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Introduction.
The Petaflop/s Programming Challenge

According to today’s best projections, petaflop/s
computing platforms will combine deep memory
hierarchies in both latency and bandwidth with a
need for many-thousand-fold parallelism. Initial
users of these systems will most likely be asked to
meet these challenges to efficient parallel program
design armed only with minimal system software:
Fortran, C, MPI, and support for POSIX threads or,
hopefully, OpenMP on a network node. Unless
effective parallel programs are prepared in advance,
much of the promise of the first year or two of
operation for these systems may be lost. Here we
introduce a candidate for a portable petaflop/s
programming model that can enable these important
early application programs to be developed while at
the same time permitting these same applications to
run efficiently on the most capable computing
systems now available.

Present ASCI Blue platforms as well as
collections of machines networked together in NSF
supercomputer center machine rooms offer the
system software support expected on early petaflop/s
systems and they also present the principal challenges
of petaflop/s programming. Researchers willing to
make the necessary extra efforts may therefore
practice petaflop/s programming on these platforms
today. These systems can all be viewed as DSM
clusters, and hence can, in principle, share the same,
portable programming model. An MPI-based model
is portable, but its programming paradigm ignores the
potential benefits, both for performance and for
simplicity of code expression, of hardware support
for shared memory within each network node. A
threads-based model cannot directly cope with the
distributed nature of the memory over the network.
Combining both models to get the best of each where
appropriate places a large programming burden on
even an expert code developer. Therefore a new,
portable programming model is needed.

Hierarchical Shared Memory

For a small set of targeted, representative applica-
tions and computing platforms, we are implementing
a shared memory model, with supporting system

software which is in turn built upon an MPI message
passing layer. Because the programming model is
based on shared memory concepts, our message
passing layer must include “put” and “get”
primitives. Because of the relatively huge message
latencies, and because striping of communications
channels introduces a dependence of bandwidth on
message size, our “put’ and “get” primitives must
be tuned for multi-megabyte messages.

As we discuss in more detail below, we have
chosen the shared memory programming model
because it dramatically simplifies the expression of
dynamic load balancing strategies for irregular
algorithms. The principal strategy thus enabled is a
transparent self-scheduled list of tasks performed in
parallel so long as specified data-dependent condi-
tions are met. The DSM cluster architecture forces
this shared memory multitasking to be hierarchical in
nature, with a self-scheduled list of DSM tasks each
of which is in turn decomposed into a self-scheduled
list of CPU tasks. Programming techniques for the
CPU tasks in a DSM machine and for the DSM tasks
in a DSM cluster can be the same, except for memory
access granularity and, in the cluster case, for explicit
prefetching and writing back of shared data.

To avoid confusion, we note that we use the term
“shared memory” programming to mean that all
processes communicate only by reading and writing
data structures in memory and never directly with
other processes. Some might call this “one-sided
message passing,” but in this view every Fortran
assignment statement would have to be regarded as
message passing code. One can write shared memory
programs using the MPI-2 library, but, given the 40-
year tradition of Fortran programming, this could
hardly be called natural. The reason that message
passing concepts enter this domain at all is the all-
important fact that on modern equipment these
operations can no longer be viewed as instantaneous,
nor can their latencies be hidden by vector pipelining.
For many programmers, message passing was their
first experience with program operations that require
both an explicit beginning and an explicit end (“split”
operations). However, for others this concept was
already familiar from disk I/O. Thus function calls to
read and write data, and subsequent spin waits upon
completion of such operations are not new. The



principle difference between asynchronous I/O and
asynchronous one-sided message passing is the data
access granularity that each can support while still
maintaining a reasonable fraction of its peak
performance (or bandwidth).

Benefits of the Shared Memory
Programming Model

We believe that shared memory programs, in the
sense that we have defined them above, are necessary
if dynamic load balancing is to be practiced without
heroic programming efforts. Shared memory allows
the program to be specified as a self-scheduled
sequence of tasks, each of which may be executed by
any of the available computational resources. So
long as there are several times as many such tasks
between global synchronization points as there are
processors or machines, then even if these tasks take
varying amounts of time to complete, the
computational resources will all be kept busy, and the
whole job will be performed efficiently.

It is essential to understand that in a good shared
memory program for one of today’s multiprocessor
systems very little memory sharing actually takes
place. Computing entities make private copies of
shared data contexts (if the data is not already locally
available), they then work on these data copies in
seclusion, and finally they write revised versions of
the data back to the shared space. In this way the
processors keep out of each other’s way, and the
vexing problem of “false sharing” is avoided. At the
same time they achieve the maximum possible
effective memory bandwidth, since their private
workspace, implemented on their subroutine stacks,
is always placed by the compiler in the best possible
place (usually the on-board memory, if not the L-2
cache). By setting semaphores in shared memory
indicating that they have read or revised the shared
data segments, computers (CPUs or whole machines)
can let other computers know what data is up to date.
Thus a computer can learn when the data context for
its next task is ready, so that the task may begin.

The kind of shared memory program we
recommend consists of a carefully ordered list of
tasks, each with its own, well defined and carefully
packaged data context. These tasks are launched in
program order, but they need not complete in this
order. The program cannot be efficient unless many
of the tasks at any point of the sequence can be
executing in parallel. If this number of parallel
executable tasks always exceeds by a reasonable
factor (such as 2) the number of available computing
resources, and if there are no constraints on which
resource must execute which task, then all these

resources should be kept busy. It is the hallmark of
shared memory programs that any computing
resource can execute any task. This permits the task
sequence to be optimized by the programmer for
minimum time to solution. It also places require-
ments on the design of the computing system, as will
be discussed later.

The computational labor within individual tasks
or in individual task groups need not be carefully
balanced, as is usually attempted in distributed
memory programs. Whenever a computer completes
a task, it simply begins the next task on the global
list. It is irrelevant whether or not other computers
have completed their tasks at this same instant. The
conditions under which the tasks may safely be
launched may be specified in the program as tests on
semaphore variables in shared memory. Access to
semaphores for this purpose does not require low
latency communication, so long as the tasks are very
carefully ordered and waiting on a semaphore is
extremely unlikely. The semaphores that determine
whether a task may execute can be prefetched along
with the task data context in order to hide remote
memory latency and to accommodate low remote
memory bandwidth.

Relation to Other Work

Many investigators have been concerned in recent
years with enabling shared memory programs to
execute on cluster systems. Some of the early work
in this area led directly to the development of
distributed shared memory (DSM) machines,
particularly the work of the Stanford team led by
John Hennessy (cf. Kuskin et al. 1994). More recent
contributions (see reference list) have focused on
software systems that create from a cluster of
machines the practical effect of a DSM machine,
rather than simply a research prototype. Much of this
work, although not all, has focused on clusters of
single-processor machines and therefore features only
a single level of the two-level shared memory
discussed in the present work. Also, much of the
work has involved very fine granularity of software
shared memory access, often machine memory page
based. In this respect this work stands in contrast to
the approach advocated here.

Some of the recent work on out-of-core computa-
tion algorithms, particularly that of Salmon and
Warren (1997) and Nieplocha and Foster (1996)
involves concepts relevant to the work presented
here. A feature that this out-of-core work, particu-
larly that of Salmon and Warren, shares with our own
is the emphasis on restructuring the numerical algo-
rithm to function well in the new mode. The work
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presented here is based on ideas set out in Woodward
(1996). Continually updated lists of references to
work on SMP cluster computing can be found on the
“clumps home page,” at http://now.cs.berkeley.edu/-
clumps, and through links maintained on that page.

A Virtual Petaflop/s Machine

The model for a petaflop/s system, upon which
our experimental run-time system is based, is a
cluster of multiprocessor DSM machines with
network-attached disks. Our experimental run-time
system allows the programmer to view this comput-
ing platform as a single machine with a 4-stage
memory hierarchy, consisting of (coherent) processor
cache, (non-coherent) local shared memory, global
shared memory, plus a global disk file system. Large
jumps in latency and bandwidth at each stage of this
4-stage hierarchy are assumed, along with corres-
ponding large jumps in computational power. Actual
systems are characterized by ratios in latency and
bandwidth from stage to stage, and by ratios of each,
of latency and of bandwidth, to sustained computa-
tional power available at each stage. This virtual
petaflop/s machine, or VPM, may be parameterized
as follows:

Ncpy = number of CPUs per DSM cluster member.
Npsm = number of DSMs in the cluster.

ccpy = Mflop/s per CPU on an application code task.
cpsm = Gflop/s per DSM on an application code task.
bcpy = B/flop = (DSM shared memory bandwidth to

this CPU) / Ccpu

bpsm = B/flop = (cluster shared memory bandwidth
to this DSM) / CpsM

lcpy = ccpy / (latency to DSM shared memory)
= flops / (DSM access)

Ipsm = cpsm / (latency to cluster shared memory)
= flops / (cluster access)

Note that in this list of parameters memory latency
and bandwidth appear only in ratios. It is these
ratios, rather than the raw latency and bandwidth,
that, together with the system size, Npsy and Ncpy,
reflect the degree of programmability. DSM clusters
of similar size and with similar values of these ratios
can be expected to run a given program at roughly
the same fraction of peak parallel performance. Here
by peak parallel performance we mean Npgy X Ncpy
X ccpy - Of course, for today’s microprocessors we
can expect single processor application performance,
copy » to fall well below the manufacturer’s stated
peak performance. Since the fraction of peak
processor performance actually realized, even after
heroic efforts, is usually so low and varies so greatly

from processor to processor, it is best here to ignore
the manufacturer’s claims entirely and to rely instead
upon benchmark tests of ccpy for the applications in
question. Such tests are easily performed, since only
a single processor need be involved, and today’s high
performance microprocessors are cheap and widely
available. In order to get a feel for values of the
above system parameters for actual systems today,
we compare two DSM cluster systems available to
the scientific community at NCSA below using ccpy
values for our PPM codes:

A small Origin-2000 cluster with network-attached
disks implementing cluster memory:

Ncpy = 128

Npsm =2

ccpy = 150 Mflop/s

cpsm = 18 Gflop/s

bcpy = 0.7 B/flop

bpsm = 0.015 B/flop

Icpy =300 flops / access

Ipsm = 360 Mflops / access,
with cluster memory on disk.

bepy / bosm =50
lDSM / lCPU = 1,200,000

A small Intel-based cluster with a Myrinet network:
Nepy =2
Npsum = 96
ccpy = 50 Mflop/s
cpsm = 100 Mflop/s
bcpy = 1.0 B/flop
bpsm = 0.1 B/flop
Icpy = 100 flops / access

Ipsm = 2 Kflops / access
bepy / bpsm = 10
Ipsm / lepy = 20

Note that, contrary to our expectation, the less
expensive and less powerful system is the more
programmable one, even though the system size is
about the same. We will see below that it is the
parameter / that determines the granularity of shared
memory access that a program must use in order to
achieve high parallel performance. This data access
granularity is generally related to the task size. The
amount of data reuse required for the task to run
efficiently is determined by the parameter b. It is
commonly the case that larger tasks can achieve
greater data reuse. Therefore b tends to determine
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task size in conjunction with /. If the task data
context is well packaged, so that it can be read or
written in at most a few separate sequential data
transfers, then [ tends to have no further relevance,
and it is b that determines the task size according to
the following principle. The system must be able to
deliver the data context for a task from shared
memory and to write back the data resulting from that
task to shared memory in less time than is required
for the computing entity in question to execute the
task once the data has arrived. Clearly, only the ratio
b is important; the raw memory bandwidth is
irrelevant except insofar as it determines this ratio.
With DSM cluster hardware available today, this data
bandwidth requirement is not easy to satisfy, but it is
not difficult to satisfy either.

Program control that should be exposed to the
shared memory programmer

In order to write one of our recommended sorts of
shared memory programs, the programmer needs
control over the following aspects of the program.
This control can come from assertions, directives,
hints, or reasonably well founded expectations of the
results of the compilation process (the way program-
mers now control what data is or is not in cache
memory).

» Programmers must be permitted to designate the
tasks; the program flow then naturally designates
the order of task launch.

» Programmers must be able to stipulate task
synchronization or lack of same (for example,
which previous tasks must be completed before
this task may begin).

» Programmers must be able to identify critical
and/or atomic operations.

» For DSM tasks, the program must explicitly
prefetch task data contexts and asynchronously
write back results. Programmers can do this by
designating these shared memory operations as
separate tasks on the task list.

The shared memory programmer’s needs, as
listed above, are few. Nevertheless, some system
software packages today attempt on the one hand to
hide these “details” from the programmer without on
the other hand providing any reasonable basis for him
or her to build an expectation of the actions that will
actually be taken. In so doing, these system software
packages obstruct efficient program specification
even while they may aid rapid program implementa-
tion. Although it is certainly conceivable that a good

compiler could assist with task data context
prefetching and writing back, it is unlikely that such a
compiler would be able to determine the proper
division of the labor into separate tasks any time soon
without explicit assistance from the programmer.

Today’s compilers are highly successful at fine-
grained program optimizations, where only a limited
context at a time within the program needs careful
examination. However, the typical values of the
system parameters / and b defined above force
efficient programs to have enormous task granularity.
It is very difficult, if not impossible, to construct such
huge tasks without a deep understanding, at a very
high level, of what the program is doing. This
understanding is by definition possessed by the
programmer; without it he or she could not write the
program. It is therefore not a burden for the
programmer to express this understanding by
designating the separate tasks in some concise way
within the program. This programmer expression
relieves the compiler of the difficult job of discover-
ing a good task decomposition and allows it to
concentrate instead on making the execution of each
individual task as efficient as possible.

Determining simple, concise, and effective means
of communicating to parallelizing compilers the
information necessary for them to automatically
decompose the program into parallel tasks is a
subject of active compiler research today. While this
research is underway, our recommended strategy is
for the programmer to state the hierarchical task
decomposition explicitly. This is the strategy of the
OpenMP standard which is emerging as a very useful
tool for writing shared memory programs on SMP
and DSM machines today. An extension of this
standard to hierarchical task specification seems a
natural direction to follow, however, any such
extension would have to account for the need for
asynchronous data context prefetching and writing
back for DSM tasks. One way to do this, which
effectively leaves this task in the hands of the
programmer, is to designate the data context
prefetching and writing back as separate tasks on the
DSM task list. It certainly would be preferable if this
part of the program implementation could be
automated in the compiler.

Assumptions that Permit Efficient DSM Cluster
Programs

Our recommendation that DSM cluster programs
be written in the shared memory style described
above is based upon a small number of assumptions,
which we list below. We assume that a job can be
decomposed into a set of tasks that can be executed
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independently, so long as certain previous tasks are
completed at task launch. We further assume that
each task can be made to conform to a model, or
template, in which:

1) possibly remote data is copied into local memory,
2) this data is operated upon mightily,

3) a few results are written back to possibly remote
storage.

We assume that the tasks can be constructed so
that, in general, the larger the data context for the
task, the larger the amount of potential data reuse.
This assumption is necessary to accommodate low
cluster bandwidths. To accommodate large cluster
latencies we must also assume that the task data
contexts can be constructed so that they may be read
or written back in only a small number of sequential
data transfers. Once in a fast local memory, these
data contexts can be efficiently reorganized if
necessary.

We assume that global barriers (which give us
Amdahl’s Law) can be avoided by providing greater
system resources and/or by minor modifications of
the numerical algorithm. Examples of this principle
abound. For example, a program may require all
processing to stop so that an image of the problem
can be written to a restart file on disk. However, if
additional system memory is provided, this restart
dump can be written asynchronously without
impeding the program flow. Another program might
require that a global reduction operation be
performed after a time step is completed in order to
determine the value of the next time step. However,
if enough memory is provided to store the previous
problem state, we may guess the time step value (the
minimum of the previous 25 time steps might be a
good guess) and proceed speculatively. In the rare
event that we guess badly, the saved system state will
permit us to recover. As a final example, we may be
performing an implicit calculation that appears to
require global information to be assembled in order
to update the value of a variable at a single spatial
location. By revising the numerical algorithm
slightly, we could require up-to-date information only
for the local region and use information from the
previous time step or iteration for the more distant
data. Once again, this would require a commitment
of additional system memory to the job and perhaps
an increase in the amount of computation involved.

Services provided by the run-time system

We provide access to global shared memory
over the cluster or storage area network through

separate memory manager daemons which run on
each SMP or DSM machine to serve requests to read
and store task data contexts. These global memory
servers manage access only to data structures that
have been registered with them as global. The
knowledge of the global memory layout for these
data structures is encapsulated within the memory
server processes. Because the granularity of access
must be huge, it is generally possible to define these
data structures as arrays of records or blocks that
need to be accessed individually by DSM tasks.
Requests to read or write global shared memory are
passed to the memory servers through local DSM
shared memory. When a data record or block is
brought into local DSM shared memory by a DSM
task, it can then be rearranged, or unpacked, for
efficient local access. Only the DSM task program
needs to know the detailed layout of the record
contents. It exploits the low latency and high
bandwidth of DSM memory to unpack and repack
this record to enable serial data transfers to and from
remote cluster memory.

To coordinate the computation, the services of
a global task manager are required. If necessary, in a
very large system the task manager can be
constructed hierarchically. The task manager needs
essentially no knowledge of the internal details of
tasks or their data contexts, but only the dependency
relations between them. Tasks must be able to write
back data not only to their own data contexts, but also
to others. These other contexts need only be
specified in relative terms, and those terms can be
interpreted by the memory servers, which have global
data layout knowledge (but no knowledge of details).

Feasibility requirements

There are increased bandwidth requirements for
this programming model over the usual distributed
memory programming model. However, there are
essentially no meaningful latency requirements. The
bandwidth requirements are determined by the
demand that any computing resource at a given level
of the hierarchy should be able to execute any task at
that same level, regardless of the location of its data
context. New requirements of this model at the DSM
cluster level for data prefetching and asynchronous
writing back are absolutely essential. Despite the
demand that any resource be able to perform any
task, it is clear that, especially among groups of tasks
where launch order is less important, the task
manager should have limited intelligence to avoid
stupid data movement. It should dynamically reorder
the task list, permuting elements that are equally or
nearly equally qualified candidates for the next task
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to be launched, taking data location over the network
into account. A final requirement is that local
memory for various computing resources must be
sufficient to accommodate data contexts offering
sufficient data reuse, but this is not a new require-
ment.

A possible research agenda

Before hierarchical shared memory can be chosen
by the community as a general programming model,
we need to see what kinds of problems it can and
cannot solve efficiently. To solve problems in a
particular application domain, special (new or old)
algorithms may have to be constructed or adapted.
Limitations of this model for dynamic load balancing
in various application domains need to be deter-
mined. Finally, the actual extents of increased or
decreased system demands need to be established for
various application types. We can make significant
progress on these fronts by choosing a small number
of representative application codes, restructuring
them to conform to this hierarchical shared memory
programming model, and then determining their
performance as well as the network bandwidth and
latency ratios that can maximize this performance for
systems of given size and power.

Proof of Concept

At the LCSE, we have restructured the PPM gas
dynamics code according to the hierarchical shared
memory principles outlined above. We wrote the run
time system described above, with memory servers
reading and writing a fast Fibre Channel network-
attached disk system designed by the LCSE’s Tom
Ruwart. Two 128-processor Silicon Graphics Origin-
2000 machines at NCSA, interconnected by a single
fast Ethernet, shared a common file system on 48
Seagate Fibre Channel disks supplied by LCSE
partner MTI. Each machine was connected to all 48
disks via 4 Fibre Channel loops. Each machine was
connected to the disks through its own set of ports
(the disks were dual ported). Read/write bandwidth
from the PPM application from each machine was in
excess of 270 MB/s, sustained, even when both
machines accessed the disks simultaneously. Control
information, such as DSM task completion sema-
phores, was passed via MPI over the fast Ethernet
link.

This restructured PPM code was used to simulate
Mach 2 homogeneous, compressible turbulence on a
billion-cell (1024°) uniform grid. A typical task for a
single CPU was to update for one 1-D pass a grid
pencil of 4x4x256 cells. A typical task for a single
128-processor Origin-2000 machine was to update

for six 1-D passes, or 2 time steps, a 256x256x512
brick of grid cells. 32 old and 32 new grid brick
records were stored on the shared Fibre Channel disk
system. Each grid brick record of 954 MB consisted
of 27 separate records: the brick interior (640 MB),
6 brick face records (27.5 MB each), 12 brick edge
records (2.4 MB each), and 8 brick corner records
(200 KB each).

During each grid brick update, the Origin-2000
was asynchronously prefetching the next grid brick
record and writing back the results of the previous
grid brick update to 27 different grid brick records on
disk. The grid brick record, after being read into
DSM memory from disk (in 3.5 sec), was unpacked
to form a single, augmented grid brick of
300x300x556 cells. This brick was then updated in
six 1-D passes, with each consisting of 8192 single-
CPU tasks (requiring 2.5 sec with 128 CPUs). In this
demonstration run, there were barrier synchronization
points at the ends of the 6 passes, but these can be
eliminated at the cost of further code complexity.
After the 6 passes, the new data was written into a
new grid brick record in DSM memory, and this was
transferred back to disk (in 3.5 sec).

LSF Reserved CPUs vs DDPPM

B LSF Machine
B

O Application
Machine B

B LSF Machine
A

B Application
Machine A

Number of CPUs

Time in Hours

The figure above documents about 4 days of
continuous PPM computation at NCSA. Two 128-
CPU Origin-2000 systems were used. Processors
obtained by PPM on the first system are represented
by the cream colored area in the figure. This system
was not always available to us, due to scheduling of
dedicated access for other jobs. Processors obtained
by PPM on the second 128-processor system are
represented by the blue area in the figure. PPM
adjusted its number of processors on each machine at
the beginning of each 1-D sweep for each grid brick.
When 128 CPUs were in use, this adjustment interval
was about 2.5 seconds. Both machines were shared
dynamically with other users, and PPM benefited by
inserting requests for CPUs in several batch queues,
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grabbing the CPUs as they became available for this
single, large computation. The small departures from
full resource utilization that are shown reflect system
functions performed by the operators, not any failure
of PPM to exploit these opportunities.

Reevaluating this Demonstration Code for
Parameters of the IBM SP System

Our sPPM ASCI benchmark code indicates that,
within a couple of per cent, the delivered perform-
ance of a PowerPC 604e microprocessor running at
333 MHz is equivalent to that of a MIPS RI10K
processor running at 195 MHz. Therefore, one IBM
SP “silver” SMP of 4 CPUs gives a value for ccpy of
about 600 Mflop/s. This is 32 times less than ccpy
for a 128-CPU Origin-2000. Hence to run well on
this IBM system we should reduce the computational
labor involved in a single DSM task of the PPM code
by about a factor of 32. We can do this by reducing
the brick volume by a factor of 8, resulting in a brick
of 128x128x256 cells, and by performing only a
single 1-D sweep rather than 6 per task. This DSM
task should now take 15x32/48 = 10 sec. Because
we are performing only a single 1-D sweep, the data
reuse in this task is 6 times less than on the Origin-
2000. However, the “cluster” bandwidth per CPU
Mflop/s, bcpy, is now 4x25/600 = 1/6. Thisis 12
times greater than for the Origin-2000 at NCSA
operating from shared memory on the Fibre Channel
disks. As a result, the PPM code should run on this
system even more efficiently, unless there is
contention on the SP’s communication network. To
do so, of course, the job would have to reside
completely in the relatively expensive DRAM system
memory rather than on an inexpensive disk sub-
system. A form of overhead for the parallel code is
redundant computation performed in “ghost” cells
surrounding each grid brick. The fraction of the
computation time devoted to this redundant work
would have remained the same as in the NCSA run if
we had performed three sweeps rather than just one
sweep per DSM task. We have thus reduced the
redundant computation overhead by a factor of
(278%%534 - 256"x512)/(8x(130°%263 - 128*%256)) =
3.9, and job execution should reflect this lower
overhead in greater efficiency.

A Plan to Apply this Approach to Representative
Applications

Under the auspices of the National Computational
Science Alliance (NCSA), our LCSE team plans to
work with two other application code teams to
explore the usefulness of the hierarchical shared
memory programming model. First, we will work

with our own PPM gas dynamics code, but with cell-
by-cell adaptive mesh refinement at multifluid
interfaces, shocks, contact discontinuities, and slip
surfaces. Second, we plan to work with the Princeton
cosmology code team to restructure its particle
following techniques and its calculation of the
gravitational potential using FFTs. Third, we plan to
work with the Illinois-NCAR mesoscale meteorology
code team to restructure their multiple time stepping
to handle the disparate signal speeds of sound and of
the wind.

PPM with AMR gives dynamically irregular
computational loads. Our demonstration at NCSA,
discussed above, shows that we can easily deal with
these irregular loads without compromising aggregate
performance. Our approach requires a blocked,
compressed data structure for all the refined grid
data. We may need to subdivide domains that are
heavily refined into, say, 8 separate tasks in order to
roughly control the variation in processing time
required for our tasks. Ideally, we want to have a
large number of tasks all of which take approxi-
mately the same amount of time to complete. Then
we can be assured that the order of task completion
will not be too different from the order of task
launch. This relationship between order of launch
and order of completion is assumed in optimizing the
launch order to minimize the chances that any task
will have to wait on the completion of earlier tasks.

The mesoscale meteorology code treats fast sound
waves by subcycling within a time step sized for the
wind velocity, which is 10 to 20 times smaller. Each
such subcycle calculation is simple, and therefore its
difference stencil is compact. As a result, we can do
10 subcycles within a single DSM task without
requiring extreme numbers of ghost cells surrounding
a problem subdomain corresponding to this task. If
the number of ghost cells required to update a grid
block grows too large, we can exercise a fall back
strategy by letting sound travel at only, say, 350 mph,
which would still be much faster than the wind and
should therefore produce nearly the same weather.
Meteorology problems can have up to 20 constituents
of the air which must be advected along with the
wind. Frequently used advection algorithms involve
very little computational labor per updated data
value. Use of these algorithms could cause the band-
width requirements for the calculation to rise dramat-
ically. In such problems we can employ instead
much more accurate and more computationally
intensive algorithms. We intend to experiment with
such algorithms and evaluate their additional costs
and additional benefits on DSM cluster systems. We
also intend to experiment with implicit methods for
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sound waves based on domain decomposition and to
compare those methods with the subcycling
approach.

The Princeton cosmology code computes the
gravitational potential at each point with an FFT,
which requires global information. The FFT runs
from disk, transposing data which is blocked with
large granularity. This out-of-core technique
requires about 100 MB/s sustained data transfer rates
for each 32 MIPS R10K CPUs. In a single time step,
only the high-order multipole terms of the potential
due to distant galaxy clusters change appreciably, but
the effect of these terms on the local potential is
entirely negligible.  Therefore, in this potential
calculation we could use data about distant masses
that is one time step out of date. The error introduced
in this manner could be quantitatively assessed and
kept small. This procedure should still converge to
truth upon “mesh” refinement, and it would no longer
require tight synchronization between potential
calculations for widely separated domains of the
problem. Such a technique would remove the
necessity for certain task synchronizations, but only
at the cost of increased data storage and increased
computational labor. For petaflop/s computation, it
might prove useful to adopt such modified
algorithms, and the Princeton cosmology code
provides a context in which such options can be
quantitatively evaluated.

Conclusions

We believe that portable petaflop/s programming
is possible based upon an extension of shared
memory multitasking techniques to address the
presumed hierarchical structure of the memories of
petaflop/s machines. A hierarchical memory struct-
ure, with perhaps even greater challenges than we are
likely to find in petaflop/s machines of the future,
characterizes DSM cluster systems today. We there-
fore believe that these systems can be used to develop
practical and portable petaflop/s programming tech-
niques today.

The decomposition of a job into a self-scheduled
list of tasks for DSM machines, each of which is
itself a self-scheduled list of tasks for individual
CPUs, is a natural way to address the need for
dynamic load balancing in irregular computations or
in dynamically varying computing environments.
Performing the computation from a persistent
problem image in a non-volatile memory, such as a
shared disk system, is a means of tolerating the
equipment failures that are likely in increasingly
complex computing systems. The programming
techniques discussed here can guide exploratory

efforts. However, we believe that success is most
likely if the code and algorithm developers work
closely with developers of the special system
software that is required. This is necessary to permit
global optimization of the overall approach. Success
may demand that cherished numerical algorithms be
abandoned or significantly modified. It may also
require that the functionality and/or performance of
the system software be significantly modified,
extended, or enhanced. Only through close collabor-
ation can these important changes be made and the
lessons learned that perhaps only these changes can
impart.
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Appendix: Tuning the PPM Code for
Performance on a Single DSM Machine

The PPM algorithm for compressible gas
dynamics was initially developed with vector
supercomputers in mind. As a result, it is formulated
as a sequence of 1-D sweeps over a regular grid, with
each sweep written as a long series of unit stride
vectorizable loops enclosed in outer loops over strips
of grid cells. In this original vector code, the data
representing the fluid state of a given strip of grid
cells was read into the vector CPU from main
memory many times over in order to advance the
calculation for only a single 1-D sweep. On vector
machines of the 1980’s this reading and rereading of
data from main memory came at no cost in
performance. This vector PPM code achieved about
half the peak performance of every vector computer
on which it was implemented. = However, this
algorithmic structure does not fit the supercomputing
platforms of today, for which this profligate
expenditure of memory bandwidth is entirely
inappropriate. To make the algorithm efficient on
clusters of DSM machines like those at NCSA, the
way the computation proceeded had to be entirely
rethought and restructured.

Transforming the PPM code kernel for performance
on a single CPU

Transformations for L.-1 Cache Utilization:

To make the PPM computation run well on a
single O2K CPU, it was necessary to change the
fundamental unit of work, the task that is assigned to
a single CPU only. In the original code for Cray
vector multiprocessor machines, this CPU task
involved the updating for a 1-D PPM sweep of a
single strip of grid cells. In principle, each cell of the
grid may be updated independently, but in this update
process intermediate results must be generated in
neighboring grid cells in the same grid row (the cells
shown in green in the diagram at the left). Since
these intermediate results can be reused in updating
these adjacent grid cells, the overall computation
becomes increasingly efficient as the length of the
grid strip to be updated is increased. Roughly
speaking, the work involved in updating a strip of n
cells is (n+7)xw, where w is the work per cell for
an extremely long grid strip.

When a single grid strip is broken into sub-
sections to be updated in parallel by different CPUs,
redundant work must be performed in 14-cell regions
centered on the locations where the grid strip was
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subdivided. This redundant work can be considered
as an overhead associated with parallel computation.
To keep this overhead low, we try, for large
problems, to keep n over 128, with values of 256 or
512 commonly used in practice.

The difference stencil of one variant of the 2-D PPM
gas dynamics code for a single 1-D sweep in the x-
direction. In order to update the red grid cell in the
center, data from the 12 nearby blue grid cells must be
used, and intermediate results must be computed in the
7 green grid cells on either side. The number of inter-
mediate results computed is greatest for the green grid
cells that are closest to the central, red cell. These
intermediate results can be used to uvdate those cells.

The decomposition of the problem into CPU tasks
involving long strips of grid cells is not done only to
save redundant work but also to achieve reuse of
cached data. In its original vector form, the grid strip
update code module took as input 5 vectors, one for
density, pressure, and the three components of
velocity, for each of 9 grid strips — the central one,
two above, two below, two in front, and two behind.
From these 45 input vectors, over 150 intermediate
result vectors were computed in the course of
generating the output of the new 5 vectors for the
central grid strip. These vectors were computed in a
series of vector loops of unit stride. Each successive
loop used intermediate results from the previous one
in such a way that the loops could not be combined
without destroying the vector nature of the algorithm.

In a modern microprocessor, these vector loops
are favored for the independent arithmetic that their
iterations present, but they demand a large amount of
data traffic between the processor’s registers and the
cache memory. With the vector length set greater
than 128, as discussed above, the requisite hundreds
of temporary vectors will not fit into an on-chip L-1
cache memory. Performance therefore becomes
limited by the bandwidth to the off-chip L-2 cache.
To overcome this limitation, we restructured the PPM
grid strip update module so that it became a single,
monolithic, unvectorizable loop for which software
pipelining is nevertheless possible.  This was
precisely the style in which the precursors to the PPM
algorithm were written in the 1970’s, before the
advent of vector computers. On the MIPS R-10000

Portable Petaflop/s Programming: Applying Distributed Computing Methodology to the Grid Within a Single Machine Room

06/13/99



processor, using an early compiler, this Fortran-to-
Fortran manual code transformation yielded a 50%
performance boost for a simplified version of PPM,
called sPPM.

We informed Silicon Graphics of this transform-
ation, they included it in their compilers, and now it
is no longer necessary to perform this transformation
manually. (However, it is necessary to write code
that the compiler can recognize as a candidate for this
transformation.)  Performance boosts from this
transformation were similar on the DEC Alpha
processors in the Cray T3D and T3E, but they were
less on the IBM CPUs. This code transformation
yielded a speed-up on every processor, except of
course the Cray vector processors, for which we tried
it. The very different cache performance before and
after this transformation can be seen in the output,
below, from the MIPS R-10000 CPU’s hardware
performance monitor performing a large number of
strip updates with n = 400. These tests were
performed on July 8, 1997, using 64-bit arithmetic.
The R-10000 was installed in a Power Onyx at the
LCSE. Tests on an Origin-2000 at NCSA gave
essentially the same results at the time.

For the transformed code:

agate> perfex -a xprwsppm8 < sod3din-bench
WARNING: Multiplexing events to project totals--inaccuracy
possible.
1
card input for this problem was as follows:

bttpropu ibot, itop, rho, p, u:
end 0 0 0.00000E+00 0.00000E+00 0.00000E+00

n= 2984 t= 1.00032E-01 dt= 3.42129E-05 cour= 2.54994E-02
CyclesS. . ittt eeineennnnns 5187755136
Issued instructions........................... 6592839552
Issued loadsS. . ... 1339296496
Issued StOreS. ...ttt 781376528
Issued store conditionals..................... 224
Failed store conditionals..................... 0
Decoded branches.............................. 77885024
Quadwords written back from scache............ 165760
Correctable scache data array ECC errors................. 0
Primary instruction cache misses.. 179648
Secondary instruction cache misses 832
Instruction misprediction from scache

way prediction table... 68816
External interventions........................ 15408
External invalidations..... .................. 17392
Virtual coherency conditions.................. 0
Graduated instructions........................ 5587467936
CYCl S . ittt e 5187755136
Graduated instructions........................ 5589560912
Graduated loads.............. ..., 1032718016
Graduated stores................oiiiiiinnn... 781338288

Graduated store conditionals.................. 64

Graduated floating point instructions......... 1906695216
Quadwords written back from
primary data cache... 20124000

TLB MiSSE@8S.. ittt eeenenananns 432
Mispredicted branches......................... 1000496
Primary data cache misses....... 15940544
Secondary data cache misses........ 160
Data misprediction from scache

way prediction table.... 73152
External intervention hits in scache.......... 15408
External invalidation hits in scache.......... 17392
Store/prefetch exclusive to

clean block in scache... .. 16
Store/prefetch exclusive to

shared block in scache.... - 0
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26.637u 0.101s 0:27.29 97.9% 0+0k 22+7io 13pf+0w

agate>

agate> date

Tue Jul 8 18:56:23 CDT 1997
agate>

For the vector code:

agate>

agate> date

Tue Jul 8 18:59:04 CDT 1997
agate>

agate> perfex -a xprwsppmé4 < sod3din-bench
WARNING: Multiplexing events to project totals--inaccuracy
possible.
1
card input for this problem was as follows:

bttpropu ibot, itop, rho, p, u:
end 0 0 0.00000E+00 0.00000E+00 0.00000E+00

n= 2984 t= 1.00032E-01 dt= 3.42129E-05 cour= 2.54994E-02
CyclesS...iiiiiiieineeineennanns 8316727104
Issued instructions........................... 12033638400
Issued loadsS. ...t 1744159936
Issued StOreS. . ...t 1036913200
Issued store conditionals..................... 464
Failed store conditionals..................... 0
Decoded branches.............................. 269331312
Quadwords written back from scache............ 2815360
Correctable scache data array ECC errors...... 0

Primary instruction cache misses... 3297168
Secondary instruction cache misses.. 199584
Instruction misprediction from scache

way prediction table... 691776
External interventions.............. 14384
External invalidations.................... 20880
Virtual coherency conditions.................. 0
Graduated instructions........................ 10560158064
CYCl S . ittt e 8316727104
Graduated instructions........................ 10567197856
Graduated loads..............c.oiiiiinnnnnnn... 2706599200
Graduated stores................oiiiiiinnn... 1035344560

Graduated store conditionals.................. 144

Graduated floating point instructions......... 2117035840
Quadwords written back from
primary data cache.... ... ..., 417686608

TLB mMisSsSeS....c.ceieeieeneenee & 768

Mispredicted branches......................... 6666816
Primary data cache misses...... 419177232
Secondary data cache misses....... 404160
Data misprediction from scache

way prediction table.. 2168016
External intervention hits in scache.......... 14384
External invalidation hits in scache.......... 20896
Store/prefetch exclusive to

clean block in scache... — ......... 170656
Store/prefetch exclusive to

shared block in scache... — ........ 16

42.756u 0.150s 0:43.32 99.0% 0+0k 7+7io 4pf+0w
agates>

The improvement in the effectiveness of the
memory system in this example is dramatic (reduc-
tion in primary data cache misses by a factor of 1/26),
and the improvement in performance is satisfying.
(On an Indy desktop workstation, with the MIPS R-
5000 CPU, the performance improvement was 280%,
but Indy’s were not really designed to run this sort of
code.) We communicated this transformation for the
sPPM kernel code to Silicon Graphics and IBM,
since sSPPM was used by the DoE’s ASCI program as
an official benchmark for its “blue” platform
procurements. It is not clear to what extent it has
been incorporated into these vendor’s most recent
compilers, although with these compilers its benefits
have been reduced to the range from 1% to 5%. Thus
either this transformation or one equally effective has
been incorporated.
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The extreme version of this loop fusion which we
used manually in the test documented above is
probably overkill for today’s microprocessors.
However, as these processors continue to outrun their
main memory systems, these transformations may
become increasingly important. For the new genera-
tion of microprocessors with dual sets of floating
point functional units, the monolithic scalar loop of
the transformed code may be pipelined, so that two of
its iterations are performed in each passage through
the transformed loop. This of course involves writing
if-tests with four branches in places where only two
branches were originally required. If in such cases
far more work is done in one branch than the other, in
the relatively rare cases where the two iterations go
down different branches of the original test the dual
functional units will be less well utilized until the
control returns to a section of identical code for each
original loop iteration.

Transformations for L-2 Cache Utilization:

The updating of a single, long grid strip by now
sounds like an ideal task for a single CPU to perform.
However, such a task requires that 45 grid strip
vectors be read in for each 5 grid strip vectors that are
produced as final results. In order to update the
entire grid for a single 1-D pass, each strip vector
must be read in 9 times for use in updating different
grid strips. If all these 9 read operations are
performed by the same CPU, then only a single data
transfer from main memory is required, and the other
8 are done from the off-chip L-2 cache. Since main
memory bandwidth is a problem on most machines
today, it is therefore a good idea to bundle several
neighboring grid strips together for processing by a
single CPU as a single, indivisible task.

We call such a bundle a grid pencil. We therefore
update grid pencils of mxmxn grid cells in our CPU
tasks for the PPM code. If we choose m = 4, then
we must read each grid strip 3 times from main
memory in a single 1-D sweep. If we choose m = 8§,
then we read each strip only 2 times. The larger we
set the value of m, the more efficient is our use of
the main memory system; however, larger values of
m give us fewer CPU tasks for each 1-D sweep. If
we have too few CPU tasks, some CPUs may find
themselves with no tasks available to do for a short
interval while other CPUs catch up. For this reason,
it is rarely advisable to choose m greater than 8.

Transformations for Main Memory Performance:

The choice of the transverse width of a grid pencil
is affected by another major consideration related to
the performance of the main memory system. A
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CPU must be able to read the data for its grid pencil
efficiently regardless of the direction, x, y, or z, of
the 1-D sweep. If the 5 physical variables are stored
in separate arrays, we must therefore choose m to be
5 times larger to achieve the same effective main
memory bandwidth in two of the three 1-D sweeps.
Therefore, we interleave these 5 arrays in a single
array structure, which now has a fourth dimension,
the number of the physical state variable, running
from 1 to 5 (the fast-running array index). Still, it is
necessary to choose m to be at least 4 in order to get
good main memory performance on today’s
machines. For m = 4, we read 40 words at a time,
each of 4 (or 8) bytes, regardless of which 1-D sweep
we are doing. Hence we do not waste much of the
information in the cache lines we access. Even when
we use 64-bit arithmetic for the grid update process,
we generally store variables in main memory in 32-
bit format. There is very little to be gained for the
PPM algorithm from 64-bit main memory storage,
and much to be lost in the way of main memory
bandwidth and main memory problem size.

A final consideration in constructing the single
CPU tasks for the PPM code is the layout of the
principle 4-D data arrays (one new and one old) in
main memory. This data layout interacts with the
order in which the CPU tasks are launched. The key
principle is that we must prevent situations in which
many CPUs try nearly simultaneously to access the
local main memory of any single CPU. We can
prevent this either by carefully scripting the task
launch order or by laying out the data in such a way
that to read any grid pencil in any 1-D sweep requires
accessing the local main memories of several
different CPUs. Either strategy works well, and we
find the main memory bandwidth of DSM machines
like the Origin-2000 to be thoroughly adequate to our
purposes.

Transforming the PPM code for performance on a
single DSM:

We have described above the construction of
highly efficient tasks for individual CPUs. Each of
these tasks follows the design of our template,
discussed earlier — (1) a data context, the grid
pencil, is read into local, high-bandwidth, low-
latency memory, (2) this data is operated upon,
performing about 900 flops per updated grid cell (or
about 60 flops per word transferred to or from main
memory), and (3) results are written back to main
memory. The entire task data context fits into any
reasonable L-2 cache memory, although this is not a
requirement for good performance. If the vast bulk
of our computation consists of these grid pencil
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update tasks, then we should get very good
performance so long as no CPU needs to sit idle
while waiting for such a task to be assigned to it.
Achieving high parallel performance thus boils down
to preventing any CPU from waiting for work.

The most fundamental technique to avoid idle
CPUs is to assure that any CPU can perform any
unassigned grid pencil update. Because nearly all the
data traffic to and from the CPU has been limited to
the L-1 and L-2 caches or, if the cache is too small, to
the local main memory, the cost of importing the task
data context and of exporting the final results is
negligible on any reasonable DSM or SMP machine
today. For the sSPPM kernel code, there were only 16
million L-1 cache misses in over 2 billion load and
store instructions, for an L-/ cache hit rate of over
99%. For this reason, a CPU can execute any grid
pencil update at nearly the same efficiency regardless
of the location of its data context.

Careful construction of the CPU tasks for the
PPM code overcomes the constraints of the “owner
computes” rule of data parallel computation, but a
CPU can still be idle if we do not order the sequence
of task launches very carefully. The goal is that
whenever a CPU completes a task, there should be
another one that it can begin immediately. Each of
our grid pencil updates is entirely independent, so
long as we consider a single 1-D sweep. However, to
update a grid pencil oriented in the y-direction in the
second 1-D sweep of the 3-D algorithm, we must be
sure that the appropriate x-oriented grid pencils have
been updated. If we launch the x-oriented pencil
tasks appropriately, and if we are perhaps willing to
update y-oriented pencils of half the maximum
possible length, we can be fairly well assured that
necessary x-pencil updates will always be completed
when the time comes to launch each y-pencil task.

In the PPM demonstration calculation mentioned
earlier, each DSM task consisted of six 1-D sweeps
over a grid brick with 256x256x512 cells. Each grid
pencil was 4x4x256 cells, so that in each 1-D sweep
there were 8192 independent CPU tasks for the 128
CPUs to perform. Since each CPU updated 64 grid
pencils on the average, we could afford to simplify
the code by inserting a barrier synchronization point
at the end of each 1-D sweep; this convenience could
exact a performance penalty of no more than 1.6%.
However, on a smaller problem, updating for
example a grid brick of 128x128x256 cells with grid
pencils of 4x4x128 cells, we would have only 2048
independent tasks, and this performance penalty
ceiling would grow to 6.3%. For a grid brick of
64x64x128 cells and grid pencils of 4x4x64 cells,
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this performance penalty could grow as high as 25%.
Thus it is for small problems that we must work the
hardest to order the task list to permit each phase of
the computation to begin before the previous one is
entirely completed.

Our experience shows that if one is willing to
make the programming effort, this task ordering is
usually possible. As convenient barrier synchroniza-
tions are removed more and more aggressively, the
complexity of the code increases due to elaborate
tests on completion of previous tasks that must be
carried out before each successive task on the list is
launched. Debugging of such code is difficult, since
race conditions are usually involved. Therefore,
there is a practical limit to such multitasking
strategies that causes the programmer to accept poor
performance on very small problems.

Transforming the PPM code for performance on a
DSM cluster:

From the very efficient PPM grid pencil update
module, a modular task for an entire DSM machine
like the O2K was constructed. This task involves the
updating for two time steps, that is, for six 1-D
sweeps, of an entire grid brick. The cache-line
granularity of access of the DSM main memory is
exploited to permit efficient extraction of grid pencils
in all 3 grid directions. This allows CPUs to update
grid pencils of maximum length in each 1-D pass,
and thus to reduce computational labor at the ends of
grid pencils that is redundant with that for grid
pencils in the next grid brick.

The order in which the pencils are updated can be
optimized to allow one 1-D sweep to begin before the
previous one has ended. The construction of the
pencil update tasks makes so few demands on the
shared memory that we need not reorder these pencil
updates (suboptimally) in order to have particular
CPUs update data that is near to them in any special
sense. As a result, for problems in which dynamic-
ally changing physical conditions in the fluid flow
can cause one grid pencil update to require much
more computation than another, all CPU loads are
automatically and effortlessly balanced so long as
there are many grid pencils to update.

The final stage in the restructuring of the PPM
code was to update the entire grid, brick by brick,
with dynamic load balancing over all the DSM
machines in a cluster. The grid bricks are updated in
an order optimized so that a new round of brick
updates can begin before the previous round is ended.
As soon as a DSM machine finishes updating a brick,
it begins on another, assigned to it by a task manager
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process.

The brick update is made latency tolerant by
structuring it in 3 parts: (1) transferring the grid
brick data into local DSM memory, if necessary, (2)
updating this data via a sequence of grid pencil
updates, and, (3) if necessary, transferring the new
brick data back to its proper location. The fine-
grained structure of the DSM main memory is
exploited to package each grid brick data record into
27 contiguous blocks, the brick interior and its faces,
edges, and corners which overlap neighbor bricks. In
this format the grid brick record can be transferred at
maximum possible bandwidth over network inter-
faces either to other DSMs in the cluster or, perhaps
more interestingly, to a network-attached disk file
system. The coordination of brick updates by the
DSM machines of the cluster is complicated by the
need to tolerate high latency and low bandwidth by
prefetching each successive brick data record and by
asynchronously writing back each updated brick
record while the computation proceeds.
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