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Abstract 

An extreme form of pipelining of the Piecewise-Parabolic Method (PPM) gas dynamics code has been used to dramatically 
increase its performance on the new generation of multicore CPUs.  Exploiting this technique, together with a full integration of 
the several data post-processing and visualization utilities associated with this code has enabled numerical experiments in 
computational fluid dynamics to be performed interactively on a new, dedicated system in our lab, with immediate, user 
controlled visualization of the resulting flows on the PowerWall display.  The code restructuring required to achieve the 
necessary CPU performance boost, as well as the parallel computing methods and systems used to enable interactive flow 
simulation are described.  Requirements for these techniques to be applied to other codes are discussed, and our plans for tools 
that will assist programmers to exploit these techniques are briefly described.  Examples showing the capability of the new 
system and software are given for applications in turbulence and stellar convection. 
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1. Introduction 

During the last three years, our team at the University of Minnesota’s Laboratory for Computational Science & 
Engineering (LCSE) has been redesigning our Piecewise-Parabolic Method (PPM) computational fluid dynamics 
codes (cf. [1] and references therein) in order to take advantage of multicore CPUs.  This undertaking began in order 
to exploit the IBM Cell processor and, through collaborations with colleagues at the Los Alamos National 
Laboratory (LANL), to exploit the Roadrunner petascale computing system.  Early experience with Cell showed us 
a means to achieve roughly a three-fold increase in our code’s performance on a single CPU core.  The 8-core 
design of the Cell processor then meant that this performance boost was, in the fall of 2006, in excess of a factor of 
20 over our code’s previous single-processor performance on computing platforms of that day, such as the Cray-
XT3 or IBM BladeCenter that we were then using.  In the intervening time, we have built in our lab a small 
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computing system exploiting multicore processors from both IBM and Intel and used this performance boost to 
enable fully interactive numerical simulation of fluid flows with immediate flow visualization on our 15 Mpixel 
PowerWall display.  Below, we describe the restructuring and program transformations that make our codes run well 
on multicore CPUs, the integration with the running code of what was formerly an entire sequence of utilities for 
post-processing the code output, and the new simulation and visualization control interface that enables all these 
elements to function under interactive user control.  We believe that the principal enabling techniques of code 
transformation for high multicore performance and of integration of the numerical simulation and its visualization 
can be broadly applied.  We are therefore undertaking the development of tools that will assist programmers to carry 
out the most tedious of these tasks.  Although we came upon the code transformations that we use in the context of 
moving our codes to the IBM Cell processor, we have found that the benefits we see on this CPU are delivered by 
the same transformations on Intel multicore CPUs as well.  Therefore we believe that if other codes adopt these 
same strategies, they should see a performance boost on most any multicore CPU.  GPUs are a special case that we 
are now exploring, because of the very small on-chip data storage that they offer for each of their processor cores.  It 
is not yet clear that our strategies can be successfully extended to these platforms, but as GPUs continue to evolve 
we expect such an extension to become much easier. 

2. The Principal Barrier to Code Performance:  Data Bandwidth 

Our analysis of why our codes have for many years failed to live up to the promise of microprocessor perform-
ance that is known to be achievable for the LinPack benchmark is not unusual.  Much like the community at large, 
we attribute this failure to a paucity of memory bandwidth.  However, in the case of our codes as formulated before 
2006, the bandwidth deficiency responsible for the observed performance was not only between the processor and 
its main memory but also, we believe, between the processor’s L2 cache and the processor’s registers.  Our codes, 
like many others in the computational fluid dynamics community, were expressed as a series of vectorizable loops.  
The vector lengths that we found to give the best performance were around 256 elements [2].  We expressed our 
entire hydrodynamics calculation for a single strip of grid cells as a long series of vector operations on operands the 
full length of the grid strip, which we kept, by means of a domain decomposition, at around 128 to 256 cells.  The 
number of such operands involved, that is the active set of grid strip vectors that are held in the processor cache, 
totaled around 200 vectors.  Using 32-bit arithmetic, which since about 1992 we have used whenever possible, this 
active working data context for the hydrodynamics calculation amounts to about 200 KB.  This data context fits into 
a standard L2 cache, but not into the L1 cache.  In order to construct these long vectors, we also needed to transpose 
the fundamental data used by the calculation repeatedly, sweeping through the data stored at a given network node 
in a series of 1-D passes in the 3 grid directions.  By 2006, this data transposition requirement of our approach was 
costing us up to about 40% of the running time.  This meant that during nearly half of the time we rearranged the 
data in memory but performed no floating point arithmetic at all. 

 
In our code’s present implementation, we have attacked both of the memory bandwidth problems identified 

above.  First, we almost completely eliminate the cost of data transpositions by restructuring our data representing 
the fluid state in main memory so that it consists of a regular 3-D Fortran array of grid briquette records, with each 
record containing the entire fluid state data for a briquette of 23 grid cells.  For our present two-fluid PPM code, we 
store 15 fluid state variables for each grid cell, so that this briquette record consists of 480 bytes, or just under 4 
cache lines (for our single-fluid code, we use briquettes of 43 cells to achieve a similar data record size).  These data 
records can be read, if they are read all at once, very efficiently from anywhere in the main memory.  We find that 
transposing the contents of such data briquettes once they are in the cache is not a significant performance hit.  
Using this data structure therefore accelerates our code’s performance directly by almost a factor of 2.  We obtain a 
comparable performance boost by restructuring the computation that takes place on the cached data, so that 
essentially the entire computation takes place in the L1 cache.  This, we believe, is best done by reducing the vector 
length from 256 to 16.  We do not do this by strip mining our vector loops.  Instead, we effectively interchange the 
order of loop indices so that we vectorize in the transverse dimensions to the grid strip. 

 
Our PPM codes have operated upon bundles of grid strips, which we call grid pencils, for decades.  On 

microprocessors of the 1990s, we found that grid pencils 8 cells wide in each of the two grid dimensions transverse 
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to the direction of the 1-D pass were optimal, although we often used grid pencils 4 cells wide in order to expose 
more parallelism on multiprocessor systems.  We described this mode of parallel code implementation and the 
several reasons that motivate it in 1998 in [3].  In working with the Cell processor using its library of vector 
intrinsics, we came to realize that the formulation of our algorithms in terms of long vectors in the direction of the 
1-D pass forces the processor to constantly realign vector operands so that its 4-way SIMD floating point engine can 
process them in parallel.  We then realized that all this realignment work can be eliminated by vectorizing over the 
16 cells in each transverse grid plane of a long grid pencil 4 cells across in each transverse dimension.  We found it 
quite surprising but nevertheless true that use of these tiny 16-element-long vectors proved extremely efficient.  A 
benefit of this approach was that our entire working data context of about 200 vectors therefore shrank from 200 KB 
to under 13 KB, bringing the entire computation into the L1 cache.  Once we achieved this benefit, we found that 
processor performance began once again to resemble our experience from the end of the vector computing era, circa 
1990.  We did not achieve the 50% of peak performance common in those days for our codes, but we found that 25 
to 30% was possible, when averaged over our entire code including all costs of the computation (that is, including 
all network messaging and data I/O).  For our codes, this represented a performance boost on a per-core basis of 
roughly a factor of 3.  The extreme form of computation pipelining that we use brings the entire 1-D pass update of 
our algorithm, involving about 1400 vector floating point operations per grid cell into the L1 cache.  To feed this 
computation, we need only bring in from main memory 15 words and write out 15 words per grid cell, so that 
running at 6 Gflop/s a single CPU core requires delivery of only about 245 MB/sec both to and from main memory 
simultaneously.  This data streaming rate is not the performance limiting feature of our algorithms, even on CPUs 
containing as many as 8 cores.  The specific means by which we achieve these significant benefits for our codes are 
outlined in the next section. 

3. The Solution:  Extreme Pipelining of the Computation 

We have explained above that we decompose our fluid state data in main memory into an array of grid briquette 
data records.  Using briquettes of 23 cells each, we read and write these in groups of 4 in order to process grid 
pencils that are, for example, 42×32 cells (see Figure 1).  A single processor core that is working its way down the 
length of such a grid pencil can be prefetching from main memory the next group of 4 briquette records while it is 
updating the previous group and while it is writing back to main memory the updated records from a still earlier 
group.  This process is illustrated in Figure 1.  Here we take the trouble to explicitly overlap our data transfers from 
and to main memory with computation, which is a technique familiar from asynchronous message passing on a 
network or from asynchronous I/O to disk.  The point is that the main memory in a modern multicore computer is 
best treated in this way, because it is very slow in comparison to the rate at which the CPU can process data.  On the 
Cell processor, we are able to explicitly express this prefetching and asynchronous writing back of data to memory, 
while on Intel CPUs we simply express the data transfers in loops that copy data from/to memory to/from tiny arrays 
on the subroutine stack, which we can expect to be cache resident.  The briquette records in main memory are 
copied into briquette records in cache (the subroutine stack), and then these are unpacked to form arrays (vectors) of 
16 elements representing single planes of grid cells oriented transverse to the direction of the 1-D pass.  We exploit 
the fact that our 1-D passes involve almost exclusively derivatives in the direction along the grid pencil.  The 
corresponding data differences can then be computed from 16-long aligned vectors in the cache.  No rearrangement 
of the native quadword data structures of the CPU core need to be performed.  Thus this computation is exception-
ally efficient.  To handle aspects of the algorithm such as Navier-Stokes viscosity or subgrid-scale turbulence 
models, a few transverse derivatives must be taken.  These are handled by constructing, using the transverse “ghost 
briquettes” shown in blue in Figure 1, aligned 16-word vectors representing quantities that are offset by one or by 
two cells in a transverse direction.  Construction of the vectors representing 2-cell offsets, which are needed for our 
algorithm’s strong shock detection mechanism, is extremely fast, because no rearrangement of data inside individual 
quadwords is required. 

 
To make the update of the grid pencil fully efficient, we need to make sure that we read each briquette record 

only once in a single 1-D pass.  Since the algorithm requires transverse ghost briquettes, this is unlikely to be 
possible.  However, if 8 cores on a single CPU chip sharing a common L2 or L3 cache update grid pencils together, 
then one core’s ghost briquette can serve as another’s core briquette, so that it need not be read in quite so many 
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times.  We can therefore coordinate the updating of grid pencils on multicore CPUs to obtain this benefit, as 
indicated at the upper right in Figure 1.  This coordination is easily accomplished;  it is the pipelining of the entire 
grid cell update process that allows each core to read a briquette only once per 1-D pass that is difficult.  In our PPM 
gas dynamics codes, we have performed this pipelining process manually so far.  It results in a code in which the 
entire grid plane update is expressed in a single subroutine of thousands of lines of Fortran.  Keeping the working 
data context small, so that the computation fits into the L1 cache, requires explicit reuse of multi-plane temporary 
vectors.  The indexing of these vector temporaries is baroque (cf. [4-6]).  The programming effort required to 
produce such a code, modify it, debug it, and maintain it is excessive.  We regard our manually generated codes of 
this type as demonstration prototypes.  They run on standard clusters of multicore CPU nodes, and they also run on 
the Los Alamos Roadrunner system, in which Cell processors are the principal computational engines.  The 
performance of these codes is so greatly enhanced over our earlier experience that we do not want to give them up, 
but continuing to extend and maintain them is a burden.  We are therefore building code translation tools to 
automate the transformations that take Fortran code written in a clear and simple fashion into these “compiled 
Fortran” expressions that boost its performance by factors of 3 or more. 

 

4. Reducing the Programming Burden 

We have begun the process of building code translation tools to automate the very labor intensive and error prone 

Figure 1.  At the left, a grid pencil is indicated within its larger grid brick data structure.  It consists of a core of 22×16 grid briquettes, shown 
in red, surrounded by transverse “ghost briquettes” shown in blue and with longitudinal ghost briquettes shown in yellow.  A CPU core 
works its way down this grid pencil (from left to right in the figure) pulling into its cache memory groups of 4 core and 8 transverse ghost 
briquettes as shown.  These are unpacked to produce vectors representing the 16 cells of single transverse core grid planes as indicated at the 
bottom right.  These form the working data in the L1 cache for 16-long, aligned vector operations.  Differences to obtain derivatives in this 
1-D pass are formed by subtracting neighboring grid plane vectors along the longitudinal direction of the pass.  The transverse ghost 
briquettes are used to construct, in the cache, 16-long vectors representing grid planes offset by one or two cells in a transverse direction.  At 
the top right in the Figure, we illustrate how 8 processor cores may simultaneously update neighboring grid pencils.  The ghost briquettes of 
one such grid pencil may be core briquettes of a neighboring one, so that they need be fetched from main memory only once into a shared 
on-chip data cache.  This is a streaming paradigm of vector computation that works exceptionally well on modern multicore CPUs. 
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transformations that we have been doing manually over the last 3 years.  We are basing these tools on ANTLR, the 
source-to-source translating framework built by Terence Parr [7].  Parr used this framework in the early 1990s to 
automate translation of our PPM codes from standard Fortran into a very peculiar CM-Fortran expression that ran 
exceptionally well on the University of Minnesota’s Connection Machine CM5 at the time.  ANTLR is appropriate 
to our present task, because we do not need to write a compiler, but only re-express the high-level Fortran code in a 
way that existing compilers can turn into high performance code for multiple target machines.  Jayaraj and Lin are 
building our tools, and they have begun by using ANTLR to construct a translator that produces Cell-specific C with 
vector intrinsics from our “compiled Fortran” in order to run on the Roadrunner system and on a set of 6 
Roadrunner-type nodes that we have in our lab.  The code expression type that we are planning to support as input to 
our translator is not any form that we have used in any of our earlier codes.  Instead, it is a format that we have seen 
in meteorological codes as well as in magnetohydrodynamic (MHD) simulation codes.  Our idea is that the 
programmer can express the algorithm for updating a single grid brick with a uniform 3-D Cartesian mesh as a 
series of 3-D loop nests that go over this grid brick plus ghost cells augmenting it.  This expression can involve 
multiple subroutines, of course.  Our translation tool will pipeline this entire computation, responding to 
programmer directives, as a single outer loop in a single subroutine.  The body of this outer loop will consist of a 
series of vector loops with tests and jumps to the end of the outer loop in between some of these inner loops (cf. 
[5,6]).  This is basically the same program transformation that we described in [3] at a lower level of dimensionality 
and that, with that lower dimensionality, we used in alternative expressions of our sPPM benchmark code in the late 
1990s.  The higher dimensionality of this code transformation that we use today permits vector computation 
throughout, which is preferred by today’s microprocessors. 

 
It should be clear from this brief discussion that a uniform Cartesian grid is a requirement for this high-level code 

transformation, at least at present.  This uniformity of the grid need not, however, be global.  We believe that in 
addition to the computational astrophysics domain, meteorology and climate simulation are domains that should be 
able to benefit relatively easily from the tools we are building.  Adaptive mesh refinement (AMR) grids present 
some difficulties, but block-based AMR should be able to benefit without much modification to the input code 
expression.  It is important to note that our code transformations are intended only for the computationally intensive 
portions of simulation codes, although we have found them very effective also in the generation of pre-processed 
and compressed output data that we use for visualization and analysis of the simulation results. 

5. Interactive Fluid Flow Simulation 

We can exploit the techniques described above to make our codes run very large problems in reasonable amounts 
of time.  This, of course, we are doing.  But we can also exploit the techniques to get our codes to run small 
problems very fast – so fast that they can be run in a fully interactive mode.  This would not be interesting unless the 
results produced were of high enough quality to be worthwhile.  We find indeed that they are.  We use this approach 
for the exploratory aspects of our research.  Each very large simulation that we do is preceded by a large number of 
exploratory runs at low resolution.  These runs allow us to scope out the parameter space of the problem rapidly and 
efficiently, so that we can concentrate the effort represented by large runs on the most productive targets.  We also 
use exploratory runs extensively in the process of code development, when we add new capabilities to our codes or 
try out new algorithms.  Clearly also, interactivity is absolutely essential to the process of debugging. 

 
With support from an NSF CISE-CRI equipment development grant, we have recently constructed and are now 

tuning at the LCSE a specialized system dedicated to interactive supercomputing.  The system consists of 25 dual 
quadcore Intel Nehalem nodes with GPUs expected to be added as the new versions with ECC memory appear, 6 
Roadrunner triblades containing 24 8-core Cell processors, copius fast disk storage on the Intel nodes, and an 
Infiniband fabric interconnecting all these elements to a set of workstations that drive our 12-panel, 15 Mpixel 
PowerWall display.  At present, we run our codes on either the Cell processors or the Intel processors, but not both 
for a single simulation as yet.  Code performance is comparable on both subsets of the system, since the core counts 
are comparable, but the Intel nodes, which are newer, have larger memories and a faster interconnect.  Here we 
illustrate the usefulness of the system with two examples taken from our present research.  The first example is a 
study of the turbulent mixing of two fluids at an unstable multifluid interface.  This phenomenon occurs in multiple 
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settings, including stellar astrophysics, as we will see in our second example, and inertial confinement fusion [8].  
Both of these applications push our code and our system substantially, because the flow Mach numbers are small.  
Therefore our explicit codes need to take several time steps for the fluid to cross a grid cell.  We will see that the 
updates are so fast that this is not a concern.  In these two problems, Mach numbers are around 0.1 (mixing) and 
0.04 (stars).  We believe that an implicit approach might involve somewhat less computation for these problems, but 
not less time to solution. 

 
In Figure 2, we display results from runs carried out on our system to give an idea of the trade-offs between 

interactivity and resolution of flow detail in these two research problems.  The multifluid mixing simulations shown 
on the top row in Figure 2 are the less challenging from this perspective.  The three simulations shown are inspired 
by the Alpha Group study [9] of this problem.  Our goal in this work is to carry out very highly resolved simulations 
whose output data we can mine to design and validate statistical models for subgrid-scale behavior in simulations 
involving this phenomenon.  Clearly, such simulations cannot be carried out on our system in the LCSE but will 
instead require extremely large computing systems, like the petascale Roadrunner machine at Los Alamos.  
However, there are many issues in making these simulations that can be explored using our interactive system.  

Figure 2.  Examples of problems in two of our presently on-going research projects illustrating the trade-offs involved in balancing 
competing desires for interactive performance and for simulation detail.  Along the top row of images, we see volume visualizations of the 
multifluid mixing fraction in a developing mixing layer as computed on grids of 1282×384, 2562×768, and 5122×1152 cells.  In the bottom 
row of images, we see volume visualizations of the mixing fraction of entrained hydrogen fuel in the helium shell flash convection zone of 
an asymptotic giant branch (AGB) star of 2 solar masses using grids of 1923, 1923, and 5763 cells with heat injection rate multipliers of 64, 8, 
and 1 going from left to right.  In the cases of both research projects, we give up fidelity to some extent in making the simulation run at 
interactive rates, but we gain enormously in our ability to rapidly scope out the fluid behaviour in a particular regime of parameter space, as 
discussed in the text.  The flows at the left in both rows take only minutes to simulate, the flows in the center take around one hour, and, on 
our system, the flows at the right take half a day (top) and about 3 days (bottom).  These simulations are discussed further in the text. 
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Among these issues are the dependence of the response of the mixing layer to different initial disturbance spectra, 
the effect of size of the domain as expressed in the importance of gas viscosity, and issues concerning alternative 
algorithmic methods for treating the multifluid fractional volume variable that is visualized in the three images in 
Figure 2.  In these runs we are using a new technique to handle this fractional volume variable based upon the PPB 
(Piecewise-Parabolic Boltzmann) advection scheme [10,11].  The rapid response of our interactive system in the 
LCSE that we can achieve with our codes has been extremely helpful in establishing the proper ways in which to 
embed this moment-conserving advection scheme with our PPM gas dynamics calculation [1] in these problems.  
Rather than illustrate runs differing algorithmically here, we avoid the lengthy explanation of such alternative 
algorithms by focusing instead upon the simple effects of grid resolution for a single input spectrum. 

 
The top row of images in Figure 2 shows three runs that use different grids and hence different amounts of time 

to arrive at the resulting flow states shown.  From left to right we have 128, 256, and 512 grid cells across the 
problem domain.  These problems are initialized in a fashion similar to that used in the Alpha Group study [9] of the 
turbulent mixing that results from the Rayleigh-Taylor instability at accelerated multifluid interfaces.  We set the 
width of the periodic domain to 1, the acceleration due to gravity to -0.024, and the density contrast between the two 
fluids at the midplane to 3.  We compute the flow as a perturbation to an initial background state that has hydrostatic 
equilibrium in the lighter fluid in the bottom half of the simulation, with a density at the midplane of unity and a 
sound speed there of unity, and hydrostatic equilibrium in the heavier fluid in the upper half of the simulation, with a 
density at the midplane of 3.  Our unit of time in the problem is the time required for sound to cross the periodic 
domain at the midplane in the light fluid in the initial state. We begin with small amplitude displacements of the 
multifluid interface height that are made up of linear combinations of sinusoidal modes with randomly chosen 
relative strengths subject to the constraint that no modes with wavelengths longer than λmax=1/8 and none smaller 
than λmin=1/32 are included, and the average amplitude of a mode with λ1 is larger than that of a mode with λ2 by a 
factor (λ1/λ2)2 for the 2 flows at the left and a factor (λ1/λ2)3 for the flow at the right.  The flows in the figure are 
shown at times 30, 30, and 34, going from left to right.  The later time of the display for the flow at the right 
accounts for an approximate time offset that results from this simulation beginning with disturbance amplitudes that 
were smaller than in the other two runs by a factor of 1.6.  Running at 4.5 Gflop/s/core on 192 CPU cores, the 
simulation at the left took about 4 minutes to reach the point shown in Figure 2.  The simulation in the middle, due 
to its larger size, was a bit more efficient.  Running at 5.6 Gflop/s/core on 192 cores, this run took just under one 
hour to reach the point shown.  The simulation on the right, taking up much of the available memory on the system, 
ran at 5.0 Gflop/s/core on 192 cores and required about 10.5 hours to reach the point shown in Figure 2.  These 3 
runs therefore represent a progression from full interactive performance to an overnight calculation on our system. 

 
There is fairly good agreement between all these three runs on the overall rate of spreading of the mixing layer, 

although a trend to a slightly lower rate with increasing grid resolution is evident.  The left and center runs, which 
have identical initial disturbances, also serve to show the extent of detailed flow convergence one can expect for a 4-
minute run on this system with our code.  Clearly, the smaller wavelength modes have been strongly damped in this 
very rapid run on its coarse grid.  This is not surprising, because the shortest wavelengths in the initial disturbance 
spectrum are “resolved” with only 4 grid cells.  Runs of this speed on our system are most useful in testing new 
algorithmic approaches, which consumes a good deal of our time, and in rapidly getting a feel for the effects of 
changing simulation parameters such as the value of a Navier-Stokes viscosity.  Runs like the one in the center in 
Figure 2 are also useful for more carefully assessing what we expect the output from much better resolved simula-
tions to be, before we expend the effort to find out for certain.  From this study of turbulent mixing, we plan to 
extract detailed information from runs we perform at very large scale on the Los Alamos Roadrunner machine.  This 
information will be used to guide the design of subgrid-scale models for the turbulent mixing process.  This use for 
the data demands highly accurate simulations involving very many modes and producing good statistical averages.  
Our interactive system is unsuitable for these large runs, but it has proved to be a tremendously useful tool in 
preparing to make such runs. 

 
The bottom row of images in Figure 2 shows a more challenging application for our code and for the interactive 

computing system we have built in our lab.  Here we are simulating the entrainment of stably stratified gas from 
above the helium shell flash convection zone in the deep interior of an asymptotic giant branch (AGB) star of 2 solar 
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masses (cf. [12-15]).  Near the end of the life of such a star of extremely low metallicity (a first generation star), the 
star goes through a series of thermal pulses in which helium burning right above a degenerate core largely made of 
carbon alternates with hydrogen burning in a shell above this.  The helium shell flash drives convection in a zone 
consisting largely of a helium-carbon mixture.  As the convection zone grows with time, for a first-generation star it 
may reach a radius at which the unprocessed hydrogen-helium mixture begins.  This unprocessed fuel is much more 
buoyant than the helium-carbon mixture of the convection zone, but nevertheless some of it can be entrained and 
brought downward to regions of such high temperature that it can burn very rapidly.  We are working with Falk 
Herwig, at the University of Victoria, to simulate this process.  The runs shown in the lower row of Figure 2 relate 
to this work. 

 
The two runs at the left and center in the bottom row of Figure 2 both use grids of 1923 cells.  The run at the right 

uses a grid of 5763 cells.  This simulation code runs a bit faster than the version used for the Rayleigh-Taylor mixing 
simulations, but only by about 10 to 15%, since it does not utilize the transverse ghost briquettes indicated in blue in 
Figure 1.  These fluid flow simulations pose greater challenges than those discussed earlier for three reasons: (1) the 
convection zone extends from about a radius of 10,000 km to about 30,000 km in the star’s central region, so only a 
fraction of the grid contains the region of interest, (2) the convection inside this zone involves modes that are global 
in scale, so we cannot use our grid to focus on just a portion of the convection zone, and (3) the gas entrainment 
requires high grid resolution in a very thin spherical surface at the top of the convection zone.  The team of Arnett 
has been addressing these computational challenges, also using the PPM gas dynamics scheme, in the context of 
massive stars for many years (cf. [16]).  In our study of the helium shell flash, we are not simply interested in a 
transient phenomenon, although compared to the life span of the star the two-year duration of the helium shell flash 
is very brief.  However, in terms of the dynamical time scale for the star to readjust its radial structure via pressure 
waves or in terms of the convective eddy turnover time, we need to carry our simulation forward for an extensive 
period in order for the convection to become well established.  In the flows shown at the left and center in Figure 2, 
we have sped up the flow dynamics in order to get a quick feel for its behavior.  We accomplished this by multiply-
ing the heat injection rate derived from 1-D stellar evolution calculations of Herwig [12] by factors of 64 (left) and 8 
(center), while the run at the right has the correct heat injection rate.  The indication from the images in Figure 2 is 
that the 64-fold heating enhancement, which causes the flow speeds to be roughly quadrupled, seems to change the 
character of the gas entrainment, while the 8-fold heating enhancement may not alter the flow character so much.  
The times required for the 3 simulations shown in the bottom row of Figure 2 are 13 minutes, 83 minutes, and 75 
hours, and the flows are displayed at simulated times of 0.94 hours, and 6.27 hours for the other two runs.  The run 
at the left is not carried as far forward in simulated time, because its much higher heat injection rate makes this 
unnecessary.  We are just this year embarking on this study in earnest, and initial work reveals many interesting 
subtleties of these stellar convection flows.  Despite the greater computing difficulty of these stellar astrophysical 
flows, our new interactive computing system is a major asset in this research. 

 
The more challenging case of the helium shell flash simulations underscores the need to augment any system 

such as this with access to supercomputing systems.  In collaboration with the Minnesota Sueprcomputing Institute, 
which has recently installed an HP computer with nodes similar to our Intel-based ones in the LCSE, but with 40 
times as many of these, we are exploring the potential for scheduling interactive supercomputing events 2 days in 
advance.  We have an Infiniband link to the MSI machine room running at 20 Gbit/s, which is sufficient to ship to 
our lab bursts of simulation data separated by about the 10 seconds required to process this data upon arrival into 
files that can be rendered into images and then to replicate the resulting files on all the nodes in the lab that 
cooperatively generate images for the PowerWall display.  This mechanism can take us up in grid resolution by one 
additional factor of 2, which will make quite a difference for the stellar astrophysics simulations.  We are also 
exploring the potential of GPUs for accelerating the LCSE system, so that it can deliver greater performance. 

6. User Interface 

In developing our interactive flow simulation capability, we have so far focused our greatest effort on the 
problem of simulation code performance.  We will continue this effort as we explore the potential of GPU code 
accelerators.  However, the 4-minute or 13-minute runs at the left in Figure 2 already place a strong demand on the 
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user interface for interactive control.  If this is not well designed and easy to use, these runs will be over before a 
user can figure out how to view them.  We are building our user interface upon earlier work that was aimed at auto-
mating our movie making process and then extended to the interactive control of the visualization of a running job.  
We are further enhancing this interface to provide for the rapid initiation of new jobs as well as the control of the 
complete pipeline of utilities that process the output data into images and files.  This interface is shown in Figure 3.  
The Image Viewer window is needed for remote control of the system, such as from a collaborator’s institution or 
from a workshop location, or even a hotel.  The other windows shown control the visualization parameters and allow 
the user to use either a paradigm in which the computational domain is viewed as an object to be manipulated while 
the viewer remains stationary or a paradigm in which the object is stationary and the viewer moves.  Clipping planes 
either relative to the line of sight or relative to the object can be manipulated, and color and opacity maps can be 
dynamically adjusted.  The user may also toggle between flow variables to be viewed, all of which are generated by 
the running job but only chosen ones viewed.  The newest additions to this interface (not shown) enable the user to 
type run parameters into a form in a separate window and then to have them automatically written into the code, to 
have the code automatically compiled (which takes 40 seconds) and a new run started.  This interface is most easily 
used in its present form if more than one person is engaged in the interactive session, which we find is often the 
case.  We would like to move much of this functionality to a more convenient hand-held device similar to a modern 
cell phone, so that we would no longer need to have one person primarily engaged in driving the simulation while 
others look on and barrage this person with requests.  The idea is to simplify the interface and its delivery so that 
driving a simulation is no more difficult than, for example, driving a car. 
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Figure 3.  This screen grab from a laptop machine driving our interactive computing system at the LCSE illustrates some of the means we 
have enabled for a user to exert interactive control on the simulation and its data and visualization output.  See the discussion in the text. 
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