of 13 
MB/sec, which is again “nothing.”  Even a laptop computer could outpace that disk band-
width by a factor of 5, but we require it from each of 1331 I/O servers simultaneously and 
continuously for hours or even days, writing and rewriting restart dump files. 

How did we get the requirements to support our code’s parallel execution down to these low 
levels?  We did this through a hierarchical structure of the code and the computation, which 
we impose upon the machine, whether it is built in a hierarchical fashion or not.  It is easiest 
to describe this organization of the computation beginning at the small end and building 
upwards. 

The smallest – in fact, an atomic, or indivisible – unit of computation for our code is the grid 
briquette update.  This is associated with an atomic unit of data, the grid briquette record.  A 
grid briquette is a cube of  m  grid cells on a side.  We choose  m = 4,  and we have forced 
other aspects of the computation to conform to this choice of m.  Preferred data processing 
extents, or “vector lengths,” are  m,  m2,  and  m3 for our briquettes.  For our choice of m, 
these are then 4, 16, and 64.  These work well with cache lines of 16 words (in 32-bit mode).  
They also work well with SIMD engines in CPUs and GPUs of all designs that process 4, 8, 
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or 16 words simultaneously.  Even GPUs, which force the user to provide vectors of lengths 
32 at absolute minimum, or 64, at a recommended minimum, are accommodated with our 
choice of  m = 4. 

The grid briquette record consists of all 16 variables that we update in our PPM+PPB algo-
rithm, with each variable having 64 values prescribed for the 43 cells of the briquette.  It is a 
nice coincidence then that a briquette record turns out, on Intel architecture systems like Blue 
Waters, to be precisely one memory page.  The briquette record is the atomic unit of memory 
access and/or transfer.  We never fetch just part of such a record, and no MPI message is 
made up of partial records.  We can easily fit many such records of 4 KB into the on-chip 
cache of a CPU core. On the AMD Interlagos CPU, this memory, the private L2 cache, is 1 
MB.  On Intel CPUs it is 256 KB, and on Intel MIC chips, it is 512 KB.  Even the smallest of 
these cache sizes is large enough to accommodate all the program instructions plus the priv-
ate, cache-resident workspaces for 2 threads.  We pack our fluid state data into the briquette 
records so that all we need to know about a briquette of the grid is in its record. 

The following is the procedure that is followed by each individual thread of the computation, 
executing on a single core (with perhaps 2 or even 4 such threads executing on a core, if that 
proves useful).  Note that the code for steps 1-9 for this procedure contains no reference to 
any thread library or to any parallel processing library such as MPI.  This code, however, 
does contain information to enable vector processing using a SIMD engine.  The procedure 
consists roughly of the following steps: 

1) Prefetch the briquette that is the neighbor of the present briquette in the direction of the 
present 1-D pass (the next briquette in the processing sequence).  Also prefetch any 
transverse neighbor briquettes of this one that may be needed by the algorithm. 

2) Unpack the present briquette record into cache-resident, tiny, aligned 2-D arrays.  The 
fast-running index is for the grid cells inside a single m×m  plane perpendicular to the 
direction of the 1-D pass.  The second index runs over such planes.  The second index 
values are barrel-shifted upon each grid-plane update.  Thus we unpack the contents of 
each briquette record into a set of tiny arrays that are circular buffers of grid planes.  
From any transverse neighbor briquettes, construct aligned grid planes of values that 
are offset one, two, or more cells in one or more transverse dimensions.  These tiny 
arrays are cache resident because they fit into the cache, we constantly overwrite their 
contents, and we bring nothing else into the cache except for the prefetched briquette 
records, several of which also fit.  Briquette records are expelled from the cache prefer-
entially, because once we unpack them we never reference them again.  It is critically 
important that all our tiny arrays be locally dimensioned and not in any common blocks 
or structures shared among threads in any way.  This guarantees, operationally, that 
they are always in cache and private to our thread. 

3) Do every conceivable operation that the algorithm requires using the newly unpacked 
grid plane. 

4) Using the intermediate results of the previous step, which are placed into cache-resid-
ent circular buffer arrays of grid planes, do every possible operation that is newly en-
abled. 

5) Using the intermediate results of the previous step, do every . . . 

6) Using the intermediate results of the previous step, do every . . . 

7) And so on through as many such operations as the algorithm requires.  For our 
PPM+PPB implementation, there are 9 such steps, each with hundreds of lines of code. 
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8) At the end of this massively pipelined computation, pack the updated values of all the 
16 variables into a new grid briquette record that resides permanently in the cache.  It 
may be useful to transpose the data so that the packed grid planes lie perpendicular to 
the dimension of the next 1-D pass. 

9) When the new briquette record is full, write it into a temporary grid block data struct-
ure.  This consists of a rectangular solid of gird briquettes that is a temporary structure 
that is overwritten constantly and that is shared by all the cooperating threads of this 
MPI process.  It is particularly felicitous if this grid block structure can reside perma-
nently in an L3 data cache on the CPU chip. 

10) If this is not the last briquette in this thread’s grid pencil extending all the way across 
the grid block in the direction of the pass, then go to #1.  Before going to #1 or going 
on, the master thread must call mpi_probe to give the messaging system software an 
opportunity to grab the CPU core to do its work.  This produces a 30% boost in mess-
aging performance on slow systems, and a boost of about 10% on Blue Waters.  Of 
course, this should not be necessary. 

11) If this is the last grid briquette, atomically select the next grid pencil to update in this 
pass. 

12) If there are no more grid pencils to update in this pass, begin the next pass by selecting 
the first grid pencil and spin-waiting until all grid pencils of the previous pass that it 

Figure 21.  Diagrammatic illustration of the massively pipelined grid pencil update 
procedure that lies at the heart of the PPM code.  A sequence of grid briquettes is shown 
that can be updated in a pipelined fashion, because they share common faces in a single 
dimension of a 1-D pass.  They are shown separately at the bottom of the diagram, in order 
to emphasize that they need not reside next to each other in memory.  Each briquette, 
however, has a corresponding data record that  is contiguous in memory.    See text. 
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requires to be updated are so updated.  Then begin updating that grid pencil by going 
again to #1. 

13) If this is the last of the three 1-D passes in a time step, write back the updated grid 
briquettes (this is done as they become available, in step #9 above) to the new main-
memory array of briquette records.  Check the tiny, cache resident look-up table to see 
if this briquette should also be written into any MPI message buffers, and if so, write it 
into them. 

At the end of each 3-D grid block update, performed cooperatively in a dynamic, self-sched-
uled way by the 8 threads of a CPU die in the Blue Waters machine, there is an unnecessary 
thread barrier.  This barrier is unnecessary, but we find that machines nevertheless like it.  
Perhaps the threads like to stay close together, so that they can benefit from briquette records 
that have been brought into the cache by other threads.  In any case they run faster with the 
barrier than without it, and they run correctly either way. 

The cooperative 3-D grid block update is highly efficient.  No data is ever read twice that 
only needs to be read once.  A similar statement applies to data writing.  Essentially all flops 
are SIMD flops with perfectly aligned vector operands of 16 words.  The pipelining strategy 
can be extended to increase this vector length to 32 or 64, but we find that no device, except 
for a GPU, seems to prefer that.  There are cache misses, because we must fetch the briquette 
records, and they are never in cache.  But there are almost no cache misses.  However, there 
can be a few L1 cache misses, and there can be L1 instruction cache misses, because we run 
through the entire algorithm on each transit of the loop outlined above, and this has many 
thousands of instructions.  More importantly, there can be register misses.  That is, we pro-
duce and save in cache for later use an enormous quantity of working intermediate data in 
our little circular buffers of grid planes.  This data is never spilled to off-chip memory, but it 
is constantly spilled from the registers into the L1 cache.  We therefore conclude that this 
data channel is a bottleneck for our computation, and is the critical rate-limiting feature of 
any computing platform, except for GPUs, for our code.  On GPUs, the relative lack of on-
chip data storage is our rate limiter (cf. [32,33]). 

The above structure of the computational heart (not a kernel) of our computation is extremely 
complex.  We generate it by first writing the relatively simple expression of a Fortran update 
for a single, isolated grid briquette with a ghost briquette on each side in the direction of the 
1-D pass.  This expression, which consists of many subroutines, is automatically transformed 
into the pipelined and memory compressed code outlined above.  This transformation is done 
by our CFD-builder tool, and the resulting code is passed to a back-end code transformation 
tool that can produce from it C code with calls to vendor-provided libraries of intrinsic func-
tions.  These tools have been described in a number of recent reports [34-37].  This method-
ology removes any dependence of our code on advanced compiler features intended to sup-
port new hardware.  Such compiler features can become available only fairly long after the 
corresponding computing platform is in place.  We are able instead to take advantage of the 
intrinsic functions that vendors provide, apparently for the use of intensely motivated pro-
grammers, like those who maintain and update libraries of heavily used functions. 

In our code, MPI messaging is completely overlapped with computation.  We enable the use 
of non-thread-safe MPI libraries by having all MPI library calls made by the master thread of 
each MPI process.  We have tried to reduce to an absolute minimum the code that this thread 
must execute while other threads might need to spin-wait idly.  All reading from and writing 
to MPI message buffers is done as part of the grid block update code.  This code is dynamic-
ally load balanced among the threads as described in the above list of steps followed by each 
thread in parallel.  The master thread makes only a tiny number of MPI messaging calls and, 
of course, waits on message arrivals.  However, the messaging is carefully planned so that 
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the master thread need never actually wait;  the messages will always simply be there. 

We assign to each MPI worker process a grid brick to update.  For efficient messaging, we 
subdivide this grid brick into 8 equal sub-bricks.  We call the original brick an octobrick and 
the 8 sub-bricks of it simply bricks.  Each time step update consists of a special sequence of 
8 brick updates.  The update and messaging pattern repeats every 2 time steps.  If we desig-
nate each brick by its (x,y,z) coordinates in the octobrick, then the repeating sequence of 16 
grid brick updates is:  (1,1,1),  (2,1,1),  (2,2,1),  (1,2,1),  (1,2,2),  (2,2,2),  (2,1,2),  (1,1,2);  
followed by this list of 8 bricks in the reverse order.  There is a general pattern of actions by 
the master thread after each of these grid brick updates is completed, but there are some 
exceptions to this pattern.  Disregarding the exceptions for the moment, the standard pattern 
of actions for the master thread is as follows: 

a) Wait on receipt of the Z-face message intended for the next brick to be updated in the 
sequence.  We find that it is faster to use mpi_test in place of mpi_wait, and to spin-wait 
manually upon success.  This should not be necessary, but it is undeniably faster code.  
Presumably each unsuccessful call to mpi_test encourages MPI to move the message 
along. 

b) If the next grid brick update is not the one out of every sequence of 32 upon which we 
recompute the value of the time step interval, then set the value of a semaphore variable 
in a separate cache line of an array shared by all threads.  This semaphore will indicate to 
all other threads that the message waited on in step #a above has indeed arrived.  (In 
Fortran, all elements of common blocks are automatically shared, and they also begin on 
aligned locations in memory, which is useful in constructing semaphore arrays.) 

Figure 22.  Diagrammatic illustration of the geometrical structure of layers of ghost 
briquettes that are communicated between grid bricks by MPI messaging.    See text. 
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c) Find the maximum of the individual maximum Courant numbers (which limit the time 
step value) determined by each of the other threads and stored in separate cache lines of 
a shared array.  Then, if we have just completed the first brick update in our sequence of 
16 before step #a above, perform a blocking mpi_recv on a message with time step limit 
information from the special MPI “time keeper” process for this team of MPI worker 
processes (teams are described below). This message comes in response to one sent on 
the previous trip through this list of actions just after the first grid brick update in the 
sequence of 16 was completed.  Therefore, it will always simply be there, and although 
we are prepared to wait for it, we will never have to do that.  This message contains the 
result of a global reduction for the global maximum value of the Courant number appro-
priate at the time of the previous grid brick update.  If the next grid brick update is the 
one out of every 32 on which we recompute the time step value, then set the semaphore 
(which was not set in step #b above) to allow the other threads to proceed with the next 
grid brick update. 

d) Wait on the receipt of the X-face message destined for the grid brick that was updated 
two brick updates previous to this present one, just completed before step #a above.  
When it arrives, copy briquette records along its edges into appropriate portions of Y- 
and Z-face message buffers.  This small bit of data copying cannot be avoided.  It does 
not hold up the other threads, which will have already begun updating the next grid 
brick.  Dispatch the Y-face message that has been augmented. The augmented Z-face 
message will be sent off  later. 

e) Wait on the receipt of the Y-face message destined for the grid brick that was updated 6 
brick updates previous to this present one.  When it arrives, copy briquette records along 
its edges into appropriate portions of the Z-face message buffer and send that message 
off (the message topology is illustrated in Figure 22). 

f) Last in this sequence of operations we send off messages from the grid brick we have 
just updated.  Then if we remove the thread barrier at the end of the grid block or grid 
brick update, we will be able to perform all steps in this list up to this one while other 
threads continue to finish up the update for the present brick.  If we do not have a thread 
barrier after the grid block or brick update, then here we must insert a spin-wait for the 
master thread until all other threads signify by setting separate semaphores that they have 
finished with the present grid brick.  We compute the maximum of the Courant numbers 
found by those threads here in that case, before sending it off in the following step to our 
team’s time keeper. 

g) If this is the first brick update of our sequence of 16, then send Courant number 
information to our team’s time keeper.  We have not been able to make non-blocking 
sends work here on Blue Waters, although they should.  We simply gave up and used a 
blocking send.  The time keeper is very responsive, since it has almost nothing to do. 
Consequently, we found no significant performance penalty to use of the blocking send. 

h) Send off the X-face message from the grid brick whose update was just completed.  This 
message is ready to go, because the individual briquette records were written into its 
buffer by the threads as they updated the grid brick.  All the master thread needs to do 
here is to dispatch the message. 

This pattern of actions takes some trouble to describe, but it takes essentially no time for the 
master thread to do all this work.  The design is to allow the other threads to do useful labor 
for as much of this very short time as possible. 

There are exceptions to the above pattern of actions that arise from the need on every eighth 
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grid brick update to update the very same grid brick immediately afterwards in the sequence.  
This forces us to receive messages for that brick earlier than in the standard procedure listed 
above.  This is a slight complicating factor upon the code expression.  However, in no case 
does a message have less time than one complete grid brick update interval in which to reach 
its destination.  Our large, trillion-cell run on Blue Waters used a grid brick size of 303 
briquettes, or 1203 cells.  Thus each MPI process updated 2403 cells, with 4 of these on each 
network node.  Experimentation showed that we can reduce this grid brick size with essen-
tially no loss in performance to 14×28×14 briquettes.  This gives messages of equal size in 
each dimension for the node as a whole, but messages have only a quarter of the time in 
which to arrive, while they are only 2 times shorter in length.  This computation has a half-
duplex continuous messaging bandwidth requirement of 148 MB/sec to each node.  Strong 
scaling of our application is thus possible until we hit the messaging bandwidth limitation 
somewhat below this grid brick size.  At the grid brick sizes we use in this study, all MPI 
messaging is completely overlapped with computation. 

We overlap disk I/O completely with computation as well.  We organize the worker MPI 
processes into teams.  Each team updates a rectangular solid sub-domain of the problem.  We 
demand, for historical reasons, that each team have the same even number of members in 
both X and Z, and we allow it to have any number of members in Y.  Correspondingly, we 
demand that the octobrick that is updated by each team member have the same number of 
briquettes in X and Z, and we allow it to have any number of briquettes in Y.  The MPI ranks 
of team members are mapped inside the code to octobrick subdomains in a way that guaran-
tees that each set of 4 team members update octobricks that share half their X- and Z-faces, 
and we demand that the next set of 4 team members update octobricks that all share Y-faces 
with those of the previous 4 team members.  We assign team members in this fashion for 
however many teams it takes to provide a sufficient number of team leader and team time 
keeper processes to completely fill one node.  These layout settings are prescribed via C-
preprocessor parameters before recompiling the code for each run.  Recompilation takes 
about 2 minutes. 

Each team has a team leader process and a team time keeper process dedicated to its support.  
These lightly used processes allow the worker processes to carry on their work without 
essentially any interruption.  They are consequently an overhead cost of our parallel code 
implementation.  How high this cost is set depends upon the capability of the computing plat-
form and the frequency and volume of desired disk output data.  On Blue Waters, we experi-
mented with different layouts.  Our experience at modest scale (but our code proved almost 
perfectly scalable, once the overhead of these additional MPI processes is accepted) indicat-
ed that having just one team leader per 4 disk file system object storage targets (OSTs) was 
marginally efficient for ICF runs like those reported here.  Experiments indicated that 2 
OSTs per team leader might work well, but we decided to be conservative and to have one 
team leader per OST.  The primary motivator for this choice was to get the time to generate a 
restart dump down to around 17 minutes, so that not much time is wasted upon each problem 
restart. 

Each team leader MPI process is exclusively responsible for all disk I/O for its team.  This 
includes both archivable output data and restart dumps.  For our large run on Blue Waters, 
each of our 1331 teams had only 64 workers to serve.  The team output for visualization and 
quantitative analysis was 12.4 GB, and for a restart dump was 72 GB.  The first set of data is 
highly compressed.  Each worker, upon arriving at the time when this data is generated, 
produces the data in the course of its normal, pipelined computation described earlier.  This 
data is held in its memory until the time of the next such output point, which for our large run 
was between 30 minutes to one hour later.  It is “sent” to, or more properly offered to (i.e. 
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mpi_isend), the team leader as soon as it is ready.  The team leader has all the time between 
this dump and the next one to accept from (mpi_recv) each team worker this data in a 
prescribed order.  As soon as the team leader gets this data from a worker, it writes the data 
into a buffer, saving up such data until it has about 100 MB to write into each of the 7 files it 
is writing for the team as a whole for this time level.  Restart dumps are created in this same 
way.  Each worker process has about one extra GB of memory devoted, for our large Blue 
Waters run, to holding onto the restart data until the team leader gets around to receiving it.  
This is no problem, because Blue Waters nodes have lots of memory.  Holding this data in 
memory allows the workers to go on with the computation while the team leader produces 
the report on the disks. 

In our large Blue Waters run, we had 66 MPI processes for each team of 64 workers updating 
9603 cells.  The overhead of this parallel implementation was therefore 1/32. or 3%.  This 
was essentially the only parallel overhead, and we pay it even for a run with just a single 
team.  Because we pay this overhead up front, the code is nearly perfectly scalable from one 
team to 1331 on Blue Waters.  Had we chosen to have 128 workers per team, which our 
experiments indicated would not cause any workers to be held up by their leaders, then our 
overhead would have been only 1.5%.  However, it would have taken about a half hour, 
rather than about 17 minutes, to write a restart dump with this layout.  Then a minimum of 
one hour would have been wasted upon every problem restart.  We decided that the extra 
cost of smaller teams was worth the associated saving in restart time.  Had it been possible 
for us to place our team leader processes on the system’s dedicated I/O nodes, we would 
have been able to save this overhead cost by hiding it from the center’s charging algorithm.  
In any case, the overhead is small and affordable. 

Looking Ahead to AMR 
Our PPM code has been designed to support an AMR mode of operation in the style of the 
RAGE code at Los Alamos [38].  We do not compute the locations of our briquettes in our 
data structures, but instead we find them in look-up tables that are small enough to be cache 
resident.  Our design plan is to demand that each briquette be at a single grid refinement 
level.  If it is selected for refinement or derefinement, then these operations must be perform-
ed on the entire briquette.  In this way, we will preserve the highly efficient, and massively 
pipelined core of our code.  This is one reason why we have built the computation described 
in our list of operations around a temporary grid block data structure that can be resident in 
an L3 cache.  At the level of this temporary grid block data structure, we can have our 
threads go through the briquette refinement and derefinement operations that are dynamically 
required to update the grid block in an AMR fashion.  Each such operation can be SIMDized 
for very efficient execution, and all its needed data can be in cache.  Our cooperating threads 
are already dynamically load balanced, so this need of an AMR execution will pose no 
additional problem. 

The main additional feature we will need to add to support large AMR runs will be dynam-
ical load balancing at the level of the entire machine.  This type of computation is by now a 
fairly mature technology (see, for example, [39]).  In the context of our code, we will make 
use of the hierarchical structure of teams that we already have.  Our team leaders are relative-
ly swamped with I/O tasks.  They are dealing with very large messages already, and are fair-
ly busy most of the time.  Our team time keepers, on the other hand, have almost nothing to 
do at present.  These processes can maintain the list of octobricks to be updated, the identities 
of team members to whom these updates are or have been assigned, the time intervals that 
these previous assigned updates have required, etc. 

Without overtaxing these present time keeper processes, we can have them act as intermed-
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iaries. Team members can receive octobrick update assignments from them, and if they do 
not own those octobricks, find from whom they must get the data without further involve-
ment of the time keeper.  The time keeper may also assign octobrick acquisition tasks, so that 
selected workers speculatively prefetch additional octobricks for the team.  The time keepers 
are already constantly in touch with all other time keepers, through the time keeper of team 
0.  It would be no extra real trouble to receive updates of the octobrick layout, in a highly 
compressed form, over the entire machine.  Using this data, the time keepers can coordinate 
speculative duplication of octobrick data and decide who ultimately will own that data after 
this time step pair is completed. 

Programming the dynamic load balancing over the machine that is envisioned above is no 
small task.  It is not clear that anyone can or has already written this program for us.  How-
ever, such programs have been written, so we know it is possible.  It will put additional stress 
on the machine’s interconnect, but we see no reason that code execution cannot remain 
highly efficient.  It may make sense to impose some constraints upon how unequal loads are 
allowed to grow.  We already demand that each briquette be entirely on a single grid refine-
ment level.  It might make sense, at least for some problems, to demand that we fill in coarse 
briquettes with refined ones until we meet a requirement for having just two grid levels per 
grid brick.  This should not introduce too much extra computation for grid bricks of, say, 6 
grid briquettes on a side on the coarser of the 2 levels. 

The ICF problems of this study can provide an example of how this might work.  We could 
demand that the grid become one level finer where we first encounter the dense shell gas in 
coming inward from the problem boundary condition region.  Then we could demand that 
the grid be refined one more level at the point where we first encounter the enclosed, inner 
fluid.  This would give us our finest grid in the mixing region on the inner surface of the ICF 
capsule.  During the entire course of this problem, up to and including time 0.055833, shown 
in Figure 7, we would not need more than 2 grid levels in any grid brick in the problem.  If 
we were to need more than 2 such levels, we could of course, and at minimal cost, fill in the 
coarsest level of the 3 in this brick alone. 

The largest possible load imbalance between individual grid bricks in the strategy just outlin-
ed would be a factor of about 8.  One might then think that this would require us to assign 8 
bricks to each participating MPI worker process.  We note that we are already assigning 8 
bricks to each MPI process even for our uniform grids.  However, these are contiguous 
bricks, and hence if one has a grid refinement surface passing through it, the others are likely 
to have this also.  We can get an idea of how extensive load imbalances would be by viewing 
the equatorial slices in Figure 17 and longitudinal slices in Figure 20 of our ICF problems.  
Using the grid refinement strategy outlined above, we would have just 3 grid levels, and the 
surfaces on which these occur would roughly be two concentric spheres.  For Problem 1, 
inspection of the images at the left in Figure 17 shows that our outer grid refinement surface 
would depart significantly from a sphere, but the thrust of our argument in this article is that 
we would instead be solving problems more like Problems 2-4.  For these problems, the grid 
refinement surfaces would be very nearly spherical, concentric, and well separated from each 
other for the vast bulk of the problem evolution. 

The consequence of the topology of our ICF problems, coupled with the grid refinement 
strategy that they necessarily suggest, is that we would find that almost all of our octobricks 
are purely at a single grid level, and hence in excellent load balance.  We would have a small 
set of octobricks for which the computational loads would be greater by less than 25% at 
most, or lesser by about a factor of 8 at most.  This really is not a difficult load imbalance to 
handle operationally.  Taking our 53763 grids used for the results in Figs. 17 and 20 as an 
example, we have an array of 12×6×12 teams, each with 43 octobricks of 112×224×112 cells 
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each.  Our grid refinement surfaces at around time 0.0525 would have approximate radii of 
(0.42/1.5) and (1.15/1.5) as fractions of the problem domain radius.  If we consider the aver-
age radial extent of an octobrick to be roughly (4/(3×24)) × sqrt(2) × 1.5  =  0.118,  then our 
2 grid refinement regions consist of fractions of the total problem volume equal to  
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for  a = 0.42,  1.15.   These domain volume fractions are then roughly  1%  and  7.3%.  Thus 
we see that these regions, as a fraction of the whole, are small.  We therefore have at most 8-
fold load imbalances in less than an eighth of the volume.  In these volumes, loads might be 
up to 25% greater or 87.5% lighter.   An obvious strategy would be to simply do no load 
balancing at all, let up to 8.3% of the workers finish early and then be idle, and wait upon 
any who take 25% extra time.  We do not recommend this strategy, but we note that its extra 
cost is not at all great.  We would need to be redistributing our octobricks among workers in 
any strategy, but the cost differential of each octobrick update could, at the worst, simply be 
ignored.  We also note that on our moving base Cartesian grid, these grid refinement surfaces 
are barely moving at all, as can immediately be seen from Figures 3-7.  Thus we could take a 
relaxed approach to our redistribution of octobricks as the problem evolves.  This is not to 
say that AMR implementation for this problem is easy.  We merely point out that the result-
ing load imbalances from a very natural strategy of grid refinement are small and not very 
highly dynamic in nature. 

The above arguments, of course, apply only to our ICF problems used in this study.  How-
ever, it is likely that many problems have such natural simplifying features.  One example 
where AMR is productively employed at present is in simulating the development of large-
scale structure in early universe models (cf. for example [40,41]).  In these problems, when 
the base expansion of the space as a whole is taken out, which is easily done, there is very 
little residual motion.  AMR is indeed called for, but there are very strong simplifying feat-
ures to the problem that can be exploited by an AMR strategy. 

Conclusion 
In this work, we have studied simplified test problems motivated by the inertial confinement 
fusion (ICF) process.  We have not attempted to simulate in detail any specific laboratory 
experiment.  Doing so would be immensely more difficult, as the ICF problem involves very 
complex physical processes that are not represented in our simulation code at all.  Thus our 
results should not be over-interpreted as bearing directly on ICF problems.  Instead, our goal 
has been to investigate a specific aspect of the computational challenge of ICF simulation: 
namely, the problem of accurately and conveniently representing unstable multifluid bound-
aries on a grid in the strongly converging spherical geometry essential to success in ICF. 

We have shown through multiple numerical experiments that computations on Cartesian 
grids are definitely capable of preserving the important symmetries of these converging 
flows without introducing significant numerical artifacts.  Two mechanisms are key in this 
regard:  (1) we introduce at each unstable multifluid boundary a very small amplitude and 
very high frequency perturbation or perturbations that would be beneath detectability in the 
initial state of a corresponding laboratory experiment, and (2) we use a very fine computa-
tional grid that moves in a simple fashion along with the general flow convergence.  Experi-
ments that space does not permit us to report here have established that in addition to these 
features of our simulations, a smaller role is also played, in order of decreasing importance, 
by:  (3) the high-order representation of the multifluid interface using PPB advection, with its 
explicit subcell resolution, (4) the smart dissipation added at slowly moving strong shocks by 
the PPM version we use, and (5) performing the computation in a frame of reference that 
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moves the grid alternately back and forth slightly in each dimension and in a fashion that 
does not significantly increase the Courant number (“grid jiggling”). 

The full ICF problem involves multiple additional physical processes.  We suspect that all of 
these additional processes are easier to implement in a code using Cartesian grids.  Our study 
to date says nothing about the accuracy of treating those aspects of the full problem in Cart-
esian coordinates, but we believe we have shown that there is no significant drawback to 
treating the hydrodynamics this way. This conclusion has been made possible only recently, 
by a combination of advanced algorithms such a PPB fractional volume advection for treat-
ing multifluid interfaces and advanced computing platforms like Blue Waters, which make 
the necessary fine grids eminently affordable.  We believe that our special restructuring of 
the code for pipelined SIMD processing in parallel and at scale has played a major enabling 
role as well. 
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